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The effect of a charge trap in the vicinity of the quantum-dot on the charge stability 
diagram of a single electron transistor 
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ABSTRACT: In this article, we explored the effect of a single charge trap on the charge stability 
diagram of the quantum-dot-based single-electron transistor. We investigated anomalies in the coulomb 
characteristic diagram, system energy, occupation probabilities, and quantum dot conductivity arising 
from the electrostatic interaction between the main dot and this charge trap. The anomalies were studied 
for various locations of the trap, mainly when the trap is located at the source or drain sides of the device. 
A significant enhancement in quantum dot conductivity was observed by bringing the main quantum dot 
closer to the source and drain with increased coupling capacitors. The trap, capacitively linked to the 
quantum dot, has two charge states, either empty or occupied by a single electron. Considering various 
quantum states, we solved the master equation using Fermi’s golden rule to obtain tunneling rates and the 
matrix of tunneling coefficients. Inverting the coefficient matrix allowed us to determine the probability 
of each quantum state. The results of this analysis have been validated by comparing simulation results 
with experimental data. In conclusion, our study provides a valuable tool for detecting charge presence 
in a trap near a quantum dot, potentially applicable for the readout of quantum gates.
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1- Introduction
Electron transport mechanisms in single-electron 

systems, including quantum dots, dopant atoms, and single-
electron transistors, represent a critical resource in the study 
of condensed matter physics. Additionally, established 
nanofabrication processes facilitate the systematic production 
of intricate assemblies of these single-electron entities. Such 
advancements are currently under investigation for their 
applicability in the construction of quantum computing 
architectures, highlighting their significance in the ongoing 
evolution of quantum technologies [1, 2]. Transport through 
single-electron systems involves phenomena such as 
Coulomb blockade, where the transport is suppressed unless 
a certain energy threshold is overcome. Quantum tunneling 
is crucial in allowing electrons to traverse potential barriers, 
enabling coherent transport at the nanoscale.  

Usually, quantum point contacts (QPC) or single-electron 
transistors (SETs) are used to read single-electron charges or 
spins [3] in Qubits [4, 5]. These devices are sensitive to the 
electrostatic environment at certain gate-voltage biases, and 
the single-electron charging in the dot significantly changes 
its conductance, enabling single-electron charge sensing [6]. 
QPCs are narrow channels through which electrons can flow, 
and they are designed to exhibit quantized conductance due 
to the quantization of electron energy levels in one or more 

dimensions. The presence or absence of individual electrons 
passing through the QPC can be detected by carefully 
engineering the QPC and its surrounding environment. When 
the QPC captures an electron, it modifies the conductance 
of the QPC, leading to measurable changes in the electrical 
current. These changes can be detected and used as a signal 
to read out the charge state of the device [7, 8]. Using 
a QPC as a charge detector, the distribution function of 
current fluctuations in the QD can be directly measured by 
counting electrons. SETs have been used as very sensitive 
electrometers for the charge on a second quantum dot [9, 10]. 
Single-electron transistors (SETs) based on metallic tunnel 
junctions and gate-defined sensor quantum dots (SQD), 
conceptually equivalent to SETs, have also been widely 
used as proximal sensors and provide similar sensitivity 
and bandwidth [11-14]. In [15], mutual charge sensing 
between electron and hole quantum dots using a single 
electron transistor (SET) and a single-hole transistor (SHT) is 
reported. Both quantum dots sense charge displacement in the 
other quantum dots simultaneously. Moreover, [13] reports 
a real-time observation of an individual electron tunneling 
within a quantum dot, achieved through an integrated radio-
frequency single-electron transistor (SET). Electron counting 
is employed to assess the quantum dot’s tunneling frequency 
and the likelihood of its charge states being occupied.

Traps are one of the main factors that affect the electronic 
properties of QD-based devices [16, 17]. A system consisting 
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of a trap connected to a quantum dot is used for various 
purposes, such as qubit initialization, information storage, 
manipulation, electron-hole recombination, and limitation 
due to trapping states [18]. The trap may be intentionally 
placed in the system to limit and control the charge state 
of the quantum dot, which allows precise manipulation and 
measurement. It might also be located due to unavoidable 
factors such as lattice defects and deep impurities inside 
the structure [19] and near the main quantum dot. In both 
cases, there is a need to evaluate and analyze the effect of 
the trap and its charge state (full or empty) on the charge 
stability diagram of the quantum dot. By coupling the trap 
to the quantum dot, it is possible to control the energy levels 
and interactions of the quantum dot system, which promises 
applications in quantum information processing and quantum 
computing.

 This work considers the effect of a charge trap, such as 
an isolated impurity, which is located in the vicinity of the 
main dot and capacitively coupled to it. We have taken into 
account the electrostatic interaction between the trap and the 
quantum dot. We analyzed the effect of trap position on the 
characteristic of the quantum dot. 

There are usually two approaches to address the problem of 
interacting dots. One is based on classical coulomb blockade 
theory and capacitive coupling of the dota, which produce 
the principal features according to experimental results. 
This approach ignores quantum effects and spin interaction 
that slightly distort the charge stability diagram. Another 
approach is the quantum treatment based on the generalized 
Hubbard model. A generic numerical approach for solving 

the Master equation based on Hubbard Hamiltonian has 
been recently demonstrated for a double quantum dot system 
[3,22]. It takes into account spin-exchange, pair hopping, 
occupation-modulated hopping, and Zeeman splitting effects 
in the presence of an external magnetic field as well as the 
coulomb interaction. As demonstrated in [3], those effects 
slightly modify the shape and fade the boundaries of various 
regions in the charge stability diagram or create additional 
states within the regions such as singlet-triplet states which 
are beyond the scope of this work. However, the overall 
picture is the same as the classical approach.

In this work, we have used classical coulomb blockade 
theory and single-electron tunneling effect to calculate the 
tunneling rate from/to individual quantum states in the system 
using the master equation method and Fermi’s golden rule. 
Finally, we have simulated anomalies in the characteristics of 
the quantum dot, which represents the charge state of the trap. 

2- Device structure and parameters
Fig. 1 schematically shows the electrical model of the 

structure used in our simulation [20]. The main dot is between 
the source and drain leads, with two tunnel junctions. The gate 
electrode is coupled only capacitively (with zero tunneling 
probability) to the main dot (Cmg) and the trap (Ctg). As shown 
in Fig. 1. c, GL, and GR specify the tunneling rates between 
the main dot and the left and right leads.

The trap has been tested in three different positions, which 
are, respectively, the positions where the trap is capacitively 
coupled to the source (Cts) and the quantum dot (Cc) (Fig. 
1. a), the trap is capacitively coupled to the drain (Ctd) and 
the quantum dot (Cc) (Fig. 1. b), and the trap is capacitively 

 

Fig. 1. Electrical model of the quantum dot in the vicinity of the trap [20] (a) The trap has a capacitive coupling to the source (b) 
The trap has a capacitive coupling to the drain (c)  The trap has coupled to both source and drain  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Electrical model of the quantum dot in the vicinity of the trap [20] (a) The trap has a capacitive coupling to 
the source (b) The trap has a capacitive coupling to the drain (c)  The trap has coupled to both source and drain 
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coupled to both drain and source in addition to the quantum 
dot (Fig. 1. c). Table 1 lists the values of coupling capacitors 
specified in Fig. 1, which are obtained for an experimental 
structure [12]. The gate electrode controls the number of 
electrons in the quantum dot and the trap. The source and 
drain electrodes bias the device and establish a current 
through the source and drain tunnel junctions. 

3- Electrostatic energy of the system
Fig. 2.a, obtained from [12], shows the system’s 

electrostatic energy (W) in different charge states (E0 for zero 
electrons in the trap and E1 for one electron in the trap) as a 
function of gate voltage (Vg). To calculate the electrostatic 
energy, we assume that the number of electrons inside the 
quantum dot (nm) can vary from 0 to 9, and the number of 
electrons inside the trap (nt) can be 0 or 1. Therefore, there 
are ten different charge states as (0,0), (1,0), (2,0), ..., (9,0) in 
which the trap is empty and ten other charge states as (0,1), 
(1,1), (2,1), ..., (9,1) in which the trap is occupied by one 
electron and in general the system can have twenty different 
charge states. 

The system’s electrostatic energy W is calculated as a 
function of the charge in the quantum dot (Qm) and the charge 
in the trap (Qt):
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The parameters of the above relation are defined in (2) to 

(8). q0 is the background charge in the dot.

2 2( ) ( )( , )
2 2( )

m t t t t
m t

t c

Q Q X Q XW Q Q
C C C

  
 


                                               (1) 

 

0( )m m mQ n n q q                                                                       (2) 

( )t t tQ n n q                                                                            (3) 

i is id igC C C C                                                                       (4) 

c
t

t c

C
C C

 


                                                                            (5) 

m t tC C C                                                                            (6) 

i is s id d ig gX C V C V C V                                                                (7) 

m t tX X X                                                                            (8) 

1( )
1xf x

e



                                                                           (9) 

*( ) ( * )( )
1x

xf x f f x
e

 


                                                            (10) 

(3,0) (2,0) ,*
, (3,0),(2,0) 1 ( )L R

L R
B

W W
G T f

K T
 

                                                 (11) 

(2,0) (3,0) ,*
, (2,0),(3,0) 1 ( )L R

L R
B

W W
G T f

K T
 

                                                 (12) 

 , ,L R L RqV                                                                          (13) 

 

 (2)

2 2( ) ( )( , )
2 2( )

m t t t t
m t

t c

Q Q X Q XW Q Q
C C C

  
 


                                               (1) 

 

0( )m m mQ n n q q                                                                       (2) 

( )t t tQ n n q                                                                            (3) 

i is id igC C C C                                                                       (4) 

c
t

t c

C
C C

 


                                                                            (5) 

m t tC C C                                                                            (6) 

i is s id d ig gX C V C V C V                                                                (7) 

m t tX X X                                                                            (8) 

1( )
1xf x

e



                                                                           (9) 

*( ) ( * )( )
1x

xf x f f x
e

 


                                                            (10) 

(3,0) (2,0) ,*
, (3,0),(2,0) 1 ( )L R

L R
B

W W
G T f

K T
 

                                                 (11) 

(2,0) (3,0) ,*
, (2,0),(3,0) 1 ( )L R

L R
B

W W
G T f

K T
 

                                                 (12) 

 , ,L R L RqV                                                                          (13) 

 

 (3)

2 2( ) ( )( , )
2 2( )

m t t t t
m t

t c

Q Q X Q XW Q Q
C C C

  
 


                                               (1) 

 

0( )m m mQ n n q q                                                                       (2) 

( )t t tQ n n q                                                                            (3) 

i is id igC C C C                                                                       (4) 

c
t

t c

C
C C

 


                                                                            (5) 

m t tC C C                                                                            (6) 

i is s id d ig gX C V C V C V                                                                (7) 

m t tX X X                                                                            (8) 

1( )
1xf x

e



                                                                           (9) 

*( ) ( * )( )
1x

xf x f f x
e

 


                                                            (10) 

(3,0) (2,0) ,*
, (3,0),(2,0) 1 ( )L R

L R
B

W W
G T f

K T
 

                                                 (11) 

(2,0) (3,0) ,*
, (2,0),(3,0) 1 ( )L R

L R
B

W W
G T f

K T
 

                                                 (12) 

 , ,L R L RqV                                                                          (13) 

 

 (4)

Ci is the total coupling capacitances, including coupling 
to source, drain, and gate, where (i = m (for main dot) or t 
(for trap)). 
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Fig. 2.a shows the electrostatic energy of the system. Each 
parabola relates to a different value of nm. The number of 
electrons in the dot increases due to the gate voltage increase. 
As shown in Fig. 2.b, when the system’s energy is equal for 
both consecutive states, an electron is added to the quantum 
dot to decrease the system’s energy. Blue parabola (E0) 
shows the minimum energy (ground state) of the system for 
nt=0, while black parabola (E1) shows the minimum energy 
(ground state) of the system for nt=1. For negative Vg, E0 has 
lower energy and, therefore, is the favorite state of the system. 
By increasing the gate voltage,  The system energy level in 
the E0 state increases while the energy level for the E1 state 
decreases; therefore, E1 becomes more favorable than E0, and 
the probability of trap charging increases. Fig. 3 shows the 
total system energy obtained from the simulation, calibrated 

Table 1. Coupling capacitances of the system used  in the simulationTable 1. Coupling capacitances of the system used  in the simulation 

Capacitor Value (aF) 

Cmg 10 
Cmd 11 
Cms 11 
Ctg 0.007 
Cts 0.3 
Ctd 0.3 
Cc 0.25 
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with experimental data [20], by setting q0 (background 
charge) as a fitting parameter.  

4- Trap occupation and charge stability diagram
A common technique for simulating transport is the 

master equation approach [21, 22]. The aim is to determine 
the probability that a system occupies a given charge state 
in a steady state [23]. The system can have twenty different 
charge states, and the electrostatic energy of each state is 
described by (1). To calculate the tunneling rates, we calculate 
all possible transitions for each of these states to neighboring 
states. Fig. 4 shows all possible transitions among the system’s 
charge states. The paths that are red and blue represent the 

transitions between the quantum dot and the source or drain 
leads, respectively, when the trap is empty and occupied, the 
paths in green represent the transitions between the leads 
and trap, and the paths in Black color represents transitions 
between quantum dot and trap. 

The Fermi–Dirac distribution describes the occupation 
of the electron state. In this work, we have used the Fermi 
distribution function (9) to calculate the tunneling rates 
between the quantum dot and the trap and between the trap and 
the leads. We have also used Fermi-Dirac auto-convolution 
(10) to calculate the tunneling rates between the quantum dot 
and the leads due to the continuous nature of energy states on 
both sides of the transition [24].

 

Fig. 2. Electrostatic energy of the system in different charge states at zero bias as a function of Vg (a)   results from [20] (b)    
result of this work simulation in MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Electrostatic energy of the system in different charge states at zero bias as a function of Vg (a) results 
from [20] (b) result of this work simulation in MATLAB

 

Fig. 3. The ground state energies of the main dot for the empty and occupied trap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The ground state energies of the main dot for the empty and occupied trap
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For example, we assume the system is initially in state 
(2,0). By adding an electron from the right or left leads 
(source or drain) to the quantum dot, the system moves to 
the (3,0) state, and conversely, by removing an electron from 
the quantum dot to the left or right leads, the system returns 
to state (2,0), in which the tunneling rates are according to 
relations (11) and (12) respectively. 
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In the above relations, the indices L and R represent the 
left and right electrodes; KB is Boltzmann’s constant, T1 is 
a constant coefficient, which is 1000 times larger than T2, 
considering that the capacitors connecting the quantum dot 
to the source and drain are much larger than the capacitors 
connecting the trap to the source and quantum dot and µL,R is 
the variation of the electrostatic energy of the system due to 
removing/adding a single electron from/to the left/right lead 
specified as (13):
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In another case, an electron can be added to the trap from 
the left or right electrode, and as a result, the system moves 
from the (2,0) state to the (2,1) state, or vice versa, the electron 
inside the trap moves to the left or right electrodes, and the 
system returns from the state (2,1) to state (2,0), which are 
described in relations (14) and (15) respectively.
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Finally, in the (2,0) state, an electron can tunnel from the 

quantum dot to the left or right electrode, and the system 
moves to the (1,0) state, or an electron can tunnel from the 
dot to the trap, and the system transits from the (2,0) state 
to the (1,1) state. Both of these tunnelings are also possible 
in reverse, that is, from the state (1,0) to (2,0) by adding an 
electron from the left or right electrode to the quantum dot 
and also from the state (1,1) to (2,0) by tunneling an electron 
from the trap to the quantum dot, all these tunnelings are 
shown in relations (16-19) respectively. 
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The net tunneling rate of (2,0) is obtained from the steady-

state solution of the master equation. In other words, it is the 
difference between all the tunneling events leaving the (2,0) 
state and all the tunneling events entering the (2,0) state, as 
indicated in (20).
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In (20), P(i,j) is the probability of charge state (i,j). After 

writing all the net tunneling rates for each state, the tunneling 
equations are written in matrix form using (21):
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In relation (21), P is the vector of probabilities in the form 
of (P(0,0), P(1,0), P(2,0), …, P(9,0), P(0,1), P(1,1), P(2,1), …, P(9,1)), A is 
the matrix of tunneling rates, which is obtained by taking into 
account the exchange of all states as we briefly demonstrated 
for (2,0) state, and C is a vector in the form of (c1=0, c2=0, 
c3=0, …, c20=1). The last equation indicates that the sum of 
probabilities of all charge states of the system should be unity.

Fig. 5 shows the collective probability for all states with 
one electron in the trap, which is coupled to the source (Fig. 
1. a), including {(0,1),(1,1), …(9,1)} obtained from our 
calculations as a function of gate voltage and drain voltage. 
This figure shows a close correlation with Fig. 3. which 
suggests that the ground state of the system is an “Empty trap 
(E0)” at Vg<-50 mV. It switches to “Occupied Trap” at Vg>50 
mV, while the ground state oscillates between E0 and E1 as Vg 
varies in this range. Therefore, we expect the probability of 
trap occupation to also vary from 0 to 1 and show significant 
variations between 0 and 1 as we increase Vg. The tunneling 
current of the system is calculated by (22) :
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Fig. 6 shows the tunneling conductance (a derivative 
of the tunneling current) as a function of Vd and Vg. The 
conductance curve is usually referred to as the charge stability 
diagram, and our simulation results (Fig 6. b) show excellent 

 
Fig. 5. Characteristics of source-coupled trap occupancy probability as a function of gate and drain voltage 
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agreement with the experimental data (Fig 6. a [12]). The 
anomalies of the charge stability diagram are compared with 
the diagram of an ideal single-electron transistor (simple 
diamond shape) and are the footprint of the charged trap.

When the trap is located at the drain side and coupled 
to the drain, the probability of trap occupation increases by 
increasing the drain voltage. This feature is demonstrated 
in Fig. 7, which shows horizontal mirror characteristics 
compared to Fig. 5, where the trap is located at the source 
side.  

Another distinctive feature for source-side and drain-
side traps is extra teeth, demonstrated in the charge stability 
diagram of Fig. 6.b for the source-side trap and Fig. 8 for the 
drain-side trap, highlighted with white boxes. According to 
Fig. 6. b, when the traps are at the source side, these extra 

teeth are more visible if the gate voltage and the drain voltage 
are both positive or negative, but this feature is mirrored 
again for the drain-side trap. 

Fig. 9 shows the trap’s occupation probability when 
capacitively connected to both the source and the drain (Fig. 
1.c). This structure equals the intersection of the probabilities 
of occupation for the trap connected to the source (Fig. 5) 
and the trap connected to the drain (Fig.7). This causes the 
creation of triangular shapes (symmetric in the y-direction), 
which become brighter with increasing the gate voltage, as 
the probability of occupancy increases.

 Fig. 10 shows the conductance characteristics of a trap 
coupled to the source, drain, and gate. It shows that the 
probability of the trap filling is almost uniform for positive 
and negative drain biases; therefore, extra teeth are found 
throughout the characteristic.

 

Fig. 6. Conductance characteristic of a quantum dot in the vicinity of an occupied source-coupled trap (a) Experimental results 
[12] (b) result of this work simulation in MATLAB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Conductance characteristic of a quantum dot in the vicinity of an occupied source-coupled trap (a) 
Experimental results [12] (b) result of this work simulation in MATLAB

 

Fig. 7. Characteristics of drain-coupled trap occupancy probability as a function of gate and drain voltage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Characteristics of drain-coupled trap occupancy probability as a function of gate and drain voltage
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Fig. 8. Conductance characteristic of a quantum dot in the vicinity of an occupied drain-coupled trap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Conductance characteristic of a quantum dot in the vicinity of an occupied drain-coupled trap

 

Fig. 9. Characteristics of source and drain-coupled trap occupancy probability as a function of gate and drain voltage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Characteristics of source and drain-coupled trap occupancy probability as a function of gate and 
drain voltage
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5- Dot-Lead-Trap coupling strength
The stronger coupling enhances the interaction between 

the quantum dot and the leads or trap, facilitating the transfer 
of electrons, resembling the dot’s movement toward the 
leads or trap. Conversely, when the coupling capacitors are 
decreased, the interaction between the quantum dot and the 
leads or trap reduces, resembling the dot’s movement away 
from the leads or trap. 

Fig. 11 shows the quantum dot charge stability diagram 

near the trap in different states. In the first case (Fig. 11.a), 
we increased the coupling capacitor between the quantum dot 
and the source and drain leads to 18 aF and decreased the 
coupling capacitor between the quantum dot and the trap to 
0.08 aF. In this case, the conductivity has increased (in the 
range of 0.6 to 1 mA), and the anomaly (extra teeth) of the 
diagram due to trap perturbation is reduced. In the second 
case (Fig. 11.b), we reduced the coupling capacitors between 
the quantum dot and the leads to 5 aF and increased the 

 
Fig. 10. Conductance characteristic of a quantum dot in the vicinity of an occupied source and drain-coupled trap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Conductance characteristic of a quantum dot in the vicinity of an occupied source and 
drain-coupled trap

 

Fig. 11. Conductivity characteristic of a quantum dot in the vicinity of a trap (a) Quantum dot has strong coupling with source 
and drain and weak coupling with trap (b) Quantum dot has weak coupling with source and drain and strong coupling with trap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Conductivity characteristic of a quantum dot in the vicinity of a trap (a) Quantum dot has strong cou-
pling with source and drain and weak coupling with trap (b) Quantum dot has weak coupling with source and 

drain and strong coupling with trap
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coupling between the quantum dot and the trap to 0.35 aF. 
As can be seen, the conductivity decreased (in the range of 0 
2 to 0.6 mA), and additional teeth were observed due to the 
disturbance induced by the trap.

6- Shift of the dot coulomb blockade characteristic due to 
trap charging

Fig. 12 shows the boundaries of neighboring charge states 
of the main dot in the Vg and Vd plane for two scenarios: 
a) empty trap and b) occupied trap. As can be seen, there 
is a horizontal shift of 5.4mV in Fig 12. b compared to Fig 
12.a. This shift can be attributed to the coulombic repulsion 
between the charged trap and the electrons in the main dot, 
which leads to additional energy (gate voltage) required 
to add a single electron to the main dot. By increasing the 
capacitor between the trap and the gate (Ctg), the horizontal 
shift decreases because by increasing the coupling between 
the trap and the gate and by increasing the gate voltage, the 
effect of the gate on the presence of electrons in the trap rises, 
and as a result, the impact of electron repulsion at the main 
point with the trap decreases, and less shift is created. 

7- Conclusion
This work has studied the effect of a charge trap near 

the quantum dot on the charge stability diagram. Several 
scenarios have been investigated, including the situation 
when the two-state trap is coupled with source, drain, and both 
source and drain. Tunneling rates were calculated using the 
master equation for all permitted transitions with neighboring 
states, and the matrix of tunneling coefficients was obtained. 
The current diagram, conduction, and Coulomb blockade 

characteristics were simulated in MATLAB for both empty 
and occupied traps, and the simulation results are in good 
agreement with the experimental results. The presence of 
the trap with different charge states results in the anomaly 
of the pure SET diamond characteristics in the form of extra 
teeth and a shift of stability diagram; these features might be 
used to estimate the location and coupling strength between 
the dot, trap, and the leads. Furthermore, this analysis might 
intentionally position a trap near a qubit for manipulation 
and readout of the charge state of the main dot for quantum 
computing applications.
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9- Nomenclature
Cmg	 The capacitor between the quantum dot and the gate, F
Cmd	 The capacitor between the quantum dot and the 
drain, F
Cms	 The capacitor between the quantum dot and the 
source, F
Ctg	 The capacitor between the trap and the gate, F
Cts	 The capacitor between the trap and the source, F
Ctd	 The capacitor between the trap and the drain, F
Cc	 The capacitor between the trap and the quantum dot, 
F

 

Fig. 12. Coulomb characteristic diagram of a quantum dot in the vicinity of a trap (a) When the trap is empty (b) When the trap is 
occupied 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Coulomb characteristic diagram of a quantum dot in the vicinity of a trap (a) When the trap is empty 
(b) When the trap is occupied
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Ct	 Capacitors connected to the trap, F
C	 Total system capacitors, F
W	 Electrostatic energy, J
Qm/t	 The charge in the quantum dot/ trap, C
nm/t	 The number of electrons in the quantum dot/ trap
X	 Charge stored in all system capacitors, J
Xt	 Charge stored in capacitors connected to the trap, J
Xm	 Charge stored in capacitors connected to the 
quantum dot, J
q0	 The background charge in the dot, C
q	 absolute value of the electron charge, 1.602.10-19 C
Vg/ Vs/ Vd  Gate/ Source/ Drain voltage, V
e	 Euler’s number, 2.718
GL,R	 Tunneling rate between two consecutive states to/
from left or right leads
T1,T2	 Constant coefficients 1, 1000
KB	 Boltzmann factor, 1.381.10-23 J/k
T	 Temperature, K
VL,R	 The voltage of the left or right leads, V
P	 The vector of probabilities
A	 The matrix of tunneling rate
Greek symbols

tβ 	 Structure of the trap signature

,L Rµ 	 Chemical potential in left or right leads, J
Γ 	 The net tunneling rate of a state
Subscript
m	 Quantum dot
t	 Trap
L	 Left
R	 Right
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