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ABSTRACT: In the current distributed integrated circuits (IC) industry, the possibility of adversarial 
hardware attacks cannot be ignored. Hardware Trojans (HT) attacks may lead to information leakage or 
failure in security-critical systems. The wide range of HT types and related insertion strategies makes 
the HT detection process very complex. Consequently, developing IC design methodologies that are 
robust against HT insertion would be of great merit. To measure the HT robustness, a vulnerability 
analysis of the proposed circuits should be performed which involves several interrelated factors (e.g. 
the layout of white spaces distribution, the unutilized routing resources, the activity of the circuit nodes, 
the delay values of circuit paths, etc.). In this paper, a novel framework is proposed to classify the IC 
vulnerability level. First, a comprehensive dataset is generated considering different HTs insertion into 
the ISCAS 85 and ISCAS 89 benchmark circuits. Then extraction of efficient features from the input 
image is accomplished by pre-trained deep neural networks. Finally, the vulnerability level (which is 
defined as low vulnerable, moderately vulnerable, and highly vulnerable) of every circuit is extracted 
using various trained classifiers (Ensemble, SVM, Naïve Bayes, and KNN).  Simulation results confirm 
a 25% improvement in classification accuracy in the most successful classifier (97%) compared with the 
most successful previous study (72%). 

Review History:

Received: Jan. 21, 2024
Revised: Apr. 12, 2024
Accepted: Apr. 24, 2024
Available Online: Jul. 01, 2024

Keywords:

Ensemble Learning

Learnable Classifiers

Deep Neural Networks

Digital Circuits

Vulnerability Analysis

Hardware Trojans

419

1- Introduction
Integrated circuits play a vital role in modern intelligent 

systems among them security-critical systems and highly 
sensitive ones (e.g. internet network-based systems and 
airplanes) should be protected against adversarial attacks. 
The main hardware-based attacks on integrated circuits 
are related to HT insertion. The inserted HT constitutes 
a trigger mechanism and a payload part [1-3]. When the 
trigger condition becomes active, the payload section causes 
destructive effects in the IC. Various HT detection methods 
are developed to handle the newly emerged Trojans every 
year [4-7]. These detection methods can be categorized as 
follows.

There are two types of Trojan detection methods: the 
logic testing approach and the side-channel analysis [8-9]. 
The former is suitable only for always-activated HTs and, 
the last one can be utilized for even small-sized Trojans. IC 
temperature, power consumption, and critical path delay are 
the main side-channel effects that are utilized to detect the 
HTs. The thermal map of under test IC would be investigated 
to detect unwanted activity of circuit nodes that are interpreted 
as HTs [10]. In [11-14] and [9] machine learning and image 
processing techniques are employed for HT detection. A 

modified version of the heatmap according to the IC layout is 
utilized for HT detection in [15], [10]. Due to emerging more 
complicated structures for HTs, several studies have been 
devoted to utilizing deep learning approaches for detection 
affairs [16], [17], [7], [18].

On the other hand, to avoid costly detection approaches, 
we could re-design integrated circuits so that the chance 
of HT insertion becomes very low. This design technique 
will reduce the HT insertion vulnerability significantly. For 
instance, if the available white space area in the IC layout by 
dummy Flip-flops then the available space to insert the HT-
related hardware will reduce dramatically.

A prerequisite of HT vulnerability classification is the 
investigation of all HT insertion scenarios [19]. The following 
points are deduced from such a comprehensive investigation: 
The layout nodes with low transition probabilities are usually 
utilized for HT triggers [19]. Moreover, the distribution of 
white spaces as well as the availability of unused routing 
resources are two essential factors for HT insertion [20] and 
[21]. The routing resources near the less active nodes which 
does not belong to the critical path are used to connect the 
trigger to the payload modules. Such routing mechanisms 
reduce the probability of HT detection by side-channel 
approach [22]. These observations satisfy us to consider the 
vulnerability analysis as a very complex problem.

Another worth noting point is related to very costly *Corresponding author’s email: h.jahanirad@uok.ac.ir
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operations which should be applied in the design and 
fabrication stages to improve the vulnerability of ICs. To 
reduce the cost of such modifications, the vulnerability level 
of the design should be assessed in the early stages of the 
IC fabrication. The previous approaches for vulnerability 
evaluation of ICs suffer from several shortcomings. First, 
any previous approaches consider all effective factors so the 
derived results are not reliable. Second, each of the previous 
analyses is accomplished at a specific level of design (e.g. 
gate level, layout level, etc.). Furthermore, the major 
vulnerability factors are not homogeneous. So, deriving a 
comprehensive analysis would be done by combining these 
non-homogeneous factors. 

In this paper, we develop a machine learning-based 
framework to handle the mentioned shortcomings of previous 
approaches. The proposed framework contains three major 
phases: HT dataset generation, feature extraction using pre-
trained DNN, and the classification stages. In the first stage, 
various HTs are inserted in the layout of the benchmark 
circuits and the resulting layouts are converted to RGB 
images. The collection of the generated images constructs the 
required dataset. The performance of classifiers is very poor 
when the classifiers utilize the raw generated images. So, to 
achieve better classification, we should extract the important 
features of the dataset’s images. In our proposed framework, 
feature extraction is accomplished by pre-trained deep neural 
networks (e.g. AlexNet, GoogleNet, and so on). The pre-
trained DNNs have been well-trained using a standard dataset 
(e.g. ImageNET) and their convolutional layers have been 
trained to extract important features of such a huge database. 
In the last stage, several classifiers are trained using the 
extracted features to classify the IC layout into low, medium, 
and high vulnerable levels. 

The main contributions of the paper are:
- Generation of a proper dataset for Hardware Trojan 

study in integrated circuits.
- Extraction of the main features of integrated circuit for 

HT vulnerability analysis.
- Development of a classification-based framework to 

classify IC layout regarding Hardware Trojans’ vulnerability.

2- Related Works
The previous related studies use various metrics to 

evaluate IC’s vulnerability at various design abstractions. In 
[23], Trojan paths in a digital circuit are defined as paths that 
are not activated during comprehensive simulation runtime. 
The time complexity of this method is unacceptable for large 
circuits due to its simulation-based nature. Moreover, if the 
HT trigger does not derive from circuit nodes directly, then 
they may be undetectable using this method. Waksman et al. 
[24] consider the low controllable logic gates as the candidates 
for HT triggers. Sullivan et al. [25] in Fight-metric applied 
necessary modifications to cover the sequential circuits. We 
can mention two problems regarding these methods. First, 
the computational complexity grows rapidly with a slight 
increase in the size of the circuit. Second, discrimination of 
Trojan and non-Trojan gates is made by a threshold value that 

is varied for various circuits. 
Four different features are utilized for HT trigger 

determination in FASTrust [26]. The first feature is the 
existence of large loops which is essential for time-triggered 
Trojans implementation. The second feature is a number 
of large in-degree gates that are used to implement data-
triggered Trojans. The third feature is related to the existence 
of large total in-degree groups to implement sequential 
triggers. Finally, the fourth feature corresponds to the nodes 
with a small out-degree, which can be utilized to activate the 
HTs implicitly. Another approach based on multilevel feature 
analysis is developed in [27]. In this methodology, first, 
trigger features are extracted using the circuit’s information 
flow graph (IFG) at the flip-flop level. The feature extraction 
of ML-FASTrust speeds up significantly due to the small size 
IFG. When candidate locations are determined based on IFG, 
another analysis in the combinational level (CL) retrieves the 
lost information. The utilized features of ML_FASTrust are 
similar to the features of FASTrust. Such features are very 
poor in separating the HT-inserted nodes from the normal 
nodes. Moreover, FASTrust and ML-FASTrust ignore 
controllability, observability, and node transition rate as 
essential factors for vulnerability assessment.

Salamni [28] utilized circuit nodes’ Combinational 
Controllability and Combinational Observability as the 
vulnerability metrics which are very effective in determining 
the low-testable nodes that can be safe locations for HT 
triggers. Due to the very low transition probability of these 
nodes, the conventional test algorithms cannot activate the 
related triggers. Later in [29] a modified version of this 
approach is presented for sequential circuits which is based 
on the sequential type of circuit nodes’ controllability and 
observability. Controllability and observability become a 
common feature to detect HT triggers in other studies [30-
31]. Even for gate-level vulnerability analysis consideration 
of just controllability and observability features results in 
ignorance of HT triggers which are constructed based on the 
nodes’ in/out degrees in the circuit graph as well as the size of 
loop groups in sequential circuits.  

The 11 features have been defined to measure the 
vulnerability of logic circuits at the gate level by Kento 
Hasegawa et al. [32-34]. Among these features, the number 
of fan-ins that are placed three or five stages away from 
the current node, the number of logic stages that should be 
traversed to connect the current gate to the input of a DFF, 
and the minimum distance between Primary Inputs (PIs) 
and Primary Outputs (POs) could be considered as the 
most effective ones. This approach suffers from significant 
misclassification errors due to the ignorance of the other 
basic features (e.g. signal activity, controllability, and 
observability).

[35] and [36] developed model-checking-based 
frameworks which are related to the combinational and 
sequential circuits, respectively. In this method, first of all, 
several counterexample circuits that contain various types 
of HTs are generated. Next, the deviation of dynamic and 
leakage power consumptions as well as the path delay values 
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are compared with the HT-free circuit. A predefined threshold 
level is used to determine if the variation value is sufficient to 
be considered as an HT.

Another viewpoint in vulnerability analysis is focusing 
on IC layout rather than the circuit design. H. Salamani and 
M. M. Tehranipoor [37] presented a layout-level vulnerability 
analysis wherein the interpretation is performed in three levels 
(cell, routing, and net analyses). In this method, the chip area 
is divided into square parts, and then for every region (r) 
the normalized values of white space (WS(r)) and number 
of unused routing (UR(r)) is calculated. The vulnerability of 
a region (V(r)) is computed according to (1). Furthermore, 
time-triggered HT vulnerability, power-triggered HT 
vulnerability and, time-power-triggered HT vulnerability of 
a grid could be calculated using (2), (3) and, (4), respectively. 
In these equations, NNC(r) is the number of paths that are not 
critical, NLP(r) is the number of nets for which the transition 
probability is less than Pth, and NNC & LP (r) is the number of 
nets with which belong to both of the former sets.   

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟)                                                                                                                                          (1) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟)                                                                                                                                (2) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                        (3) 

 

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                 (4) 

 

BWS BFF
TWS TFFTISF

WSD


                     (5) 

2 2

1

1 [( ) ( ) ]
n

i m i m
i

WSD x x y y
n

                                                                                                                     (6) 

 

   𝐷𝐷𝑠𝑠 =  lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇                                               (7) 

 

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇                                                      (8) 

 

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇                                      (9) 

 

2 2 2

2 2 2

0( ) 1( ) ( ) Combinational Circuits
( )

0( ) 1( ) ( ) Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

                                                                       (10) 

 

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2                                                                                                                  (11) 

 

 

 (1)
𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟)                                                                                                                                          (1) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟)                                                                                                                                (2) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                        (3) 

 

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                 (4) 

 

BWS BFF
TWS TFFTISF

WSD


                     (5) 

2 2

1

1 [( ) ( ) ]
n

i m i m
i

WSD x x y y
n

                                                                                                                     (6) 

 

   𝐷𝐷𝑠𝑠 =  lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇                                               (7) 

 

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇                                                      (8) 

 

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇                                      (9) 

 

2 2 2

2 2 2

0( ) 1( ) ( ) Combinational Circuits
( )

0( ) 1( ) ( ) Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

                                                                       (10) 

 

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2                                                                                                                  (11) 

 

 

 (2)

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟)                                                                                                                                          (1) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟)                                                                                                                                (2) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                        (3) 

 

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                 (4) 

 

BWS BFF
TWS TFFTISF

WSD


                     (5) 

2 2

1

1 [( ) ( ) ]
n

i m i m
i

WSD x x y y
n

                                                                                                                     (6) 

 

   𝐷𝐷𝑠𝑠 =  lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇                                               (7) 

 

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇                                                      (8) 

 

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇                                      (9) 

 

2 2 2

2 2 2

0( ) 1( ) ( ) Combinational Circuits
( )

0( ) 1( ) ( ) Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

                                                                       (10) 

 

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2                                                                                                                  (11) 

 

 

 (3)

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟)                                                                                                                                          (1) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟)                                                                                                                                (2) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                        (3) 

 

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                 (4) 

 

BWS BFF
TWS TFFTISF

WSD


                     (5) 

2 2

1

1 [( ) ( ) ]
n

i m i m
i

WSD x x y y
n

                                                                                                                     (6) 

 

   𝐷𝐷𝑠𝑠 =  lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇                                               (7) 

 

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇                                                      (8) 

 

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇                                      (9) 

 

2 2 2

2 2 2

0( ) 1( ) ( ) Combinational Circuits
( )

0( ) 1( ) ( ) Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

                                                                       (10) 

 

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2                                                                                                                  (11) 

 

 

 (4)

In net-level analysis, the low transition probability and 
the low testability are considered as the major features 
of HT payload. Consequently, 0-controllability (CC0), 
1-controllability (CC1), and combinational observability 
(CO) are utilized to determine the candidate nodes to be HT 
payloads. The authors show quantitatively that the determined 
nets are inserted near the regions which are highly vulnerable 
in TrustHub benchmark circuits.

The space and trigger modeling in this approach encounter 
the following issues. Calculation of the probability of HT 
insertion into an integrated circuit using only the white space 
ratio of grids is not perfect. For example, the probability of 
HT insertion in a grid with a connected white space area 
is more than in a grid with the same white space ratio but 
the white space is divided into several disconnected parts. 
Furthermore, in several situations, the white space in adjacent 
grids could be merged to construct a wider white space area 
to insert HTs. This case is fully ignored in the previous 
modeling. One may use the routing resources from several 
grids to make the required connection between the trigger and 
payload parts. Consequently, the UR(r) should be extended to 
these aspects. Moreover, the previous studies only consider 
the single node (with low testability or low activity) as the 
candidate trigger. However, hardware Trojan designer can 

combine several conventional nodes using AND operation to 
produce a proper trigger node. As the last important point, 
this approach describes a quantitative relationship between 
trigger nets and related grids which leads to significant model 
inaccuracy.

M. Bakhshozadeh and A. Jahanian [38] divided the chip 
area into the square grid to extract the Trojan Vulnerability 
Map (TVM) of the integrated circuit. In the extracted TVM, 
the ratio of white space and the number of available DFF are 
used to assign a gray level to every grid. Consequently, in 
TVM, low-vulnerable grids have light colors and the high_
vulnerable regions become darker. They defined the Trojan 
Insertion Simplicity Factor (TISF) according to (5).
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In this equation, a grid’s white space ratio is indicated 
by BWS which is defined similarly to [37]. Moreover, 
WSD (White Space Distribution) indicates how white space 
distributes in a grid geographically which is calculated 
according to (6). In this equation, n, (xm, ym), and, (xi, yi) 
represent the number of the grid’s white space units, the 
grid’s center position, and the center position of the i’th 
white space unit. TWS represents the total white space ratio 
in the entire area of the integrated circuit. Moreover, due to 
the consideration of sequential hardware Trojans, the authors 
represented the probability of the insertion of sequential HT 
into a grid using the ratio of the number of grid’s DFFs (BFF) 
to the number of IC’s DFFs (TFF). 

The white space modeling of this approach is incomplete 
similar to [37]. Moreover, this approach focused on white space 
and DFF numbers and, the vital vulnerability factors such 
as routing resource utilization, node activity and, testability 
factors were not considered in this framework. Consequently, 
the vulnerability analysis encounters significant inaccuracy.

A 3-metrics base framework has been developed by 
T. Trippel et al. [21] to assess the vulnerability of a chip at 
the layout level. The first metric is a histogram-based white 
space model. In the related layout, the occupied parts of the 
integrated circuit layout are colored and the white space 
regions are connected using a 4-neighbor approach. The final 
white space-related regions are utilized to derive the first 
metric of this approach. The second metric which is called Net 
Blockage represents how it is possible to block the hardware 
Trojan’s payload to the available security-critical nets. The 
authors show that this probability reduces significantly when 
the routing congestion around such nets increases. As the third 
metric, the Manhattan distance between payload modules and 
the non-blocked security-critical nets is measured to derive 
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the vulnerability of the co-existence of the payload and 
security-critical nets in the IC’s layout. Inaccurate white space 
model, imperfect trigger nets modeling, and poor modeling of 
possible routing schemes between trigger and payload are the 
essential cones of the ICAS method.

   
3- Preliminary

A comprehensive investigation of HT architectures 
discloses that the rouge person usually follows some 
dedicated rules. The layout’s white space area which is close 
to the unutilized routing modules, are ideal locations for HT 
insertion. Moreover, the circuit’s nodes with low switching 
activity are utilized for triggering the HTs. Such nodes are 
connected to the payload using non-critical routing resources. 
On the other hand, some HT triggers originate from low 
controllable and observable circuit nodes which is robust 
against logic test detection methods. These general rules are 
converted to measurable features which finally are utilized 
by the proposed flow for the layout’s vulnerability level 
classification. Fig. 1 shows the flowchart of the proposed 
approach. First of all, the essential features such as white 
space, routing congestion, signal probability, path delay, and 
testability metrics, are extracted using the graph of the circuit 

and its layout. Then as mentioned before by completing the 
dataset generation steps, the colored image of the circuit is 
generated. Next, the pre-trained DNN is utilized to extract the 
major features of the RGB-color image to be fed to the trained 
classifiers. We describe briefly how the essential features are 
extracted in the following sub-sections.

 
3- 1-  White spaces

A pre-requisite to insert the hardware Trojans into the 
layout is the existence of a white space area. Generally, the 
integrated circuit’s layout is generated by the Cadence Design 
System tool based on a synthesized file of the digital system’s 
HDL code. The Cadence tool produces an optimum layout 
using available modules (cells) in the design library. The final 
layout of b15 benchmark circuit containing 3500 basic cells 
is illustrated in Fig. 2. The routing congestion in the margins 
of the layout is very sparse. Furthermore, the zoomed version 
of the three boxes highlighted in Fig. 2 is illustrated in Fig. 3.

For example, the extracted layout of b15 benchmark 
circuit from the Cadence Design System tool is . So, if the 
layout be divided into 10×10 grid area (containing 100 tiles), 
then the area of every tile would be 

2
2300 300   30 30

100
m mµ µ×

= × . 
In the resulting layout, INVX0 is utilized as the smallest gate 

Circuit Layout & Netlist Features Extraction using 
pre-trained DNNs

RGB colored generationProposed  classifier
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Fig. 1. The flowchart of the proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The flowchart of the proposed approach.
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Fig. 2. Layout of b15 benchmark circuit  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Layout of b15 benchmark circuit 
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Fig. 3. The zoomed illustration of highlighted boxes in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The zoomed illustration of highlighted boxes in Fig. 2.
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in the SAED-EDK90nm library. 
[39] mentioned that 30-40 % of the chip area is not 

utilized by the circuit modules which provides a sufficient 
white space area to be used by HT designers. However, 
the irregular distribution of the white space area may lead 
to some difficulty in HT insertion process. For example, if 
five unit blocks are required for an HT insertion, then five 
unoccupied unit space areas should be available in a compact 
area (e.g. a grid) for the insertion process. Three different 
cases are shown in Fig. 4. In the left figure, the white space 
units could be utilized easily for HT insertion. In the middle 
figure, despite the availability of five unoccupied units, their 
distribution makes HT insertion very difficult. Finally, in the 
right figure, the HT insertion is impossible due to the fact 
that there are not enough white space units. To prevent the 

HT insertion ideally, we should pursue the third case in the 
IC design phase. To fill up all white space units in the layout, 
we can use large DFFs or even smaller combinational gates 
(Talaee & Jahanian, 2017). As an example, the white space 
area in the metal layer of the EthernetMAC10GE-T100 
benchmark (Trust Hub benchmark suit) is illustrated in Fig. 5.

3- 2- Routing congestion
The routing congestion is an important factor in 

vulnerability assessment due to the fact that the HTs require 
extra spaces to realize the trigger to payload routing [19]. 
Fig. 6 illustrates a HT inserted in a sea of logic modules. 
The Trigger and Payload modules of HT are shown in red 
color. The logic module which feeds the required signals 
for the Trigger module is indicated in Orange color and the 

 

Fig. 4. Various five units white space units distribution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Various five units white space units distribution. 

 

Fig. 5. The top-view of white space areas over the metal layer of EthernetMAC10GE benchmark layout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The top-view of white space areas over the metal layer of EthernetMAC10GE bench-
mark layout.
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module which is affected by the payload of HT is shown in 
Blue color. We also illustrated the required routing paths that 
should be realized to correctly implement the HT mechanism. 
If the routing resources in every routing channel which the 
HT paths are passed through them are utilized by the circuit’s 
logic modules, then the HT mechanism will fail. So, the HT 
mechanism needs available unused routing resources in the 
specified routing channels. Consequently, the existence of 
unused routing resources increases the vulnerability level 
significantly.

Derivation of the routing congestion of an integrated 
circuit layout is done using the output files of the Layout 
Editor tool. The routing information is extracted from Design 
Exchange Format (DEF) and Library Exchange Format (LEF) 
and the congestion in every unit region of the layout area 
could be calculated based on the available wires divide by the 
total realizable wires in that unit region. A zoomed version of 
the routing layer of metal layers for b15 benchmark circuit is 
illustrated in Fig. 7.
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Fig. 6. An example of HT mechanism implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. An example of HT mechanism implementation.

 

Fig. 7. Zoomed in image of  metal layers for b15 benchmark circuit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Zoomed in image of  metal layers for b15 benchmark circuit.
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3- 3- Dynamic power and transition probability
The transition probability of every internal net of the 

circuit is directly related to the dynamic power consumption 
of the net. The transition density of node s (Ds) is calculated 
using (7) where ns is the number of node transitions in the 
time interval equals T [40-41]:
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Najm [40] defines the transition probability as the ratio 

of the number of clock cycles where the signal toggles to the 
total number of clock cycles in a specific time interval. The 
relationship between dynamic power consumption (Pdyn(s)) 
and the related node’s transition density (Ds) is indicated in 
(9) [40]:
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Moreover, [40] defines the average dynamic power 

consumption (Pav) according to (9) where C is the total 
capacitance value of node s and Vdd is the IC’s power supply.
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The capacitance of every circuit node is derived from the 

output files of the Cadence Design System tool. The Vdd is a 
predefined parameter and the ns should be derived according 
to Fig. 8. In the indicated flow, the Verilog code related to the 
circuit is fed into ODIN II tool ([48]) to produce the BLIF 
file [42]. 

The ABC tool makes the BLIF file generated by ODIN 
II a more optimized BLIF by logic and technology mapping 
approaches [49]. In the next step, ACE tool is utilized to 
extract the switching activity and transition probability of 
the circuit’s nodes [50]. Based on the derived information the 
transition distribution could be presented in geometrical form 
according to gates’ locations throughout the chip area. As an 
example, the final transition probability distribution of c17 
benchmark circuit is shown in Fig. 9 [15]. The related Signal 
Probability and Switching Activity values of c17 are reported 
in Table 1. 

Verilog HDL ODIN II BLIF ABC BLIF ACE

ACT File

New BLIF
 

Fig. 8. The flowchart of switching activity calculation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The flowchart of switching activity calculation.

Table 1. signal probability and switching activity of internal nodes of c17 benchmark circuit.Table 1: signal probability and switching activity of internal nodes of c17 benchmark circuit. 

Gates and nodes Signal probability Switching activity 

G1 0.49560 0.19920 

G2 0.48360 0.20440 

G3 0.49500 0.19900 

G4 0.55880 0.11893 

G5 0.56400 0.22627 

G6 0.75200 0.15437 

Node [1] 0.38220 0.008024 

Node [2] 0.37060 0.050244 

Node [3] 0.38220 0.008024 

Node [4] 0.24600 0.044761 
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3- 4- Controllability
To major factors of digital circuit testability are the 

node’s observability and node controllability. The most 
famous tool to derive the testability factors is the Sandia 
Controllability Analysis Program (SCOAP) [43]. The 
parameters combinational zero-controllability (CC0), 
combinational one-controllability (CC1), and combinational 
observability (CO) as well as sequential zero-controllability 
(SC0), sequential one-controllability (SC1), and sequential 
observability (SO) are utilized to calculate the testability of 
digital logic circuits in SCOAP [28]. Definitions of these 
parameters are reported in Table 2. The range of controllability 
values starts from 0 to infinity. Moreover, the controllability 
values of primary inputs are set to one, and the application 
of the related calculations increases the controllability values 
toward primary outputs. The related calculations to derive the 
controllability parameters in the output of primary gates are 
reported in Table 3. As a general rule, by increasing the value 
of controllability value, the capability of test algorithms to 
detect the existence of HT at that node would be decreased. 
Consequently, the high controllability of a node makes 
it more suitable to be utilized as HT trigger. To merge the 
controllability and observability measures of a node for 
testability related metrics we use (10) :

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟)                                                                                                                                          (1) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟)                                                                                                                                (2) 

 

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                        (3) 

 

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟)                                                                                                                                 (4) 

 

BWS BFF
TWS TFFTISF

WSD


                     (5) 

2 2

1

1 [( ) ( ) ]
n

i m i m
i

WSD x x y y
n

                                                                                                                     (6) 

 

   𝐷𝐷𝑠𝑠 =  lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇                                               (7) 

 

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇                                                      (8) 

 

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇                                      (9) 

 

2 2 2

2 2 2

0( ) 1( ) ( ) Combinational Circuits
( )

0( ) 1( ) ( ) Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

                                                                       (10) 

 

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2                                                                                                                  (11) 

 

 

 (10)

As an example, the calculation of four different logic 
gate’s combinational and sequential controlabilities is 
presented in Table 3.

4- Proposed method
4- 1- Dataset 

We have used two suites of benchmark circuits (ISCAS 
85 and ISCAS 89) which contain 25 digital circuits to 
generate the required dataset. These benchmark circuits 
constitute primary inputs and outputs as well as logic gates 
with a variety of types and sizes. Implementing the circuits 
on a chip includes placement of IO and logic gates so that 
the area, speed, and other design objectives tend to be 
optimal. After placement, the places IO and logic gates are 
connected using wire and other routing resources. The main 
goal of the routing phase is to realize the required routes with 
minimal delay overhead and low congestion. Taking different 
placements for a logic circuit leads to producing different 
implementations. So, for 25 selected benchmark circuits, we 

 

Fig. 9. The heatmap of b15’s switching activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The heatmap of b15’s switching activity.

Table 2. Definition of testability metrics.
 

Table 2: Definition of testability metrics. 

𝑪𝑪𝑪𝑪𝟎𝟎 Combinational 0-controllability of s 
𝑪𝑪𝑪𝑪𝟏𝟏 Combinational 1-controllability of s 
𝑪𝑪𝑪𝑪 Combinational observability of s 
𝑺𝑺𝑺𝑺𝟎𝟎 Sequential 0-controllability of s 
𝑺𝑺𝑺𝑺𝟏𝟏 Sequential 1-controllability of s 
𝑺𝑺𝑺𝑺 Sequential observability of s 
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try to extend the number of implementations using different 
placements. In our dataset generation procedure, we have 
generated 400 implementations for every benchmark circuit. 
Consequently, the total number of implemented integrated 
circuits in the proposed dataset would be 10000. 

The parameters that are varied during the dataset 
generation process include chip area size, placement of 
circuit modules, and the type of gates logic approach. The 
range of chip area for every benchmark circuit is one to 
ten times of the minimum required area. The white space 
distribution for various chip areas for a benchmark circuit 
is varied randomly, so the major HT insertion-based factor 
would be swept appropriately. On the other hand, by utilizing 
different placement approaches, the locations of primary IOs 
and logic gates on the chip area are distributed randomly. This 
policy leads to produce a variety of testability, signal activity, 
and routing congestion distribution for every benchmark 
circuit. Finally, choosing a different design for logic gates in 
the generated implementations (e.g. complementary logic, 
ratioed logic, transmission gate logic, pass transistor logic, 
and dynamic logic) results in the generation of different 
layouts wherein the white space and routing patterns would 
experience a wide range of variation.

In the next stage of dataset generation, the 10000 circuit 
implementations are converted to RGB images which are 
proper representations for training the proposed classifier. 
To do so, first, the chip area is divided into square-shaped 
grids wherein every grid is associated with a pixel of the 
final image. The Red, Green, and Blue components of a 
specific pixel are represented by an N-bit binary number. For 
example, there are 256 different levels for every component 
when an 8-bit binary number is utilized. The five major 
features (White space distribution, Signal activity of the 
nodes, Controllability and Observability of the circuit’s 
nets, and Routing utilization of the routing network) related 
to the vulnerability of logic circuits to HT insertion process 
should be assigned to three RGB components of the pixels. 
Because of the essential relevance of testability metrics 
(Controllability and Observability metrics) with switching 

activity, we merged three major factors to construct the green 
component value on the pixels. To complete the process, we 
first normalize the values of CC0, CC1, CO, and the signal 
activity (act) associated with every grid by dividing the related 
value by the maximum possible value of these parameters. 
The normalized parameters are merged according to (11) to 
achieve the real number RRnorm. Finally, the resulting number 
is transformed to an 8-bit binary number which acts as the 
green component of the pixel.
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We define the white space value of a grid as the ratio of 
the unoccupied region of the grid to the total grid area. For 
instance, if ¼ of a grid area is occupied by the logic part, then 
the white space ratio of that grid will be 0.75. Consequently, 
the White Space Ratio is normalized by the definition and can 
be directly transformed to 8-bit binary number. We assigned 
the resulting number to the Red component of the pixel which 
is related to the current grid. 

The last component (Blue) is associated with the routing 
congestion factor. To measure this component value, we 
evaluate the number of routing wires that pass across the 
above space of the grid. The resulting value is divided to the 
total possible number of wires that can routed through the 
above space of the grid. The resulting number is in the range 
of 0 to 1 and can be directly converted to 8-bit binary number.

Because of using the supervised approach to derive the 
HT vulnerability class of the implemented circuits, we should 
determine the class label (High, Medium, and Low classes) for 
every image of the generated dataset. The procedure of class 
labeling includes the measurement of the difficulty of various 
HTs insertion into the implemented circuits. For every type 
of HT architecture, first of all, we seek the required white 
space area. If there is not such a white space region, then the 
process of HT insertion will fail and the zero is registered 

Table 3. Controllability evaluation for basic logic gates. 

 

Table 3: Controllability evaluation for basic logic gates.  

 CC0 SC0 CC1 SC0 

AND min[CC0(inp1),CC0(inp2)]+1 min[SC0(inp1),SC0(inp2)] CC1(inp1)+CC1(inp2)+1 SC1(inp1)+SC1(inp2) 

OR CC0(inp1)+CC0(inp2)+1 SC0(inp1)+SC0(inp2) min(CC1(inp1),CC1(inp2)]+1 min[SC1(inp1),SC1(inp2)] 

XOR min[(CC0(inp1)+CC0(inp2)),(CC1(inp1)+ 
CC1(inp2))]+1 

min[(SC0(inp1)+SC0(inp2)),(SC1(inp1)+SC1(inp2))] min[(CC0(inp1)+CC1(inp2)), 
(CC1(inp1)+CC0(inp2))]+1 

min[(SC0(inp1)+SC1(inp2)), 
(SC1(inp1)+SC0(inp2))] 

DFF min[CC1(RESET)+CC1(clk)+CC0(clk), 
CC0(D)+CC1(clk)+CC0(clk)] 

min[SC1(RESET)+SC1(clk)+SC0(clk), 
SC0(D)+SC1(clk)+SC0(clk)]+1 

CC1(D)+CC1(clk)+CC0(clk)+ 
CC0(RESET) 

SC1(D)+SC1(clk)+SC0(clk)+ 
SC0(RESET)+1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

429

as the score. On the other hand, if the proper white space 
is available, then the trigger formation is investigated. For 
every possible trigger which can be constructed by nearby 
logic gates and routing resources, the difficulty of connecting 
the trigger to the HT payload is evaluated based on the trigger 
distance among the trigger and the payload module. Finally, 
the total score is calculated by the addition of all available 
triggers’ scores. 

Based on the calculated scores of all images, the images 
are partitioned into three parts; the first part is related to 
the images with a score greater than 75% of all images. We 
labeled this part with a highly vulnerable class. The second 
part is related to the images with a score less than 75% of all 
images’ scores which are labeled as Low vulnerable class. 
The remaining images are labeled with a Medium vulnerable 
class.

It is worth noting that due to the feature extraction of 
images using pre-trained DNNs, we should resize the images 
to be matched with the utilized deep neural network. For 
example, the generated image in the dataset should be resized 
to 224×224 image for VGG 16.

To evaluate the dataset generation mechanism, we 
extract the average feature value of every pixel in all dataset 
images for High, Medium, and Low vulnerable classes. 
As we declared, the correlated features (Controllability, 
Observability, and Signal activity) are merged in the 
Red component of the image pixels as well as the White 
space and Routing congestion features are assigned to the 
Green and Blue components, respectively. The average of 
these components for every vulnerability class shows the 
distribution of the related features in the images that belong to 
the class. Suppose that class c contains Nc images and every 
image is constructed from an H×V pixel. Then the average 
value of the image components for (i,j)’s pixel is calculated 
using (12). In this equation, imagek(i,j,1), imagek(i,j,2) and, 
imagek(i,j,3) are the Red, Green and, Blue values of pixel (i,j) 
in the k’th image.
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    Accuracy = (TP + TN)/(TP + TN + FP + FN)                                                                                                (14) 

 

    TPR = TP/(TP+FN)          (15) 

 

    TNR = TN/(TN+FP)           (16) 

 

 (12)

Figure 10 illustrates the pairwise comparison of these 
components for three vulnerability classes. Red component 
comparison depicts that the testability and signal activity 
features which are combined using (11) are slightly efficient 
to distinguish the images belonging to the low vulnerable 
class from the other two classes. However, class Medium 
and class High show very similar behavior according to the 
Red component. On the other side, the Green component 
comparison reveals the efficiency of the white space feature 

in vulnerability class discrimination illustrated in the middle 
row of Figure 10. According to these figures, class High 
shows a meaningful difference from the other two classes 
as well and the white space feature can slightly separate the 
class Low and class Medium. Finally, the third row of Figure 
10 showcases the pairwise comparison of routing congestion-
related components. We deduce from these figures that the 
Blue component can moderately separate the images of class 
High from the other classes meanwhile slightly can be utilized 
to distinguish class Low and Medium as well.

4- 2- Utilized Classifiers
4- 2- 1- Ensemble Classifier

Ensemble Learning is widely used to achieve better 
classification results using multiple base classifiers. In the 
homogenous ensemble of classifiers, a similar type of base 
classifiers is utilized. The base classifiers are trained and 
validated using the appropriate part of the dataset (training 
+ validation data). Then the ensemble of classifiers is tested 
using the other unseen part of a data set. There are several 
methods to choose the training set from the dataset among 
them Bagging (Bootstrap Aggregating) is the famous approach 
[44]. Bagging follows the sampling with replacement 
approach to choose N data from the available part of the 
dataset to train every base classifier in turn. It is obvious 
that some data would not be selected ever according to this 
approach. These data are collected to compose the validation 
set. It was approved that this policy choose 63.2% of the first 
part of the dataset for training and the remaining 36.8% of 
them are used in the validation phase. The final phase of the 
ensemble classification is to test the overall performance 
of the ensemble. Based on the ensemble’s architecture, the 
decisions of base classifiers are combined (e.g., majority 
voting approach) and the final decision is compared again the 
correct result.

In the Gradient Boosting (GB) approach, the learning 
process is started by generating a random weak learner. Then 
the related loss function is evaluated for training data. Based 
on the classification result and the evaluated loss function 
for every individual of training data, the residual values 
for training data are extracted. In the next stage of gradient 
boosting, the learning algorithm tries to fit an improved 
version of DT to minimize the residual values. After the 
construction of the new DT, the previous process is repeated 
for the new DT and the algorithm moves to the next stage 
[45]. Later in [46], a modified version of GB ensemble was 
presented wherein a regularization term was added to the loss 
function to control the growth of the model complexity and 
better avoidance of overfitting (XGB). It is worth noting that 
the major hyperparameters of gradient boosting algorithms 
are the number of trees, depth of trees, and learning rate (that 
compromises computational complexity and accuracy).

4- 2- 2- Naïve Bayes Classifier
One of the simplest classification algorithms is NB 

classifier which is constructed based on Bayes’ theorem. 
Suppose that we want to construct a Naïve Bayes classifier 
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for a dataset in which every individual has n features (x1, 
x2,…, xn). If the total number of classes is K, then for test data 
including the arbitrary features, the probability of belonging 
to Cj would be calculated according to (eq. 13).
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    Accuracy = (TP + TN)/(TP + TN + FP + FN)                                                                                                (14) 

 

    TPR = TP/(TP+FN)          (15) 

 

    TNR = TN/(TN+FP)           (16) 
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In this equation, P(Ci) is the probability of class Ci 

occurrence, P(xi|Ci) is the probability of occurrence of feature 
xi in class Ci. All of these values can be evaluated based on 
training data. After derivation of all related probabilities, the 

 
 

Fig. 10. Pairwise comparison of class features in the generated dataset. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Pairwise comparison of class features in the generated dataset.

data has been assigned to the class with maximum probability. 
The major disadvantage of Naïve Bayes classifier is the 
independence assumption among various features which is 
considered as the source of errors. 

4- 2- 3- Multiclass SVM
Binary Support Vector Machine (SVM) is a popular 

classifier in machine learning applications. The SVM tries 
to find a hyperplane that separates the training data of two 
classes maximally. The nearest data to the derived hyperplane 
are called support vectors. In the case of more complicated 
features, the nonlinear SVM classifier is constructed by 
means of applying the linear SVM to the transformed feature 
space. The transformed feature space is generated by the 
substitution of a nonlinear kernel (e.g. Gaussian radial-based 
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kernel) instead of a linear dot product. 
The application of SVM for multiclass problems is 

accomplished by reducing the original problem to multiple 
binary classification problems. In the one-versus-all strategy, 
the class label that is assigned to the instance belongs to the 
classifier with the highest output score. On the other hand, 
in the one-versus-one strategy, the instance is introduced to 
all pairs of binary classifiers, and the instance label would 
belong to the class with a maximum number of wins. Some 
other solutions have been proposed to solve the multiclass 
SVM problem such as Directed Acyclic Graph SVM, Error 
Correcting Output Codes etc.

4- 2- 4- K-Nearest Neighbors classifier
In the k-nearest neighbors classifier, the instances of 

training data are labeled with the available classes. Then 
every test (new) data is labeled according to the most frequent 
labels of all k nearest classified samples to the instance. The 
major issue of the k-NN algorithm is the metric of distance 
measurement among the test data and the other labeled data 
to find its nearest neighbors. For instance, Euclidean distance 
is suitable for continuous variables and Hamming distance is 
efficient for discrete variables. Furthermore, for large datasets, 

the computation of distances between the test instance and all 
the other labeled data would be very complex. To overcome 
this problem some nearest neighbor search algorithms have 
been proposed. In the modified version of k-NN a weight 
(proportional to the inverse of distance) is assigned to the 
neighbors to emphasize the nearer neighbors in the decision-
making of the algorithm.   

     
4- 3- Proposed HT vulnerability analysis framework

Details of the proposed vulnerability analysis framework 
are illustrated in Fig. 11. The first step in the proposed 
framework is dataset generation using the procedure 
described in section 4.2.1. The generated images (which are 
labeled by their vulnerability levels) are fed into the pre-
trained deep neural network platforms (e.g. GoogleNet, VGG 
16 etc.) to extract the suitable features. In this stage, the user 
can select the feature extractor as well as the output stage of 
the selected DNN. Consequently, at the end of this stage, all 
dataset’s images are converted to the related matrices which 
contain the features. 

In the next stage, a classifier is selected among the 
mentioned classifiers in section 4,2 (Ensemble, Naïve Bayes, 
SVM, and KNN classifiers). Then a subset of the dataset (the 
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Fig. 11. The details of proposed framework’s stages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The details of proposed framework’s stages. 
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matrices of extracted features) is selected as training data and 
the remaining portion is considered for test purposes. The 
selected classifier is trained and validated using training data 
and the related evaluation metrics (Accuracy, True Positive 
Rate, True Negative Rate) are derived using test data.

The problem of the most appropriate hyperparameter 
selection is accomplished using optimization techniques. 
The hyperparameters related to the utilized classifiers are 
reported in Table 4. In our proposed platform, the following 
steps are traversed: first of all, the hyperparameters that 
should be optimized for current classifiers are selected. Next, 
the method of optimization for hyperparameters is selected. 
Bayes optimization, Grid search, and Random search are 
common optimization techniques. After the selection of 
optimizable hyperparameters and the optimization method, 
the exploration of search space is done until the algorithm 
reaches the stop criteria or the maximum number of iterations.

5- Results
We utilized Deep Network Designer and Classification 

Learner Tools from MATLAB 2022 software to perform 
the simulations. The specifications of the personal computer 
are Core i7 CPU and internal random access memory with 
8 Giga Bytes capacity. The feature extraction of the images 
is completed using various DNN architectures that are 
available in the Deep Network Designer tool of MATLAB. 
These networks are pre-trained using very large datasets (e.g. 
ImageNet) which gives a high capability to these networks 
to extract the essential features of any other datasets.   The 
best values for hyperparameters were derived by exploration 

of several possible combinations of DNN’s parameters [47].
The performance of every classifier in our simulations is 

evaluated using the following metrics:
True Positive (TP): The images which are truly recognized 

as a member of the current class.
True Negative (TN): The images which are truly 

recognized that do not belong to the current class.
False Positive (FP): The images which are incorrectly 

recognized as a member of the current class.
False Negative (FN): The images which are incorrectly 

recognized that do not belong to the current class.
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Eventually, based on the above definitions, we use three 
metrics to evaluate the performance of the trained classifiers 
as follows: 1- Accuracy: the number of truly recognized 
images (the members of the class and the non-member of 
the specific class) divided by all images according to (14). 
2- Precision: The number of truly recognized images of the 
current class divided by the total number of images of the 
current class (15). 3- Specificity: The total number of non-

Table 4. The optimizable hyperparameters of various classifiers

 

Table 4: The optimizable hyperparameters of various classifiers 
Classifier Optimizable Hyperparameters 

 
 

Ensemble 

- Ensemble method 
- Maximum number of splits 
- Number of learners 
- Learning rate 
- Number of predictors to sample 

Naïve Bayes - Distribution names 
- Kernel type 

 
 

SVM 

- Kernel function 
- Box constraint level 
- Kernel scale 
- Multiclass method 
- Standardized data 

 
KNN 

- Number of neighbors 
- Distance metrics 
- Distance weight 
- Standardized data  
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member of images of the dataset which are truly recognized 
by the classifiers divided by the total number of images that 
do not belong to the current class (16). 

Table 5 reports classifier accuracy. The accuracy values 
start at 83.81 % of Naïve Bayes and end at 97.38% of SVM. 
Fig. 12 illustrates the confusion matrixes for the utilized 
classifiers. To test the trained classifiers, we selected 1500 
images randomly from the dataset and derived the performance 
metrics. The performance of every classifier is approximately 
uniform for all low, medium, and high vulnerable classes. 
Ensemble and SVM outperform KNN in all cases but the 
Naïve Bayes classifier accuracy never reaches 90% accuracy.  

Figure 13 shows TPR and TNR for different utilized 
classifiers. The first metric (TPR) represents the ability of the 
trained classifiers to recognize truly the vulnerability levels of 
the related implemented circuit. On the other hand, the latter 
metric represents the ability of the trained classifier to dump 
out the images that do not belong to the current class truly.  

Our proposed method is a machine learning-based approach 
to assess the vulnerability level of an implemented digital 
circuit. There is no straightforward previous method to be 

utilized to be compared with our proposed method. However, 
we have independently extracted the performance of [21], [37] 
and, [38] approaches to classify the circuits of the generated 
dataset. These methods evaluate the vulnerability level of the 
implemented circuit by dividing the layout into square-based 
grids. A short introduction to these methods is presented in 
the related work sub-section. The results of the comparison 
of these approaches with our ML-based methodology are 
reported in Table 6. The superiority of the ML-based approach 
is clear in comparison to the previous methods. This is mainly 
due to the consideration of all important factors in dataset 
construction and classifier training. Due to better modeling of 
white space distribution in [21], the accuracy of this method 
is significantly better than the other two methods. However, 
the other features (routing congestion and trigger modeling) 
are not investigated accurately by [21] which leads to 28% 
inaccuracy. [37] achieves more accuracy in comparison with 
[38] due to considering the testability metrics for trigger 
modeling. The other shortcomings of the [38] approach are 
the inapplicability of the method to combinational circuits 
along with the ignorance of proper trigger modeling.    

Table 5. Accuracy of various classifiers for vulnerability evaluation

 

Table 5: Accuracy of various classifiers for vulnerability evaluation 

 
Accuracy % 

 Low Medium High Average 
Ensemble 96.47 95.89 96 96.12 
Naïve Bayes 85.63 83.81 90.99 86.81 
SVM 97.38 96.15 96.54 96.69 

KNN 94.91 93.01 95.89 94.60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. The comparison of the accuracy of various methods
 

Table 6: The comparison of the accuracy of various methods 

Method Accuracy % 
Ensemble 96.12 

Naïve Bayes 86.81 
SVM 96.69 
KNN 94.60 
[21] 72 
[37] 65.5 
[38] 60.35 
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Predicted Class 

Low  Medium  High  

Actual 
Class 

Low    217 18 16 
Medium   12  847 22 

High   8 11 381 
Ensemble 

 

 
Predicted Class 

Low  Medium  High  

Actual 
Class 

Low   91 115 45 
Medium   50 812 19 
High   10 64 326 

Naïve Bayes 

 
 

Predicted Class 
Low  Medium  High  

Actual 
Class 

Low   225 17 9 

Medium   6 859 16 

High   8 20 372 
SVM 

 

 

 
Predicted Class 

Low  Medium  High  

Actual 
Class 

Low   200 39 12 
Medium   22 833 26 
High   5 20 375 

KNN 
 

Fig. 12. Confusion matrices of various classifiers. 
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Fig. 13. a- True Negative Rate for all classifiers, b-True Positive Rate for all classifiers 
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Fig. 12. Confusion matrices of various classifiers.
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6- Conclusion
In this study, a machine learning-based framework is 

developed to classify the vulnerability of digital integrated 
circuits regarding the Hardware Trojans insertions. The 
major motivation of this paper is the inaccurate and non-
comprehensive modeling of vulnerability in the previous 
studies. The interrelated and complex effective features 
for vulnerability assessment of ICs hinted to us to utilize 
different linear classifiers to handle the problem. In our 
proposed framework, first, a comprehensive dataset of 
images is generated for the classifier training goal wherein 
every image represents an implemented circuit that belongs 
to ISCAS 85 and ISCAS 89 benchmark circuits. Due to 
the supervised learning approach, every image is labeled to 
indicate the vulnerability class (low, moderate, and highly 
vulnerable classes) of the related implemented circuit. We 
well-trained four famous leaner classifiers (Ensemble, Naïve 
Bayes, SVM, and KNN) using the generated dataset. SVM 
and Ensemble classifiers achieve more than 96% accuracy 
according to the simulation results. The lowest accuracy 
belongs to Naïve Bayes classifier (~86.81%) which is much 
better than the best previous studies (72%). As the major axis 
of future research, we propose extending the vulnerability 
assessment to the pre-layout stage (RTL stage) as well as the 
industrial adaptation of the proposed framework for inclusion 
in the computer-aided design tools (CAD tools) is of great 
merit.
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