
AUT Journal of Electrical Engineering

AUT J. Electr. Eng., 56(3) (2024) 419-438
DOI: 10.22060/eej.2024.22910.5572

Hardware Trojan vulnerability assessment in digital integrated circuits using learnable
classifiers
Hadi Jahanirad* , Mohammad Fathi

Department of Electronics and Communication Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran

ABSTRACT: In the current distributed integrated circuits (IC) industry, the possibility of adversarial
hardware attacks cannot be ignored. Hardware Trojans (HT) attacks may lead to information leakage or
failure in security-critical systems. The wide range of HT types and related insertion strategies makes
the HT detection process very complex. Consequently, developing IC design methodologies that are
robust against HT insertion would be of great merit. To measure the HT robustness, a vulnerability
analysis of the proposed circuits should be performed which involves several interrelated factors (e.g.
the layout of white spaces distribution, the unutilized routing resources, the activity of the circuit nodes,
the delay values of circuit paths, etc.). In this paper, a novel framework is proposed to classify the IC
vulnerability level. First, a comprehensive dataset is generated considering different HTs insertion into
the ISCAS 85 and ISCAS 89 benchmark circuits. Then extraction of efficient features from the input
image is accomplished by pre-trained deep neural networks. Finally, the vulnerability level (which is
defined as low vulnerable, moderately vulnerable, and highly vulnerable) of every circuit is extracted
using various trained classifiers (Ensemble, SVM, Naïve Bayes, and KNN). Simulation results confirm
a 25% improvement in classification accuracy in the most successful classifier (97%) compared with the
most successful previous study (72%).

Review History:

Received: Jan. 21, 2024
Revised: Apr. 12, 2024
Accepted: Apr. 24, 2024
Available Online: Jul. 01, 2024

Keywords:

Ensemble Learning

Learnable Classifiers

Deep Neural Networks

Digital Circuits

Vulnerability Analysis

Hardware Trojans

419

1- Introduction
Integrated circuits play a vital role in modern intelligent

systems among them security-critical systems and highly
sensitive ones (e.g. internet network-based systems and
airplanes) should be protected against adversarial attacks.
The main hardware-based attacks on integrated circuits
are related to HT insertion. The inserted HT constitutes
a trigger mechanism and a payload part [1-3]. When the
trigger condition becomes active, the payload section causes
destructive effects in the IC. Various HT detection methods
are developed to handle the newly emerged Trojans every
year [4-7]. These detection methods can be categorized as
follows.

There are two types of Trojan detection methods: the
logic testing approach and the side-channel analysis [8-9].
The former is suitable only for always-activated HTs and,
the last one can be utilized for even small-sized Trojans. IC
temperature, power consumption, and critical path delay are
the main side-channel effects that are utilized to detect the
HTs. The thermal map of under test IC would be investigated
to detect unwanted activity of circuit nodes that are interpreted
as HTs [10]. In [11-14] and [9] machine learning and image
processing techniques are employed for HT detection. A

modified version of the heatmap according to the IC layout is
utilized for HT detection in [15], [10]. Due to emerging more
complicated structures for HTs, several studies have been
devoted to utilizing deep learning approaches for detection
affairs [16], [17], [7], [18].

On the other hand, to avoid costly detection approaches,
we could re-design integrated circuits so that the chance
of HT insertion becomes very low. This design technique
will reduce the HT insertion vulnerability significantly. For
instance, if the available white space area in the IC layout by
dummy Flip-flops then the available space to insert the HT-
related hardware will reduce dramatically.

A prerequisite of HT vulnerability classification is the
investigation of all HT insertion scenarios [19]. The following
points are deduced from such a comprehensive investigation:
The layout nodes with low transition probabilities are usually
utilized for HT triggers [19]. Moreover, the distribution of
white spaces as well as the availability of unused routing
resources are two essential factors for HT insertion [20] and
[21]. The routing resources near the less active nodes which
does not belong to the critical path are used to connect the
trigger to the payload modules. Such routing mechanisms
reduce the probability of HT detection by side-channel
approach [22]. These observations satisfy us to consider the
vulnerability analysis as a very complex problem.

Another worth noting point is related to very costly *Corresponding author’s email: h.jahanirad@uok.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/eej.2024.22910.5572
https://www.orcid.org/0000-0001-8586-6281
https://www.orcid.org/0000-0002-5421-5862

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

420

operations which should be applied in the design and
fabrication stages to improve the vulnerability of ICs. To
reduce the cost of such modifications, the vulnerability level
of the design should be assessed in the early stages of the
IC fabrication. The previous approaches for vulnerability
evaluation of ICs suffer from several shortcomings. First,
any previous approaches consider all effective factors so the
derived results are not reliable. Second, each of the previous
analyses is accomplished at a specific level of design (e.g.
gate level, layout level, etc.). Furthermore, the major
vulnerability factors are not homogeneous. So, deriving a
comprehensive analysis would be done by combining these
non-homogeneous factors.

In this paper, we develop a machine learning-based
framework to handle the mentioned shortcomings of previous
approaches. The proposed framework contains three major
phases: HT dataset generation, feature extraction using pre-
trained DNN, and the classification stages. In the first stage,
various HTs are inserted in the layout of the benchmark
circuits and the resulting layouts are converted to RGB
images. The collection of the generated images constructs the
required dataset. The performance of classifiers is very poor
when the classifiers utilize the raw generated images. So, to
achieve better classification, we should extract the important
features of the dataset’s images. In our proposed framework,
feature extraction is accomplished by pre-trained deep neural
networks (e.g. AlexNet, GoogleNet, and so on). The pre-
trained DNNs have been well-trained using a standard dataset
(e.g. ImageNET) and their convolutional layers have been
trained to extract important features of such a huge database.
In the last stage, several classifiers are trained using the
extracted features to classify the IC layout into low, medium,
and high vulnerable levels.

The main contributions of the paper are:
- Generation of a proper dataset for Hardware Trojan

study in integrated circuits.
- Extraction of the main features of integrated circuit for

HT vulnerability analysis.
- Development of a classification-based framework to

classify IC layout regarding Hardware Trojans’ vulnerability.

2- Related Works
The previous related studies use various metrics to

evaluate IC’s vulnerability at various design abstractions. In
[23], Trojan paths in a digital circuit are defined as paths that
are not activated during comprehensive simulation runtime.
The time complexity of this method is unacceptable for large
circuits due to its simulation-based nature. Moreover, if the
HT trigger does not derive from circuit nodes directly, then
they may be undetectable using this method. Waksman et al.
[24] consider the low controllable logic gates as the candidates
for HT triggers. Sullivan et al. [25] in Fight-metric applied
necessary modifications to cover the sequential circuits. We
can mention two problems regarding these methods. First,
the computational complexity grows rapidly with a slight
increase in the size of the circuit. Second, discrimination of
Trojan and non-Trojan gates is made by a threshold value that

is varied for various circuits.
Four different features are utilized for HT trigger

determination in FASTrust [26]. The first feature is the
existence of large loops which is essential for time-triggered
Trojans implementation. The second feature is a number
of large in-degree gates that are used to implement data-
triggered Trojans. The third feature is related to the existence
of large total in-degree groups to implement sequential
triggers. Finally, the fourth feature corresponds to the nodes
with a small out-degree, which can be utilized to activate the
HTs implicitly. Another approach based on multilevel feature
analysis is developed in [27]. In this methodology, first,
trigger features are extracted using the circuit’s information
flow graph (IFG) at the flip-flop level. The feature extraction
of ML-FASTrust speeds up significantly due to the small size
IFG. When candidate locations are determined based on IFG,
another analysis in the combinational level (CL) retrieves the
lost information. The utilized features of ML_FASTrust are
similar to the features of FASTrust. Such features are very
poor in separating the HT-inserted nodes from the normal
nodes. Moreover, FASTrust and ML-FASTrust ignore
controllability, observability, and node transition rate as
essential factors for vulnerability assessment.

Salamni [28] utilized circuit nodes’ Combinational
Controllability and Combinational Observability as the
vulnerability metrics which are very effective in determining
the low-testable nodes that can be safe locations for HT
triggers. Due to the very low transition probability of these
nodes, the conventional test algorithms cannot activate the
related triggers. Later in [29] a modified version of this
approach is presented for sequential circuits which is based
on the sequential type of circuit nodes’ controllability and
observability. Controllability and observability become a
common feature to detect HT triggers in other studies [30-
31]. Even for gate-level vulnerability analysis consideration
of just controllability and observability features results in
ignorance of HT triggers which are constructed based on the
nodes’ in/out degrees in the circuit graph as well as the size of
loop groups in sequential circuits.

The 11 features have been defined to measure the
vulnerability of logic circuits at the gate level by Kento
Hasegawa et al. [32-34]. Among these features, the number
of fan-ins that are placed three or five stages away from
the current node, the number of logic stages that should be
traversed to connect the current gate to the input of a DFF,
and the minimum distance between Primary Inputs (PIs)
and Primary Outputs (POs) could be considered as the
most effective ones. This approach suffers from significant
misclassification errors due to the ignorance of the other
basic features (e.g. signal activity, controllability, and
observability).

[35] and [36] developed model-checking-based
frameworks which are related to the combinational and
sequential circuits, respectively. In this method, first of all,
several counterexample circuits that contain various types
of HTs are generated. Next, the deviation of dynamic and
leakage power consumptions as well as the path delay values

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

421

are compared with the HT-free circuit. A predefined threshold
level is used to determine if the variation value is sufficient to
be considered as an HT.

Another viewpoint in vulnerability analysis is focusing
on IC layout rather than the circuit design. H. Salamani and
M. M. Tehranipoor [37] presented a layout-level vulnerability
analysis wherein the interpretation is performed in three levels
(cell, routing, and net analyses). In this method, the chip area
is divided into square parts, and then for every region (r)
the normalized values of white space (WS(r)) and number
of unused routing (UR(r)) is calculated. The vulnerability of
a region (V(r)) is computed according to (1). Furthermore,
time-triggered HT vulnerability, power-triggered HT
vulnerability and, time-power-triggered HT vulnerability of
a grid could be calculated using (2), (3) and, (4), respectively.
In these equations, NNC(r) is the number of paths that are not
critical, NLP(r) is the number of nets for which the transition
probability is less than Pth, and NNC & LP (r) is the number of
nets with which belong to both of the former sets.

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (1)
𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (2)

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (3)

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (4)

In net-level analysis, the low transition probability and
the low testability are considered as the major features
of HT payload. Consequently, 0-controllability (CC0),
1-controllability (CC1), and combinational observability
(CO) are utilized to determine the candidate nodes to be HT
payloads. The authors show quantitatively that the determined
nets are inserted near the regions which are highly vulnerable
in TrustHub benchmark circuits.

The space and trigger modeling in this approach encounter
the following issues. Calculation of the probability of HT
insertion into an integrated circuit using only the white space
ratio of grids is not perfect. For example, the probability of
HT insertion in a grid with a connected white space area
is more than in a grid with the same white space ratio but
the white space is divided into several disconnected parts.
Furthermore, in several situations, the white space in adjacent
grids could be merged to construct a wider white space area
to insert HTs. This case is fully ignored in the previous
modeling. One may use the routing resources from several
grids to make the required connection between the trigger and
payload parts. Consequently, the UR(r) should be extended to
these aspects. Moreover, the previous studies only consider
the single node (with low testability or low activity) as the
candidate trigger. However, hardware Trojan designer can

combine several conventional nodes using AND operation to
produce a proper trigger node. As the last important point,
this approach describes a quantitative relationship between
trigger nets and related grids which leads to significant model
inaccuracy.

M. Bakhshozadeh and A. Jahanian [38] divided the chip
area into the square grid to extract the Trojan Vulnerability
Map (TVM) of the integrated circuit. In the extracted TVM,
the ratio of white space and the number of available DFF are
used to assign a gray level to every grid. Consequently, in
TVM, low-vulnerable grids have light colors and the high_
vulnerable regions become darker. They defined the Trojan
Insertion Simplicity Factor (TISF) according to (5).

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (5)

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (6)

In this equation, a grid’s white space ratio is indicated
by BWS which is defined similarly to [37]. Moreover,
WSD (White Space Distribution) indicates how white space
distributes in a grid geographically which is calculated
according to (6). In this equation, n, (xm, ym), and, (xi, yi)
represent the number of the grid’s white space units, the
grid’s center position, and the center position of the i’th
white space unit. TWS represents the total white space ratio
in the entire area of the integrated circuit. Moreover, due to
the consideration of sequential hardware Trojans, the authors
represented the probability of the insertion of sequential HT
into a grid using the ratio of the number of grid’s DFFs (BFF)
to the number of IC’s DFFs (TFF).

The white space modeling of this approach is incomplete
similar to [37]. Moreover, this approach focused on white space
and DFF numbers and, the vital vulnerability factors such
as routing resource utilization, node activity and, testability
factors were not considered in this framework. Consequently,
the vulnerability analysis encounters significant inaccuracy.

A 3-metrics base framework has been developed by
T. Trippel et al. [21] to assess the vulnerability of a chip at
the layout level. The first metric is a histogram-based white
space model. In the related layout, the occupied parts of the
integrated circuit layout are colored and the white space
regions are connected using a 4-neighbor approach. The final
white space-related regions are utilized to derive the first
metric of this approach. The second metric which is called Net
Blockage represents how it is possible to block the hardware
Trojan’s payload to the available security-critical nets. The
authors show that this probability reduces significantly when
the routing congestion around such nets increases. As the third
metric, the Manhattan distance between payload modules and
the non-blocked security-critical nets is measured to derive

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

422

the vulnerability of the co-existence of the payload and
security-critical nets in the IC’s layout. Inaccurate white space
model, imperfect trigger nets modeling, and poor modeling of
possible routing schemes between trigger and payload are the
essential cones of the ICAS method.

3- Preliminary

A comprehensive investigation of HT architectures
discloses that the rouge person usually follows some
dedicated rules. The layout’s white space area which is close
to the unutilized routing modules, are ideal locations for HT
insertion. Moreover, the circuit’s nodes with low switching
activity are utilized for triggering the HTs. Such nodes are
connected to the payload using non-critical routing resources.
On the other hand, some HT triggers originate from low
controllable and observable circuit nodes which is robust
against logic test detection methods. These general rules are
converted to measurable features which finally are utilized
by the proposed flow for the layout’s vulnerability level
classification. Fig. 1 shows the flowchart of the proposed
approach. First of all, the essential features such as white
space, routing congestion, signal probability, path delay, and
testability metrics, are extracted using the graph of the circuit

and its layout. Then as mentioned before by completing the
dataset generation steps, the colored image of the circuit is
generated. Next, the pre-trained DNN is utilized to extract the
major features of the RGB-color image to be fed to the trained
classifiers. We describe briefly how the essential features are
extracted in the following sub-sections.

3- 1- White spaces

A pre-requisite to insert the hardware Trojans into the
layout is the existence of a white space area. Generally, the
integrated circuit’s layout is generated by the Cadence Design
System tool based on a synthesized file of the digital system’s
HDL code. The Cadence tool produces an optimum layout
using available modules (cells) in the design library. The final
layout of b15 benchmark circuit containing 3500 basic cells
is illustrated in Fig. 2. The routing congestion in the margins
of the layout is very sparse. Furthermore, the zoomed version
of the three boxes highlighted in Fig. 2 is illustrated in Fig. 3.

For example, the extracted layout of b15 benchmark
circuit from the Cadence Design System tool is . So, if the
layout be divided into 10×10 grid area (containing 100 tiles),
then the area of every tile would be

2
2300 300 30 30

100
m mµ µ×

= × .
In the resulting layout, INVX0 is utilized as the smallest gate

Circuit Layout & Netlist Features Extraction using
pre-trained DNNs

RGB colored generationProposed classifier

Low

Medium

High

Fig. 1. The flowchart of the proposed approach.

Fig. 1. The flowchart of the proposed approach.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

423

a

b

c

Fig. 2. Layout of b15 benchmark circuit

Fig. 2. Layout of b15 benchmark circuit

a b

c

Fig. 3. The zoomed illustration of highlighted boxes in Fig. 2.

Fig. 3. The zoomed illustration of highlighted boxes in Fig. 2.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

424

in the SAED-EDK90nm library.
[39] mentioned that 30-40 % of the chip area is not

utilized by the circuit modules which provides a sufficient
white space area to be used by HT designers. However,
the irregular distribution of the white space area may lead
to some difficulty in HT insertion process. For example, if
five unit blocks are required for an HT insertion, then five
unoccupied unit space areas should be available in a compact
area (e.g. a grid) for the insertion process. Three different
cases are shown in Fig. 4. In the left figure, the white space
units could be utilized easily for HT insertion. In the middle
figure, despite the availability of five unoccupied units, their
distribution makes HT insertion very difficult. Finally, in the
right figure, the HT insertion is impossible due to the fact
that there are not enough white space units. To prevent the

HT insertion ideally, we should pursue the third case in the
IC design phase. To fill up all white space units in the layout,
we can use large DFFs or even smaller combinational gates
(Talaee & Jahanian, 2017). As an example, the white space
area in the metal layer of the EthernetMAC10GE-T100
benchmark (Trust Hub benchmark suit) is illustrated in Fig. 5.

3- 2- Routing congestion
The routing congestion is an important factor in

vulnerability assessment due to the fact that the HTs require
extra spaces to realize the trigger to payload routing [19].
Fig. 6 illustrates a HT inserted in a sea of logic modules.
The Trigger and Payload modules of HT are shown in red
color. The logic module which feeds the required signals
for the Trigger module is indicated in Orange color and the

Fig. 4. Various five units white space units distribution.

Fig. 4. Various five units white space units distribution.

Fig. 5. The top-view of white space areas over the metal layer of EthernetMAC10GE benchmark layout.

Fig. 5. The top-view of white space areas over the metal layer of EthernetMAC10GE bench-
mark layout.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

425

module which is affected by the payload of HT is shown in
Blue color. We also illustrated the required routing paths that
should be realized to correctly implement the HT mechanism.
If the routing resources in every routing channel which the
HT paths are passed through them are utilized by the circuit’s
logic modules, then the HT mechanism will fail. So, the HT
mechanism needs available unused routing resources in the
specified routing channels. Consequently, the existence of
unused routing resources increases the vulnerability level
significantly.

Derivation of the routing congestion of an integrated
circuit layout is done using the output files of the Layout
Editor tool. The routing information is extracted from Design
Exchange Format (DEF) and Library Exchange Format (LEF)
and the congestion in every unit region of the layout area
could be calculated based on the available wires divide by the
total realizable wires in that unit region. A zoomed version of
the routing layer of metal layers for b15 benchmark circuit is
illustrated in Fig. 7.

Trigger
Logic

Payload
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Circuit
Logic

Fig. 6. An example of HT mechanism implementation.

Fig. 6. An example of HT mechanism implementation.

Fig. 7. Zoomed in image of metal layers for b15 benchmark circuit.

Fig. 7. Zoomed in image of metal layers for b15 benchmark circuit.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

426

3- 3- Dynamic power and transition probability
The transition probability of every internal net of the

circuit is directly related to the dynamic power consumption
of the net. The transition density of node s (Ds) is calculated
using (7) where ns is the number of node transitions in the
time interval equals T [40-41]:

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (7)

 		
Najm [40] defines the transition probability as the ratio

of the number of clock cycles where the signal toggles to the
total number of clock cycles in a specific time interval. The
relationship between dynamic power consumption (Pdyn(s))
and the related node’s transition density (Ds) is indicated in
(9) [40]:

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (8)

Moreover, [40] defines the average dynamic power

consumption (Pav) according to (9) where C is the total
capacitance value of node s and Vdd is the IC’s power supply.

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (9)

The capacitance of every circuit node is derived from the

output files of the Cadence Design System tool. The Vdd is a
predefined parameter and the ns should be derived according
to Fig. 8. In the indicated flow, the Verilog code related to the
circuit is fed into ODIN II tool ([48]) to produce the BLIF
file [42].

The ABC tool makes the BLIF file generated by ODIN
II a more optimized BLIF by logic and technology mapping
approaches [49]. In the next step, ACE tool is utilized to
extract the switching activity and transition probability of
the circuit’s nodes [50]. Based on the derived information the
transition distribution could be presented in geometrical form
according to gates’ locations throughout the chip area. As an
example, the final transition probability distribution of c17
benchmark circuit is shown in Fig. 9 [15]. The related Signal
Probability and Switching Activity values of c17 are reported
in Table 1.

Verilog HDL ODIN II BLIF ABC BLIF ACE

ACT File

New BLIF

Fig. 8. The flowchart of switching activity calculation.

Fig. 8. The flowchart of switching activity calculation.

Table 1. signal probability and switching activity of internal nodes of c17 benchmark circuit.Table 1: signal probability and switching activity of internal nodes of c17 benchmark circuit.

Gates and nodes Signal probability Switching activity

G1 0.49560 0.19920

G2 0.48360 0.20440

G3 0.49500 0.19900

G4 0.55880 0.11893

G5 0.56400 0.22627

G6 0.75200 0.15437

Node [1] 0.38220 0.008024

Node [2] 0.37060 0.050244

Node [3] 0.38220 0.008024

Node [4] 0.24600 0.044761

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

427

3- 4- Controllability
To major factors of digital circuit testability are the

node’s observability and node controllability. The most
famous tool to derive the testability factors is the Sandia
Controllability Analysis Program (SCOAP) [43]. The
parameters combinational zero-controllability (CC0),
combinational one-controllability (CC1), and combinational
observability (CO) as well as sequential zero-controllability
(SC0), sequential one-controllability (SC1), and sequential
observability (SO) are utilized to calculate the testability of
digital logic circuits in SCOAP [28]. Definitions of these
parameters are reported in Table 2. The range of controllability
values starts from 0 to infinity. Moreover, the controllability
values of primary inputs are set to one, and the application
of the related calculations increases the controllability values
toward primary outputs. The related calculations to derive the
controllability parameters in the output of primary gates are
reported in Table 3. As a general rule, by increasing the value
of controllability value, the capability of test algorithms to
detect the existence of HT at that node would be decreased.
Consequently, the high controllability of a node makes
it more suitable to be utilized as HT trigger. To merge the
controllability and observability measures of a node for
testability related metrics we use (10) :

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (10)

As an example, the calculation of four different logic
gate’s combinational and sequential controlabilities is
presented in Table 3.

4- Proposed method
4- 1- Dataset

We have used two suites of benchmark circuits (ISCAS
85 and ISCAS 89) which contain 25 digital circuits to
generate the required dataset. These benchmark circuits
constitute primary inputs and outputs as well as logic gates
with a variety of types and sizes. Implementing the circuits
on a chip includes placement of IO and logic gates so that
the area, speed, and other design objectives tend to be
optimal. After placement, the places IO and logic gates are
connected using wire and other routing resources. The main
goal of the routing phase is to realize the required routes with
minimal delay overhead and low congestion. Taking different
placements for a logic circuit leads to producing different
implementations. So, for 25 selected benchmark circuits, we

Fig. 9. The heatmap of b15’s switching activity.

Fig. 9. The heatmap of b15’s switching activity.

Table 2. Definition of testability metrics.

Table 2: Definition of testability metrics.

𝑪𝑪𝑪𝑪𝟎𝟎 Combinational 0-controllability of s
𝑪𝑪𝑪𝑪𝟏𝟏 Combinational 1-controllability of s
𝑪𝑪𝑪𝑪 Combinational observability of s
𝑺𝑺𝑺𝑺𝟎𝟎 Sequential 0-controllability of s
𝑺𝑺𝑺𝑺𝟏𝟏 Sequential 1-controllability of s
𝑺𝑺𝑺𝑺 Sequential observability of s

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

428

try to extend the number of implementations using different
placements. In our dataset generation procedure, we have
generated 400 implementations for every benchmark circuit.
Consequently, the total number of implemented integrated
circuits in the proposed dataset would be 10000.

The parameters that are varied during the dataset
generation process include chip area size, placement of
circuit modules, and the type of gates logic approach. The
range of chip area for every benchmark circuit is one to
ten times of the minimum required area. The white space
distribution for various chip areas for a benchmark circuit
is varied randomly, so the major HT insertion-based factor
would be swept appropriately. On the other hand, by utilizing
different placement approaches, the locations of primary IOs
and logic gates on the chip area are distributed randomly. This
policy leads to produce a variety of testability, signal activity,
and routing congestion distribution for every benchmark
circuit. Finally, choosing a different design for logic gates in
the generated implementations (e.g. complementary logic,
ratioed logic, transmission gate logic, pass transistor logic,
and dynamic logic) results in the generation of different
layouts wherein the white space and routing patterns would
experience a wide range of variation.

In the next stage of dataset generation, the 10000 circuit
implementations are converted to RGB images which are
proper representations for training the proposed classifier.
To do so, first, the chip area is divided into square-shaped
grids wherein every grid is associated with a pixel of the
final image. The Red, Green, and Blue components of a
specific pixel are represented by an N-bit binary number. For
example, there are 256 different levels for every component
when an 8-bit binary number is utilized. The five major
features (White space distribution, Signal activity of the
nodes, Controllability and Observability of the circuit’s
nets, and Routing utilization of the routing network) related
to the vulnerability of logic circuits to HT insertion process
should be assigned to three RGB components of the pixels.
Because of the essential relevance of testability metrics
(Controllability and Observability metrics) with switching

activity, we merged three major factors to construct the green
component value on the pixels. To complete the process, we
first normalize the values of CC0, CC1, CO, and the signal
activity (act) associated with every grid by dividing the related
value by the maximum possible value of these parameters.
The normalized parameters are merged according to (11) to
achieve the real number RRnorm. Finally, the resulting number
is transformed to an 8-bit binary number which acts as the
green component of the pixel.

𝑉𝑉(𝑟𝑟) = 𝑊𝑊𝑊𝑊(𝑟𝑟) × 𝑈𝑈𝑈𝑈(𝑟𝑟) (1)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁(𝑟𝑟) (2)

𝑉𝑉𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝐿𝐿𝐿𝐿(𝑟𝑟) (3)

𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) × 𝑁𝑁𝑁𝑁𝑁𝑁&𝐿𝐿𝐿𝐿(𝑟𝑟) (4)

BWS BFF
TWS TFFTISF

WSD


 (5)

2 2

1

1 [() ()]
n

i m i m
i

WSD x x y y
n

    (6)

 𝐷𝐷𝑠𝑠 = lim
𝑇𝑇→∞

𝑛𝑛𝑠𝑠
𝑇𝑇 (7)

𝐷𝐷𝑠𝑠 ≥ 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑(𝑠𝑠)
𝑇𝑇 (8)

𝑃𝑃𝑎𝑎𝑎𝑎 = lim
𝑇𝑇→∞

𝑉𝑉𝐷𝐷𝐷𝐷 .
𝐶𝐶𝑉𝑉𝐷𝐷𝐷𝐷 𝑛𝑛𝑠𝑠/2

𝑇𝑇 (9)

2 2 2

2 2 2

0() 1() () Combinational Circuits
()

0() 1() () Sequentional Circuits

CC i CC i CO i
CC i

SC i SC i SO i

   
 

 (10)

𝐺𝐺𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = √(𝐶𝐶𝐶𝐶0𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶1𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐶𝐶𝐶𝐶𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)2 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
2 (11)

 (11)

We define the white space value of a grid as the ratio of
the unoccupied region of the grid to the total grid area. For
instance, if ¼ of a grid area is occupied by the logic part, then
the white space ratio of that grid will be 0.75. Consequently,
the White Space Ratio is normalized by the definition and can
be directly transformed to 8-bit binary number. We assigned
the resulting number to the Red component of the pixel which
is related to the current grid.

The last component (Blue) is associated with the routing
congestion factor. To measure this component value, we
evaluate the number of routing wires that pass across the
above space of the grid. The resulting value is divided to the
total possible number of wires that can routed through the
above space of the grid. The resulting number is in the range
of 0 to 1 and can be directly converted to 8-bit binary number.

Because of using the supervised approach to derive the
HT vulnerability class of the implemented circuits, we should
determine the class label (High, Medium, and Low classes) for
every image of the generated dataset. The procedure of class
labeling includes the measurement of the difficulty of various
HTs insertion into the implemented circuits. For every type
of HT architecture, first of all, we seek the required white
space area. If there is not such a white space region, then the
process of HT insertion will fail and the zero is registered

Table 3. Controllability evaluation for basic logic gates.

Table 3: Controllability evaluation for basic logic gates.

 CC0 SC0 CC1 SC0

AND min[CC0(inp1),CC0(inp2)]+1 min[SC0(inp1),SC0(inp2)] CC1(inp1)+CC1(inp2)+1 SC1(inp1)+SC1(inp2)

OR CC0(inp1)+CC0(inp2)+1 SC0(inp1)+SC0(inp2) min(CC1(inp1),CC1(inp2)]+1 min[SC1(inp1),SC1(inp2)]

XOR min[(CC0(inp1)+CC0(inp2)),(CC1(inp1)+
CC1(inp2))]+1

min[(SC0(inp1)+SC0(inp2)),(SC1(inp1)+SC1(inp2))] min[(CC0(inp1)+CC1(inp2)),
(CC1(inp1)+CC0(inp2))]+1

min[(SC0(inp1)+SC1(inp2)),
(SC1(inp1)+SC0(inp2))]

DFF min[CC1(RESET)+CC1(clk)+CC0(clk),
CC0(D)+CC1(clk)+CC0(clk)]

min[SC1(RESET)+SC1(clk)+SC0(clk),
SC0(D)+SC1(clk)+SC0(clk)]+1

CC1(D)+CC1(clk)+CC0(clk)+
CC0(RESET)

SC1(D)+SC1(clk)+SC0(clk)+
SC0(RESET)+1

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

429

as the score. On the other hand, if the proper white space
is available, then the trigger formation is investigated. For
every possible trigger which can be constructed by nearby
logic gates and routing resources, the difficulty of connecting
the trigger to the HT payload is evaluated based on the trigger
distance among the trigger and the payload module. Finally,
the total score is calculated by the addition of all available
triggers’ scores.

Based on the calculated scores of all images, the images
are partitioned into three parts; the first part is related to
the images with a score greater than 75% of all images. We
labeled this part with a highly vulnerable class. The second
part is related to the images with a score less than 75% of all
images’ scores which are labeled as Low vulnerable class.
The remaining images are labeled with a Medium vulnerable
class.

It is worth noting that due to the feature extraction of
images using pre-trained DNNs, we should resize the images
to be matched with the utilized deep neural network. For
example, the generated image in the dataset should be resized
to 224×224 image for VGG 16.

To evaluate the dataset generation mechanism, we
extract the average feature value of every pixel in all dataset
images for High, Medium, and Low vulnerable classes.
As we declared, the correlated features (Controllability,
Observability, and Signal activity) are merged in the
Red component of the image pixels as well as the White
space and Routing congestion features are assigned to the
Green and Blue components, respectively. The average of
these components for every vulnerability class shows the
distribution of the related features in the images that belong to
the class. Suppose that class c contains Nc images and every
image is constructed from an H×V pixel. Then the average
value of the image components for (i,j)’s pixel is calculated
using (12). In this equation, imagek(i,j,1), imagek(i,j,2) and,
imagek(i,j,3) are the Red, Green and, Blue values of pixel (i,j)
in the k’th image.

1

1

1

1(,) (, ,)

1(,) (, ,2)

1(,) (, ,3)

c

c

c

N

avg k
kc
N

avg k
kc
N

avg k
kc

R i j image i j 1
N

G i j image i j
N

B i j image i j
N



















 (12)

1
1 2

1 1

() (|)
(| , ,....,)

() (|)

n

j i j
i

j n nK

k i k
k i

P C P x C
P C x x x

P C P x C



 




 
 (13)

 Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

 TPR = TP/(TP+FN) (15)

 TNR = TN/(TN+FP) (16)

 (12)

Figure 10 illustrates the pairwise comparison of these
components for three vulnerability classes. Red component
comparison depicts that the testability and signal activity
features which are combined using (11) are slightly efficient
to distinguish the images belonging to the low vulnerable
class from the other two classes. However, class Medium
and class High show very similar behavior according to the
Red component. On the other side, the Green component
comparison reveals the efficiency of the white space feature

in vulnerability class discrimination illustrated in the middle
row of Figure 10. According to these figures, class High
shows a meaningful difference from the other two classes
as well and the white space feature can slightly separate the
class Low and class Medium. Finally, the third row of Figure
10 showcases the pairwise comparison of routing congestion-
related components. We deduce from these figures that the
Blue component can moderately separate the images of class
High from the other classes meanwhile slightly can be utilized
to distinguish class Low and Medium as well.

4- 2- Utilized Classifiers
4- 2- 1- Ensemble Classifier

Ensemble Learning is widely used to achieve better
classification results using multiple base classifiers. In the
homogenous ensemble of classifiers, a similar type of base
classifiers is utilized. The base classifiers are trained and
validated using the appropriate part of the dataset (training
+ validation data). Then the ensemble of classifiers is tested
using the other unseen part of a data set. There are several
methods to choose the training set from the dataset among
them Bagging (Bootstrap Aggregating) is the famous approach
[44]. Bagging follows the sampling with replacement
approach to choose N data from the available part of the
dataset to train every base classifier in turn. It is obvious
that some data would not be selected ever according to this
approach. These data are collected to compose the validation
set. It was approved that this policy choose 63.2% of the first
part of the dataset for training and the remaining 36.8% of
them are used in the validation phase. The final phase of the
ensemble classification is to test the overall performance
of the ensemble. Based on the ensemble’s architecture, the
decisions of base classifiers are combined (e.g., majority
voting approach) and the final decision is compared again the
correct result.

In the Gradient Boosting (GB) approach, the learning
process is started by generating a random weak learner. Then
the related loss function is evaluated for training data. Based
on the classification result and the evaluated loss function
for every individual of training data, the residual values
for training data are extracted. In the next stage of gradient
boosting, the learning algorithm tries to fit an improved
version of DT to minimize the residual values. After the
construction of the new DT, the previous process is repeated
for the new DT and the algorithm moves to the next stage
[45]. Later in [46], a modified version of GB ensemble was
presented wherein a regularization term was added to the loss
function to control the growth of the model complexity and
better avoidance of overfitting (XGB). It is worth noting that
the major hyperparameters of gradient boosting algorithms
are the number of trees, depth of trees, and learning rate (that
compromises computational complexity and accuracy).

4- 2- 2- Naïve Bayes Classifier
One of the simplest classification algorithms is NB

classifier which is constructed based on Bayes’ theorem.
Suppose that we want to construct a Naïve Bayes classifier

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

430

for a dataset in which every individual has n features (x1,
x2,…, xn). If the total number of classes is K, then for test data
including the arbitrary features, the probability of belonging
to Cj would be calculated according to (eq. 13).

1

1

1

1(,) (, ,)

1(,) (, ,2)

1(,) (, ,3)

c

c

c

N

avg k
kc
N

avg k
kc
N

avg k
kc

R i j image i j 1
N

G i j image i j
N

B i j image i j
N



















 (12)

1
1 2

1 1

() (|)
(| , ,....,)

() (|)

n

j i j
i

j n nK

k i k
k i

P C P x C
P C x x x

P C P x C



 




 
 (13)

 Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

 TPR = TP/(TP+FN) (15)

 TNR = TN/(TN+FP) (16)

 (13)

	
In this equation, P(Ci) is the probability of class Ci

occurrence, P(xi|Ci) is the probability of occurrence of feature
xi in class Ci. All of these values can be evaluated based on
training data. After derivation of all related probabilities, the

Fig. 10. Pairwise comparison of class features in the generated dataset.

Fig. 10. Pairwise comparison of class features in the generated dataset.

data has been assigned to the class with maximum probability.
The major disadvantage of Naïve Bayes classifier is the
independence assumption among various features which is
considered as the source of errors.

4- 2- 3- Multiclass SVM
Binary Support Vector Machine (SVM) is a popular

classifier in machine learning applications. The SVM tries
to find a hyperplane that separates the training data of two
classes maximally. The nearest data to the derived hyperplane
are called support vectors. In the case of more complicated
features, the nonlinear SVM classifier is constructed by
means of applying the linear SVM to the transformed feature
space. The transformed feature space is generated by the
substitution of a nonlinear kernel (e.g. Gaussian radial-based

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

431

kernel) instead of a linear dot product.
The application of SVM for multiclass problems is

accomplished by reducing the original problem to multiple
binary classification problems. In the one-versus-all strategy,
the class label that is assigned to the instance belongs to the
classifier with the highest output score. On the other hand,
in the one-versus-one strategy, the instance is introduced to
all pairs of binary classifiers, and the instance label would
belong to the class with a maximum number of wins. Some
other solutions have been proposed to solve the multiclass
SVM problem such as Directed Acyclic Graph SVM, Error
Correcting Output Codes etc.

4- 2- 4- K-Nearest Neighbors classifier
In the k-nearest neighbors classifier, the instances of

training data are labeled with the available classes. Then
every test (new) data is labeled according to the most frequent
labels of all k nearest classified samples to the instance. The
major issue of the k-NN algorithm is the metric of distance
measurement among the test data and the other labeled data
to find its nearest neighbors. For instance, Euclidean distance
is suitable for continuous variables and Hamming distance is
efficient for discrete variables. Furthermore, for large datasets,

the computation of distances between the test instance and all
the other labeled data would be very complex. To overcome
this problem some nearest neighbor search algorithms have
been proposed. In the modified version of k-NN a weight
(proportional to the inverse of distance) is assigned to the
neighbors to emphasize the nearer neighbors in the decision-
making of the algorithm.

4- 3- Proposed HT vulnerability analysis framework

Details of the proposed vulnerability analysis framework
are illustrated in Fig. 11. The first step in the proposed
framework is dataset generation using the procedure
described in section 4.2.1. The generated images (which are
labeled by their vulnerability levels) are fed into the pre-
trained deep neural network platforms (e.g. GoogleNet, VGG
16 etc.) to extract the suitable features. In this stage, the user
can select the feature extractor as well as the output stage of
the selected DNN. Consequently, at the end of this stage, all
dataset’s images are converted to the related matrices which
contain the features.

In the next stage, a classifier is selected among the
mentioned classifiers in section 4,2 (Ensemble, Naïve Bayes,
SVM, and KNN classifiers). Then a subset of the dataset (the

Circuits Layouts
and Netlists

Basic Features
Extraction

Convert to RGB
image Re-sizing

Use pre-trained
DNN for Feature

Extraction

Train the various
classifiers

Validation by
Generated dataset

Interpretation
accuracy of the

trained Classifiers

Dataset Generation

Learning

Validation and
Interpretation

Fig. 11. The details of proposed framework’s stages.

Fig. 11. The details of proposed framework’s stages.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

432

matrices of extracted features) is selected as training data and
the remaining portion is considered for test purposes. The
selected classifier is trained and validated using training data
and the related evaluation metrics (Accuracy, True Positive
Rate, True Negative Rate) are derived using test data.

The problem of the most appropriate hyperparameter
selection is accomplished using optimization techniques.
The hyperparameters related to the utilized classifiers are
reported in Table 4. In our proposed platform, the following
steps are traversed: first of all, the hyperparameters that
should be optimized for current classifiers are selected. Next,
the method of optimization for hyperparameters is selected.
Bayes optimization, Grid search, and Random search are
common optimization techniques. After the selection of
optimizable hyperparameters and the optimization method,
the exploration of search space is done until the algorithm
reaches the stop criteria or the maximum number of iterations.

5- Results
We utilized Deep Network Designer and Classification

Learner Tools from MATLAB 2022 software to perform
the simulations. The specifications of the personal computer
are Core i7 CPU and internal random access memory with
8 Giga Bytes capacity. The feature extraction of the images
is completed using various DNN architectures that are
available in the Deep Network Designer tool of MATLAB.
These networks are pre-trained using very large datasets (e.g.
ImageNet) which gives a high capability to these networks
to extract the essential features of any other datasets. The
best values for hyperparameters were derived by exploration

of several possible combinations of DNN’s parameters [47].
The performance of every classifier in our simulations is

evaluated using the following metrics:
True Positive (TP): The images which are truly recognized

as a member of the current class.
True Negative (TN): The images which are truly

recognized that do not belong to the current class.
False Positive (FP): The images which are incorrectly

recognized as a member of the current class.
False Negative (FN): The images which are incorrectly

recognized that do not belong to the current class.

1

1

1

1(,) (, ,)

1(,) (, ,2)

1(,) (, ,3)

c

c

c

N

avg k
kc
N

avg k
kc
N

avg k
kc

R i j image i j 1
N

G i j image i j
N

B i j image i j
N



















 (12)

1
1 2

1 1

() (|)
(| , ,....,)

() (|)

n

j i j
i

j n nK

k i k
k i

P C P x C
P C x x x

P C P x C



 




 
 (13)

 Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

 TPR = TP/(TP+FN) (15)

 TNR = TN/(TN+FP) (16)

 (14)

1

1

1

1(,) (, ,)

1(,) (, ,2)

1(,) (, ,3)

c

c

c

N

avg k
kc
N

avg k
kc
N

avg k
kc

R i j image i j 1
N

G i j image i j
N

B i j image i j
N



















 (12)

1
1 2

1 1

() (|)
(| , ,....,)

() (|)

n

j i j
i

j n nK

k i k
k i

P C P x C
P C x x x

P C P x C



 




 
 (13)

 Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

 TPR = TP/(TP+FN) (15)

 TNR = TN/(TN+FP) (16)

 (15)

1

1

1

1(,) (, ,)

1(,) (, ,2)

1(,) (, ,3)

c

c

c

N

avg k
kc
N

avg k
kc
N

avg k
kc

R i j image i j 1
N

G i j image i j
N

B i j image i j
N



















 (12)

1
1 2

1 1

() (|)
(| , ,....,)

() (|)

n

j i j
i

j n nK

k i k
k i

P C P x C
P C x x x

P C P x C



 




 
 (13)

 Accuracy = (TP + TN)/(TP + TN + FP + FN) (14)

 TPR = TP/(TP+FN) (15)

 TNR = TN/(TN+FP) (16)

 (16)

Eventually, based on the above definitions, we use three
metrics to evaluate the performance of the trained classifiers
as follows: 1- Accuracy: the number of truly recognized
images (the members of the class and the non-member of
the specific class) divided by all images according to (14).
2- Precision: The number of truly recognized images of the
current class divided by the total number of images of the
current class (15). 3- Specificity: The total number of non-

Table 4. The optimizable hyperparameters of various classifiers

Table 4: The optimizable hyperparameters of various classifiers
Classifier Optimizable Hyperparameters

Ensemble

- Ensemble method
- Maximum number of splits
- Number of learners
- Learning rate
- Number of predictors to sample

Naïve Bayes - Distribution names
- Kernel type

SVM

- Kernel function
- Box constraint level
- Kernel scale
- Multiclass method
- Standardized data

KNN

- Number of neighbors
- Distance metrics
- Distance weight
- Standardized data

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

433

member of images of the dataset which are truly recognized
by the classifiers divided by the total number of images that
do not belong to the current class (16).

Table 5 reports classifier accuracy. The accuracy values
start at 83.81 % of Naïve Bayes and end at 97.38% of SVM.
Fig. 12 illustrates the confusion matrixes for the utilized
classifiers. To test the trained classifiers, we selected 1500
images randomly from the dataset and derived the performance
metrics. The performance of every classifier is approximately
uniform for all low, medium, and high vulnerable classes.
Ensemble and SVM outperform KNN in all cases but the
Naïve Bayes classifier accuracy never reaches 90% accuracy.

Figure 13 shows TPR and TNR for different utilized
classifiers. The first metric (TPR) represents the ability of the
trained classifiers to recognize truly the vulnerability levels of
the related implemented circuit. On the other hand, the latter
metric represents the ability of the trained classifier to dump
out the images that do not belong to the current class truly.

Our proposed method is a machine learning-based approach
to assess the vulnerability level of an implemented digital
circuit. There is no straightforward previous method to be

utilized to be compared with our proposed method. However,
we have independently extracted the performance of [21], [37]
and, [38] approaches to classify the circuits of the generated
dataset. These methods evaluate the vulnerability level of the
implemented circuit by dividing the layout into square-based
grids. A short introduction to these methods is presented in
the related work sub-section. The results of the comparison
of these approaches with our ML-based methodology are
reported in Table 6. The superiority of the ML-based approach
is clear in comparison to the previous methods. This is mainly
due to the consideration of all important factors in dataset
construction and classifier training. Due to better modeling of
white space distribution in [21], the accuracy of this method
is significantly better than the other two methods. However,
the other features (routing congestion and trigger modeling)
are not investigated accurately by [21] which leads to 28%
inaccuracy. [37] achieves more accuracy in comparison with
[38] due to considering the testability metrics for trigger
modeling. The other shortcomings of the [38] approach are
the inapplicability of the method to combinational circuits
along with the ignorance of proper trigger modeling.

Table 5. Accuracy of various classifiers for vulnerability evaluation

Table 5: Accuracy of various classifiers for vulnerability evaluation

Accuracy %

 Low Medium High Average
Ensemble 96.47 95.89 96 96.12
Naïve Bayes 85.63 83.81 90.99 86.81
SVM 97.38 96.15 96.54 96.69

KNN 94.91 93.01 95.89 94.60

Table 6. The comparison of the accuracy of various methods

Table 6: The comparison of the accuracy of various methods

Method Accuracy %
Ensemble 96.12

Naïve Bayes 86.81
SVM 96.69
KNN 94.60
[21] 72
[37] 65.5
[38] 60.35

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

434

Predicted Class

Low Medium High

Actual
Class

Low 217 18 16
Medium 12 847 22

High 8 11 381
Ensemble

Predicted Class

Low Medium High

Actual
Class

Low 91 115 45
Medium 50 812 19
High 10 64 326

Naïve Bayes

Predicted Class
Low Medium High

Actual
Class

Low 225 17 9

Medium 6 859 16

High 8 20 372
SVM

Predicted Class

Low Medium High

Actual
Class

Low 200 39 12
Medium 22 833 26
High 5 20 375

KNN

Fig. 12. Confusion matrices of various classifiers.

Fig. 12. Confusion matrices of various classifiers.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

435

a

b

Fig. 13. a- True Negative Rate for all classifiers, b-True Positive Rate for all classifiers

0
10
20
30
40
50
60
70
80
90

100

Ensemble Naïve Bayes SVM KNN

TN
R

%

Classifiers

TNR_Low TNR_Medium TNR_High

0
10
20
30
40
50
60
70
80
90

100

Ensemble Naïve Bayes SVM KNN

TP
R

%

Classifiers

TPR_Low TPR_Medium TPR_High

Fig. 12. Confusion matrices of various classifiers.

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

436

6- Conclusion
In this study, a machine learning-based framework is

developed to classify the vulnerability of digital integrated
circuits regarding the Hardware Trojans insertions. The
major motivation of this paper is the inaccurate and non-
comprehensive modeling of vulnerability in the previous
studies. The interrelated and complex effective features
for vulnerability assessment of ICs hinted to us to utilize
different linear classifiers to handle the problem. In our
proposed framework, first, a comprehensive dataset of
images is generated for the classifier training goal wherein
every image represents an implemented circuit that belongs
to ISCAS 85 and ISCAS 89 benchmark circuits. Due to
the supervised learning approach, every image is labeled to
indicate the vulnerability class (low, moderate, and highly
vulnerable classes) of the related implemented circuit. We
well-trained four famous leaner classifiers (Ensemble, Naïve
Bayes, SVM, and KNN) using the generated dataset. SVM
and Ensemble classifiers achieve more than 96% accuracy
according to the simulation results. The lowest accuracy
belongs to Naïve Bayes classifier (~86.81%) which is much
better than the best previous studies (72%). As the major axis
of future research, we propose extending the vulnerability
assessment to the pre-layout stage (RTL stage) as well as the
industrial adaptation of the proposed framework for inclusion
in the computer-aided design tools (CAD tools) is of great
merit.

Funding
There is no funding related to this study.

Data Availability
The datasets generated and/or analyzed during the

present study are available from the corresponding author on
reasonable request.

Conflict of Interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References
[1] Hassan, R., Meng, X., Basu, K. and Dinakarrao,

S.M.P., 2023. Circuit Topology-aware Vaccination-
based Hardware Trojan Detection. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, Jan 6 (2023).

[2] Moein, S., Gulliver, T. A., Gebali, F., & Alkandari, A.
(2016). A new characterization of hardware trojans. IEEE
Access, 4, 2721-2731.

[3] Tehranipoor, M., Salmani, H., Zhang, X., Wang, M.,
Karri, R., Rajendran, J., & Rosenfeld, K. (2010).
Trustworthy hardware: Trojan detection and design-for-
trust challenges. Computer, 44(7), 66-74.

[4] Hasegawa, K., Seira H., Kohei N., Shinsaku K.,
and Nozomu T.. “R-HTDetector: Robust hardware-
Trojan detection based on adversarial training.” IEEE

Transactions on Computers 72, no. 2 (2023): 333-345.
[5] Chen, K., Arias, O., Guo, X., Deng, Q. and Jin, Y.,

2022. IP-Tag: Tag-Based Runtime 3PIP Hardware
Trojan Detection in SoC Platforms. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 42(1), pp.68-81.

[6] Cruz, J., Gaikwad, P., Nair, A., Chakraborty, P. and
Bhunia, S., 2022, December. A Machine Learning
Based Automatic Hardware Trojan Attack Space
Exploration and Benchmarking Framework. In 2022
Asian Hardware Oriented Security and Trust Symposium
(AsianHOST) (pp. 1-6). IEEE, Dec. 2022.

[7] Vaziri, M., Rahimifar, M.M. and Jahanirad, H.,
Robustness Scan of Digital Circuits Using Convolutional
Neural Networks. In 2022 12th International Conference
on Computer and Knowledge Engineering (ICCKE) (pp.
013-018). IEEE, Nov. 2022.

[8] Salmani, H., & Tehranipoor, M. M. (2016). Vulnerability
analysis of a circuit layout to hardware Trojan
insertion. IEEE Transactions on Information Forensics
and Security, 11(6), 1214-1225.

[9] Bazzazi, A., Shalmani, M. T. M., & Hemmatyar, A. M.
A. (2017). Hardware Trojan detection based on logical
testing. Journal of Electronic Testing, 33(4), 381-395.

[10] Nowroz, A. N., Hu, K., Koushanfar, F., & Reda, S.
(2014). Novel techniques for high-sensitivity hardware
Trojan detection using thermal and power maps. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 33(12), 1792-1805.

[11] Kulkarni, A., Pino, Y., & Mohsenin, T. (2016, May).
Adaptive real-time Trojan detection framework
through machine learning. In 2016 IEEE International
Symposium on Hardware Oriented Security and Trust
(HOST) (pp. 120-123). IEEE.

[12] Guazzelli, R. A., Trindade, M. G., Guimarães, L. A., de
Paiva Leite, T. F., Fesquet, L., & Bastos, R. P. (2020).
Trojan Detection Test for Clockless Circuits. Journal of
Electronic Testing, 1-9.

[13] Kulkarni, A., Pino, Y., & Mohsenin, T. (2016, March).
SVM-based real-time hardware Trojan detection
for many-core platform. In 2016 17th International
Symposium on Quality Electronic Design (ISQED) (pp.
362-367). IEEE.

[14] Liakos, K. G., Georgakilas, G. K., Moustakidis,
S., Karlsson, P., & Plessas, F. C. (2019, November).
Machine Learning for Hardware Trojan Detection: A
Review. In 2019 Panhellenic Conference on Electronics
& Telecommunications (PACET) (pp. 1-6). IEEE.

[15] Rahimifar, M. M., & Jahanirad, H. (2020, October).
Employing Image Processing Techniques for Hardware
Trojans Detection. In 2020 10th International Conference
on Computer and Knowledge Engineering (ICCKE) (pp.
187-192). IEEE.

[16] Vishnupriya, R., Nirmala Devi, M. (2021). Hardware

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

437

Trojan Detection Using Deep Learning-Deep Stacked
Auto Encoder. In: Gunjan, V.K., Zurada, J.M. (eds)
Proceedings of International Conference on Recent
Trends in Machine Learning, IoT, Smart Cities and
Applications. Advances in Intelligent Systems and
Computing, vol 1245. Springer, Singapore.

[17] Reshma, K., Priyatharishini, M., Nirmala Devi, M.
(2019). Hardware Trojan Detection Using Deep Learning
Technique. In: Wang, J., Reddy, G., Prasad, V., Reddy, V.
(eds) Soft Computing and Signal Processing . Advances
in Intelligent Systems and Computing, vol 898. Springer,
Singapore.

[18] Priyatharishini, M. and Devi, M.N., 2022. A deep
learning based malicious module identification using
stacked sparse autoencoder network for VLSI circuit
reliability. Measurement, 194, p.111055.

[19] Tehranipoor, M., & Koushanfar, F. (2010). A survey of
hardware trojan taxonomy and detection. IEEE design &
test of computers, 27(1), 10-25.

[20] Hossein-Talaee, H. and Jahanian, A., 2017, July.
Layout vulnerability reduction against trojan insertion
using security-aware white space distribution. In 2017
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI) (pp. 551-555). IEEE.

[21] Trippel, Timothy, Kang G. Shin, Kevin B. Bush, and
Matthew Hicks. “ICAS: an extensible framework for
estimating the susceptibility of ic layouts to additive
trojans.” In 2020 IEEE Symposium on Security and
Privacy (SP), pp. 1742-1759. IEEE, 2020.

[22] Bhunia, S., Hsiao, M. S., Banga, M., & Narasimhan,
S. (2014). Hardware Trojan attacks: Threat analysis
and countermeasures. Proceedings of the IEEE, 102(8),
1229-1247.

[23] Hicks, Matthew, Murph Finnicum, Samuel T. King,
Milo MK Martin, and Jonathan M. Smith. “Overcoming
an untrusted computing base: Detecting and removing
malicious hardware automatically.” In 2010 IEEE
symposium on security and privacy, pp. 159-172. IEEE,
2010.

[24] Waksman, Adam, Matthew Suozzo, and Simha
Sethumadhavan. “FANCI: identification of stealthy
malicious logic using boolean functional analysis.”
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pp. 697-708.
2013.

[25] Sullivan, Dean, Jeff Biggers, Guidong Zhu, Shaojie
Zhang, and Yier Jin. “FIGHT-metric: Functional
identification of gate-level hardware trustworthiness.”
In Proceedings of the 51st Annual Design Automation
Conference, pp. 1-4. 2014.

[26] Yao, Song, Xiaoming Chen, Jie Zhang, Qiaoyi Liu,
Jia Wang, Qiang Xu, Yu Wang, and Huazhong Yang.
“FASTrust: Feature analysis for third-party IP trust
verification.” In 2015 IEEE International Test Conference
(ITC), pp. 1-10. IEEE, 2015.

[27] Chen, Xiaoming, Qiaoyi Liu, Song Yao, Jia Wang,
Qiang Xu, Yu Wang, Yongpan Liu, and Huazhong
Yang. “Hardware trojan detection in third-party digital
intellectual property cores by multilevel feature
analysis.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37, no. 7
(2017): 1370-1383.

[28] Salmani, Hassan. “COTD: Reference-free hardware
trojan detection and recovery based on controllability and
observability in gate-level netlist.” IEEE Transactions
on Information Forensics and Security 12, no. 2 (2016):
338-350.

[29] Tebyanian, Mahshid, Azadeh Mokhtarpour, and Alireza
Shafieinejad. “SC-COTD: Hardware Trojan Detection
Based on Sequential/Combinational Testability Features
using Ensemble Classifier.” Journal of Electronic
Testing 37, no. 4 (2021): 473-487.

[30] Kok, Chee Hoo, Chia Yee Ooi, Mehrdad Moghbel,
Nordinah Ismail, Hau Sim Choo, and Michiko Inoue.
“Classification of Trojan nets based on SCOAP values
using supervised learning.” In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1-5.
IEEE, 2019.

[31] Kok, Chee Hoo, Chia Yee Ooi, Michiko Inoue, Mehrdad
Moghbel, Sreedharan Baskara Dass, Hau Sim Choo,
Nordinah Ismail, and Fawnizu Azmadi Hussin. “Net
classification based on testability and netlist structural
features for hardware trojan detection.” In 2019 IEEE
28th Asian Test Symposium (ATS), pp. 105-1055. IEEE,
2019.

[32] Hasegawa, Kento, Masao Yanagisawa, and Nozomu
Togawa. “Trojan-feature extraction at gate-level netlists
and its application to hardware-Trojan detection using
random forest classifier.” In 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1-4.
IEEE, 2017.

[33] Hasegawa, Kento, Youhua Shi, and Nozomu Togawa.
“Hardware trojan detection utilizing machine learning
approaches.” In 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And
Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/
BigDataSE), pp. 1891-1896. IEEE, 2018.

[34] Hasegawa, Kento, Masao Yanagisawa, and Nozomu
Togawa. “Trojan-net classification for gate-level
hardware design utilizing boundary net structures.” IEICE
TRANSACTIONS on Information and Systems 103, no.
7 (2020): 1618-1622.

[35] Abbassi, Imran Hafeez, Faiq Khalid, Osman Hasan,
Awais Mehmood Kamboh, and Muhammad Shafique.
“McSeVIC: A model checking based framework
for security vulnerability analysis of integrated
circuits.” IEEE Access 6 (2018): 32240-32257.

[36] Khalid, Faiq, Imran Hafeez Abbassi, Semeen
Rehman, Awais Mehmood Kamboh, Osman Hasan,

H. Jahanirad and M. Fathi, AUT J. Electr. Eng., 56(3) (2024) 419-438, DOI: 10.22060/eej.2024.22910.5572

438

and Muhammad Shafique. “ForASec: Formal Analysis
of Hardware Trojan-Based Security Vulnerabilities in
Sequential Circuits.” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 41, no.
4 (2021): 1167-1180.

[37] Salmani, Hassan, and Mark M. Tehranipoor.
“Vulnerability analysis of a circuit layout to hardware
trojan insertion.” IEEE Transactions on Information
Forensics and Security 11, no. 6 (2016): 1214-1225.

[38] Bakhshizadeh, Mahmoud, and Ali Jahanian. “Trojan
Vulnerability Map: an efficient metric for modeling
and improving the security level of hardware.” IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences 97, no. 11
(2014): 2218-2226.

[39] Ba, P. S., Dupuis, S., Palanichamy, M., Flottes, M. L.,
Di Natale, G., & Rouzeyre, B. (2016, July). Hardware
trust through layout filling: A hardware Trojan prevention
technique. In 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI) (pp. 254-259). IEEE.

[40] Najm, F. N. (1994). A survey of power estimation
techniques in VLSI circuits. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2(4), 446-455.

[41] Nasser, Y., Lorandel, J., Prévotet, J. C., & Hélard,
M. (2020). RTL to Transistor Level Power Modelling
and Estimation Techniques for FPGA and ASIC: A
Survey. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

[42] Murray, K. E., Petelin, O., Zhong, S., Wang, J. M.,
Eldafrawy, M., Legault, J. P., ... & Betz, V. (2020). Vtr 8:
High-performance cad and customizable fpga architecture
modelling. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 13(2), 1-55.

[43] Acero, C., Feltham, D., Liu, Y., Moghaddam, E.,
Mukherjee, N., Patyra, M., ... & Zawada, J. (2017).
Embedded deterministic test points. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 25(10),
2949-2961.

[44] Breiman, Leo. “Random forests.” Machine learning 45
(2001): 5-32.

[45] Friedman, Jerome H. “Greedy function approximation:
a gradient boosting machine.” Annals of statistics (2001):
1189-1232.

[46] Chen, Tianqi, and Carlos Guestrin. “Xgboost: A scalable
tree boosting system.” In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, pp. 785-794. 2016.

[47] Savari, M. A., & Jahanirad, H. (2020). NN-SSTA:
A deep neural network approach for statistical static
timing analysis. Expert Systems with Applications, 149,
113309.

[48] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon.
2010. Odin II - An open-source verilog hdl synthesis tool
for CAD research. In Proceedings of the International
Symposium on Field-Programmable Custom Computing
Machines (FCCM’10). 149–156.

[49] Berkley Logic Synthesis and Verification Group.
2018. ABC: A System for Sequential Synthesis and
Verification. Retrieved from http://www.eecs.berkeley.
edu/ alanmi/abc/.

[50] J. Lamoureux and S.J.E. Wilton, “Activity estimation
for Field Programmable Gate Arrays”, Proc. Intl Conf.
Field-Prog. Logic and Applications (FPL), 2006, pp. 87-
94.

HOW TO CITE THIS ARTICLE
H. Jahanirad, M. Fathi. Hardware Trojan vulnerability assessment in digital
integrated circuits using learnable classifiers. AUT J Electr Eng, 56(3) (2024) 419-438.
DOI: 10.22060/eej.2024.22910.5572

https://dx.doi.org/10.22060/eej.2024.22910.5572

