Analytical Modeling of GaN-HEMT Considering Finite Width of Two-Dimensional Electron Gas

Document Type : Research Article

Authors

Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran

Abstract

In this work, we present an analytical DC model for the Gallium Nimtide High Electron Mobility Transistor by taking into account the finite width of the two-dimensional electron gas (2DEG) layer. The model predicts the vertical electric field in the device, especially at the interface of AlGaN and GaN layers, electrostatic potential, and energy band diagram are also obtained by the model. The general form of Gauss’s law including piezoelectric and spontaneous polarization effect is employed to obtain this model in different regions from top to bottom of the GaN-HEMT. The model solves electrostatic equations in all regions of the device including two narrow regions around the AlGaN/GaN interface with thicknesses of about 3 nm. This model demonstrates how the triangular quantum well is formed around the AlGaN/GaN interface and varies as a function of gate voltages. Using the proposed electrostatic analysis and the treatment proposed by the EPFL HEMT model, the DC current-voltage characteristics are obtained by this model. The results predicted by the model are validated with TCAD simulations and in part with the EPFL HEMT model. The proposed model facilitates the following steps toward obtaining a complete model for small signal and large signal analysis of GaN HEMT.

Keywords

Main Subjects


[1] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy, W. Schaff, L. Eastman, R. Dimitrov, L. Wittmer, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures, Journal of applied physics, 85(6) (1999) 3222-3233.
[2] D. Delagebeaudeuf, N.T. Linh, Metal-(n) AlGaAs-GaAs two-dimensional electron gas FET, IEEE Transactions on Electron Devices, 29(6) (1982) 955-960.
[3] M.N. Yoder, Wide bandgap semiconductor materials and devices, IEEE Transactions on Electron Devices, 43(10) (1996) 1633-1636.
[4] U. Radhakrishna, T. Imada, T. Palacios, D. Antoniadis, MIT virtual source GaNFET‐high voltage (MVSG‐HV) model: A physics based compact model for HV‐GaN HEMTs, physica status solidi (c), 11(3‐4) (2014) 848-852.
[5] A. Dasgupta, S. Ghosh, Y.S. Chauhan, S. Khandelwal, Asm-hemt: Compact model for gan hemts, in:  2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), IEEE, 2015, pp. 495-498.
[6] S.A. Ahsan, S. Ghosh, S. Khandelwal, Y.S. Chauhan, Physics-based multi-bias RF large-signal GaN HEMT modeling and parameter extraction flow, IEEE Journal of the Electron Devices Society, 5(5) (2017) 310-319.
[7] F. Jazaeri, J.-M. Sallese, Charge-based EPFL HEMT model, IEEE Transactions on Electron Devices, 66(3) (2019) 1218-1229.
[8] F. Jazaeri, M. Shalchian, J.-M. Sallese, Transcapacitances in EPFL HEMT model, IEEE Transactions on Electron Devices, 67(2) (2019) 758-762.
[9] M. Allaei, M. Shalchian, F. Jazaeri, Modeling of short-channel effects in GaN HEMTs, IEEE Transactions on Electron Devices, 67(8) (2020) 3088-3094.
[10] A. Chalechale, M. Shalchian, F. Jazaeri, Transient analysis of donor-like surface traps in GaN HEMTs, AUT Journal of Electrical Engineering, 54(2 (Special Issue)) (2022) 387-396.
[11] H. Luo, W. Hu, Y. Guo, On large-signal modeling of GaN HEMTs: Past, development, and future, Chip,  (2023) 100052.
[12] B.J. Touchaei, M. Shalchian, Modeling GaN-HEMT Electrostatic Band Diagram under full depletion approximation, in:  2023 5th Iranian International Conference on Microelectronics (IICM), IEEE, 2023, pp. 134-138.
[13] N. Islam, M.F.P. Mohamed, N. Ahmad, M.M. Isa, A.F. Abd Rahim, K. Ahmeda, Analytical Modeling of Depletion-Mode MOSHEMT Device for High-Temperature Applications, IEEE Access,  (2024).
[14] Y. Liu, X. Liu, X. Li, H. Yuan, Analytical Model and Safe-Operation-Area Analysis of Bridge-Leg Crosstalk of GaN E-HEMT Considering Correlation Effect of Multi-Parameters, IEEE Transactions on Power Electronics,  (2024).
[15] P. Sriramani, N. Mohankumar, Y. Prasamsha, Drain current sensitivity analysis using a surface potential-based analytical model for AlGaN/GaN double gate MOS-HEMT, Micro and Nanostructures, 185 (2024) 207720.
[16] M. Faizan, K. Han, X. Wang, M.Z. Yousaf, Mathematical Model-Based Analysis and Mitigation of GaN Switching Oscillations, IEEE Access,  (2024).
[17] R.P. Martinez, M. Iwamoto, J. Xu, C. Gillease, S. Cochran, M. Culver, A. Cognata, N.S. Wagner, P. Pahl, S. Chowdhury, Assessment and Comparison of Measurement-Based Large-Signal FET Models for GaN HEMTs, IEEE Transactions on Microwave Theory and Techniques,  (2024).
[18] Q. He, H. Wang, M. Xiao, Y. Zhang, K. Sheng, F. Udrea, Numerical Simulation and Analytical Modeling of Multichannel AlGaN/GaN Devices, IEEE Transactions on Electron Devices, 71(3) (2024) 1710-1717.
[19] X. Liu, S. Shafie, M.A.M. Radzi, N. Azis, A.H.A. Karim, Modelling and mitigating oscillation in E-mode GaN HEMT: A simulation-based approach to parasitic inductance optimization, Microelectronics Reliability, 152 (2024) 115293.
[20] B.J. Touchaei, M. Shalchian, Non-Quasi-Static Intrinsic GaN-HEMT Model, IEEE Transactions on Electron Devices, 69(12) (2022) 6594-6601.
[21] A. Bykhovski, B. Gelmont, M. Shur, The influence of the strain‐induced electric field on the charge distribution in GaN‐AlN‐GaN structure, Journal of applied physics, 74(11) (1993) 6734-6739.
[22] J. Albrecht, R. Wang, P. Ruden, M. Farahmand, K. Brennan, Electron transport characteristics of GaN for high temperature device modeling, Journal of Applied Physics, 83(9) (1998) 4777-4781.
[23] M. Movahhedi, A. Abdipour, Efficient numerical methods for simulation of high-frequency active devices, IEEE Transactions on Microwave Theory and Techniques, 54(6) (2006) 2636-2645.
[24] V. Joshi, A. Soni, S.P. Tiwari, M. Shrivastava, A comprehensive computational modeling approach for AlGaN/GaN HEMTs, IEEE Transactions on Nanotechnology, 15(6) (2016) 947-955.
[25] I.R. Rahman, M.I. Khan, M. Mahdia, Q.D. Khosru, Analytical modeling of electrostatic characteristics of enhancement mode GaN double channel HEMT, in:  2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC), IEEE, 2018, pp. 1-4.
[26] I.R. Rahman, M.I. Khan, Q.D. Khosru, A rigorous investigation of electrostatic and transport phenomena of GaN double-channel HEMT, IEEE Transactions on Electron Devices, 66(7) (2019) 2923-2931.
[27] N. Modolo, S.-W. Tang, H.-J. Jiang, C. De Santi, M. Meneghini, T.-L. Wu, A novel physics-based approach to analyze and model E-mode p-GaN power HEMTs, IEEE Transactions on Electron Devices, 68(4) (2020) 1489-1494.
[28] I. Berdalović, M. Poljak, T. Suligoj, Modelling of electrostatics and transport in GaN-based HEMTs under non-equilibrium conditions, in:  2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), IEEE, 2021, pp. 74-79.
[29] M.G. Carpenter, P.H. Aaen, C.M. Snowden, Quasi-2-D Physical Modeling of GaN Microwave HEMTs for RF Applications, IEEE Transactions on Electron Devices, 69(11) (2022) 6002-6009.
[30] V.N. Kumar, M. Povolotskyi, D. Vasileska, Modeling electrostatics and low-field electron mobility of GaN FinFETs, IEEE Transactions on Electron Devices, 69(9) (2022) 4835-4842.
[31] B.J. Touchaei, M. Shalchian, A compact Non-Quasi-Static small-signal model for GaN HEMT, Microelectronics Journal,  (2024) 106199.
[32] V. Vadalà, A. Raffo, A. Colzani, M.A. Fumagalli, G. Sivverini, G. Bosi, G. Vannini, On the Extraction of Accurate Non-Quasi-Static Transistor Models for $ E $-Band Amplifier Design: Learning From the Past, IEEE Transactions on Microwave Theory and Techniques,  (2024).
[33] H. Lee, H.-G. Park, V.-D. Le, V.-P. Nguyen, J.-M. Song, B.-H. Lee, J.-D. Park, X-band MMICs for a Low-Cost Radar Transmit/Receive Module in 250 nm GaN HEMT Technology, Sensors, 23(10) (2023) 4840.
[34] C.C. Enz, E.A. Vittoz, Charge-based MOS transistor modeling: the EKV model for low-power and RF IC design, John Wiley & Sons, 2006.
[35] M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, John Wiley & Sons, 2001.