Parametric Investigation of Separating RBCs from Platelets using Dielectrophoresis

Document Type : Research Article

Authors

1 School of Mechanical Engineering, University of Tehran, Tehran, Iran

2 Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

This paper discusses a simulation of the continuous separation of blood cells using a non-uniform electric field. Numerous factors influencing the separation of RBCs and platelets are addressed and examined in this numerical analysis. The simulation utilizes the equations of continuity, Navier-Stokes, and Newton's second law to understand the behavior of blood cells in the non-uniform electric field and to separate them based on their dielectric properties. The DEP force is modeled using Newton's second law equation, and its influence on the separation of RBCs and platelets is examined. The simulation was conducted using the COMSOL Multiphysics software, which employs a 2D FEM algorithm to investigate the cases. Various microchannel serpentine geometries were studied, and electrodes embedded along the microchannels applied a non-uniform electric field on the particles. The simulation results revealed that the separation of blood cells can be achieved using Dielectrophoresis based on their dielectric properties. The results of the simulation show that the separation of platelets from red blood cells can be achieved efficiently using the DEP mechanism. It was found that the separation efficiency is affected by the geometry of the channel, the voltage applied, the frequency of the electric field, and the velocity of the inlet stream. By optimizing these parameters, high separation efficiency can be achieved. And it was found that better separation occurs in the triangular, rectangular (where the height is less than the width), and square geometries in a higher voltage range.

Keywords

Main Subjects


[1]          M.M.E. Sani, M. Aliverdinia, R. Javidi, S. Mirhosseini, M.M. Zand, Microstructured Droplet Based Porous Capacitive Pressure Sensor, in: Institute of Electrical and Electronics Engineers (IEEE), 2023: pp. 321–324. https://doi.org/10.1109/icbme57741.2022.10053042.
[2]         V.M. Malakshah, M. Darabi, A. Sattari, P. Hanaazadeh, P. Hanafizadeh, Numerical Investigation of Double Emulsion Formation in non-Newtonian Fluids using Double Co-Flow Geometry, (2023). https://doi.org/10.21203/rs.3.rs-2879002/v1.
[3]         M. Aliverdinia, M. Eskandarisani, E.A. Moghaddam, M.M. Zand, M.R. Dehkordi, Numerical Study of Particle Focusing and Concentration under the Effect of Acoustic Waves in a Microchannel, in: Institute of Electrical and Electronics Engineers (IEEE), 2023: pp. 76–80. https://doi.org/10.1109/icbme57741.2022.10052894.
[4]         R. Dezhkam, H.A. Amiri, D.J. Collins, M. Miansari, Continuous Submicron Particle Separation Via Vortex-Enhanced Ionic Concentration Polarization: A Numerical Investigation, Micromachines (Basel) 13 (2022). https://doi.org/10.3390/mi13122203.
[5]         M.M.E. Sani, M. Aliverdinia, M.M. Zand, Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation, in: 2022 30th International Conference on Electrical Engineering, ICEE 2022, Institute of Electrical and Electronics Engineers Inc., 2022: pp. 469–473. https://doi.org/10.1109/ICEE55646.2022.9827235.
[6]         R. Dezhkam, A. Shafiei Souderjani, A. Shamloo, M. Eskandarisani, A. Mashhadian, Numerical investigation of centrifugal passive cell separation in three types of serpentine microchannels and comparison with fixed platform, Journal of Industrial and Engineering Chemistry (2023). https://doi.org/10.1016/j.jiec.2023.04.013.
[7]         M.M. Keumarsi, P.F. Oskouei, R. Dezhkam, A. Shamloo, F. Vatandoust, H.A. Amiri, Numerical study of a double-stair-shaped dielectrophoresis channel for continuous on-chip cell separation and lysis using finite element method, J Chromatogr A 1696 (2023). https://doi.org/10.1016/j.chroma.2023.463960.
[8]         M. Aliverdinia, E.A. Moghaddam, M. Eskandarisani, M.M. Zand, Dielectrophoretic separation of RBCs from Platelets: A parametric study, in: Institute of Electrical and Electronics Engineers (IEEE), 2023: pp. 51–57. https://doi.org/10.1109/icbme57741.2022.10052831.
[9]         D.R. Gossett, W.M. Weaver, A.J. MacH, S.C. Hur, H.T.K. Tse, W. Lee, H. Amini, D. Di Carlo, Label-free cell separation and sorting in microfluidic systems, Anal Bioanal Chem 397 (2010) 3249–3267. https://doi.org/10.1007/s00216-010-3721-9.
[10]      A. Manz, D. Jed Harrison, E.M. J Verpoorte, J.C. Fettinger, A. Paulus, H. Liidi, H. Michael Widmer, Planar chips technology for miniaturization and integration of separation techniques into monitoring systems Capillary electrophoresis on a chip, 1992.
[11]      Z. Wu, B. Willing, J. Bjerketorp, J.K. Jansson, K. Hjort, Soft inertial microfluidics for high throughput separation of bacteria from human blood cells, Lab Chip 9 (2009) 1193–1199. https://doi.org/10.1039/b817611f.
[12]      C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for bioparticle manipulation, Int J Mol Sci 15 (2014) 18281–18309. https://doi.org/10.3390/ijms151018281.
[13]      L. Chen, X.L. Zheng, N. Hu, J. Yang, H.Y. Luo, F. Jiang, Y.J. Liao, Research progress on microfluidic chip of cell separation based on dielectrophoresis, Chinese Journal of Analytical Chemistry 43 (2015) 300–309. https://doi.org/10.1016/S1872-2040(15)60808-8.
[14]      D. Kirby, J. Siegrist, G. Kijanka, L. Zavattoni, O. Sheils, J. O’Leary, R. Burger, J. Ducrée, Centrifugo-magnetophoretic particle separation, Microfluid Nanofluidics 13 (2012) 899–908. https://doi.org/10.1007/s10404-012-1007-6.
[15]      K.H. Han, A. Bruno Frazier, Continuous magnetophoretic separation of blood cells in microdevice format, J Appl Phys 96 (2004) 5797–5802. https://doi.org/10.1063/1.1803628.
[16]      W. Korohoda, A. Wilk, Cell electrophoresis - A method for cell separation and research into cell surface properties, Cell Mol Biol Lett 13 (2008) 312–326. https://doi.org/10.2478/s11658-008-0004-y.
[17]      T. Laurell, F. Petersson, A. Nilsson, Chip integrated strategies for acoustic separation and manipulation of cells and particles, Chem Soc Rev 36 (2007) 492–506. https://doi.org/10.1039/b601326k.
[18]      M. Wu, A. Ozcelik, J. Rufo, Z. Wang, R. Fang, T. Jun Huang, Acoustofluidic separation of cells and particles, Microsyst Nanoeng 5 (2019). https://doi.org/10.1038/s41378-019-0064-3.
[19]      H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Silicon-based microfilters for whole blood cell separation, Biomed Microdevices 10 (2008) 251–257. https://doi.org/10.1007/s10544-007-9131-x.
[20]      X. Chen, D.F. Cui, C.C. Liu, H. Li, Microfluidic chip for blood cell separation and collection based on crossflow filtration, Sens Actuators B Chem 130 (2008) 216–221. https://doi.org/10.1016/j.snb.2007.07.126.
[21]      S. Choi, S. Song, C. Choi, J.K. Park, Continuous blood cell separation by hydrophoretic filtration, Lab Chip 7 (2007) 1532–1538. https://doi.org/10.1039/b705203k.
[22]      M.M.E. Sani, M. Aliverdinia, M.M. Zand, Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation, in: 2022 30th International Conference on Electrical Engineering, ICEE 2022, Institute of Electrical and Electronics Engineers Inc., 2022: pp. 469–473. https://doi.org/10.1109/ICEE55646.2022.9827235.
[23]      J. Zhang, M. Li, W.H. Li, G. Alici, Inertial focusing in a straight channel with asymmetrical expansion-contraction cavity arrays using two secondary flows, Journal of Micromechanics and Microengineering 23 (2013). https://doi.org/10.1088/0960-1317/23/8/085023.
[24]      H.A. Pohl, J.S. Crane, Dielectrophoresis of Cells, Biophys J 11 (1971) 711–727. https://doi.org/10.1016/S0006-3495(71)86249-5.
[25]      H.A. Pohl, The motion and precipitation of suspensoids in divergent electric fields, J Appl Phys 22 (1951) 869–871. https://doi.org/10.1063/1.1700065.
[26]      Y. Kang, D. Li, S.A. Kalams, J.E. Eid, DC-Dielectrophoretic separation of biological cells by size, Biomed Microdevices 10 (2008) 243–249. https://doi.org/10.1007/s10544-007-9130-y.
[27]      B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators, Anal Chem 76 (2004) 1571–1579. https://doi.org/10.1021/ac034804j.
[28]      H. Shafiee, M.B. Sano, E.A. Henslee, J.L. Caldwell, R. V. Davalos, Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP), Lab Chip 10 (2010) 438–445. https://doi.org/10.1039/b920590j.
[29]      N. Piacentini, G. Mernier, R. Tornay, P. Renaud, Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation, Biomicrofluidics 5 (2011). https://doi.org/10.1063/1.3640045.
[30]      E. Bisceglia, M. Cubizolles, C.I. Trainito, J. Berthier, C. Pudda, O. Français, F. Mallard, B. Le Pioufle, A generic and label free method based on dielectrophoresis for the continuous separation of microorganism from whole blood samples, Sens Actuators B Chem 212 (2015) 335–343. https://doi.org/10.1016/j.snb.2015.02.024.
[31]      H. Ali, C.W. Park, Numerical study on the complete blood cell sorting using particle tracing and dielectrophoresis in a microfluidic device, Korea Australia Rheology Journal 28 (2016) 327–339. https://doi.org/10.1007/s13367-016-0033-4.
[32]      I. Ertugrul, O. Ulkir, Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic, RSC Adv 10 (2020) 33731–33738. https://doi.org/10.1039/d0ra06271e.
[33]      P. Tajik, M.S. Saidi, N. Kashaninejad, N.T. Nguyen, Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles, Ind Eng Chem Res 59 (2020) 3772–3783. https://doi.org/10.1021/acs.iecr.9b00771.
[34]      Y. Zhang, X. Chen, Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study, Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (2020). https://doi.org/10.1007/s40430-020-2169-x.
[35]      Institute of Electrical and Electronics Engineers. Bangladesh Section, IEEE Region 10, Institute of Electrical and Electronics Engineers, 2020 IEEE Region 10 Symposium (TENSYMP) : 5-7 June 2020, Dhaka, Bangladesh, n.d.
[36]      Y. Guan, Y. Liu, H. Lei, S. Liu, F. Xu, X. Meng, M. Bai, X. Wang, G. Yang, Dielectrophoresis separation of platelets using a novel zigzag microchannel, Micromachines (Basel) 11 (2020). https://doi.org/10.3390/mi11100890.
[37]      J. V. Green, T. Kniazeva, M. Abedi, D.S. Sokhey, M.E. Taslim, S.K. Murthy, Effect of channel geometry on cell adhesion in microfluidic devices, Lab Chip 9 (2009) 677–685. https://doi.org/10.1039/b813516a.
[38]      H. Song, J.M. Rosano, Y. Wang, C.J. Garson, B. Prabhakarpandian, K. Pant, G.J. Klarmann, A. Perantoni, L.M. Alvarez, E. Lai, Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis, Lab Chip 15 (2015) 1320–1328. https://doi.org/10.1039/c4lc01253d.
[39]      U. Zimmermann, G. Pilwat, C. Holzapfel, K. Rosenheck, Electrical Hemolysis of Human and Bovine Red Blood Cells, 1976.
[40]      IEEE Dielectrics and Electrical Insulation Society, 2016 IEEE International Power Modulator and High Voltage Conference (IPMHVC)., n.d.