[1] J.J. Justo, F. Mwasilu, J. Lee, J.-W. Jung, AC-microgrids versus DC-microgrids with distributed energy resources: A review, Renewable and Sustainable Energy Reviews, 24 (2013) 387-405.
[2] W. Javed, D. Chen, Low voltage DC microgrid protection system-A review, in: 2018 53rd International Universities Power Engineering Conference (UPEC), IEEE, 2018, pp. 1-6.
[3] V. Terzija, G. Valverde, D. Cai, P. Regulski, V. Madani, J. Fitch, S. Skok, M.M. Begovic, A. Phadke, Wide-Area Monitoring, Protection, and Control of Future Electric Power Networks, Proceedings of the IEEE, 99(1) (2010) 80-93.
[4] M. Starke, L.M. Tolbert, B. Ozpineci, AC vs. DC distribution: A loss comparison, in: 2008 IEEE/PES Transmission and Distribution Conference and Exposition, IEEE, 2008, pp. 1-7.
[5] S.A. Hosseini, B. Taheri, S.H.H. Sadeghi, A. Nasiri, An Overview of DC Microgrid Protection Schemes and the Factors Involved, Electric Power Components and Systems, (2023) 1-31.
[6] D. Salomonsson, L. Soder, A. Sannino, Protection of low-voltage DC microgrids, IEEE Transactions on Power Delivery, 24(3) (2009) 1045-1053.
[7] S.-A. Amamra, H. Ahmed, R.A. El-Sehiemy, Firefly algorithm optimized robust protection scheme for DC microgrid, Electric Power Components and Systems, 45(10) (2017) 1141-1151.
[8] L. Tao, C. Schwaegerl, S. Narayanan, J.H. Zhang, From laboratory Microgrid to real markets—Challenges and opportunities, in: 8th International Conference on Power Electronics-ECCE Asia, IEEE, 2011, pp. 264-271.
[9] M. Salehi, S.A. Taher, I. Sadeghkhani, M. Shahidehpour, A Poverty Severity Index-Based Protection Strategy for Ring-Bus Low-Voltage DC Microgrids, IEEE Transactions on Smart Grid, 10(6) (2019) 6860-6869.
[10] N. Bayati, A. Hajizadeh, M. Soltani, Protection in DC microgrids: a comparative review, IET Smart Grid, 1(3) (2018) 66-75.
[11] S. Mirsaeidi, X. Dong, S. Shi, B. Wang, AC and DC microgrids: A review on protection issues and approaches, Journal of Electrical Engineering and Technology, 12(6) (2017) 2089-2098.
[12] R. Rahmani, S.H.H. Sadeghi, H. Askarian-Abyaneh, M.J. Emadi, An entropy-based scheme for protection of DC microgrids, Electric Power Systems Research, 228 (2024) 110010.
[13] M. Čuljak, H. Pandžić, J. Havelka, Mathematical Morphology-Based Fault Detection in Radial DC Microgrids Considering Fault Current from VSC, IEEE Transactions on Smart Grid, (2022).
[14] S.A. Hosseini, S.H.H. Sadeghi, A. Nasiri, Decentralized adaptive protection coordination based on agents social activities for microgrids with topological and operational uncertainties, IEEE Transactions on Industry Applications, 57(1) (2020) 702-713.
[15] W. Javed, D. Chen, I. Kucukdemiral, Fault identifiability and pseudo-data-driven fault localization in a DC microgrid, International Journal of Electrical Power & Energy Systems, 148 (2023) 108944.
[16] M. Sharanya, M.M. Devi, M. Geethanjali, Fault Detection and Location in DC Microgrid, in: 2018 National Power Engineering Conference (NPEC), 2018, pp. 1-7.
[17] J. Yang, J.E. Fletcher, J. O'Reilly, Multiterminal DC wind farm collection grid internal fault analysis and protection design, IEEE Transactions on Power Delivery, 25(4) (2010) 2308-2318.
[18] M.E. Baran, N.R. Mahajan, Overcurrent protection on voltage-source-converter-based multiterminal DC distribution systems, IEEE Transactions on Power Delivery, 22(1) (2006) 406-412.
[19] S.K. Prince, S. Affijulla, G. Panda, Fault detection in IEEE 9-bus DC microgrid system using differential current method, in: 2020 3rd International Conference on Energy, Power and Environment: Towards Clean Energy Technologies, IEEE, 2021, pp. 1-6.
[20] S.D. Fletcher, P.J. Norman, K. Fong, S.J. Galloway, G.M. Burt, High-speed differential protection for smart DC distribution systems, IEEE Transactions on Smart Grid, 5(5) (2014) 2610-2617.
[21] A. Meghwani, S.C. Srivastava, S. Chakrabarti, A Non-unit Protection Scheme for DC Microgrid Based on Local Measurements, IEEE Transactions on Power Delivery, 32(1) (2017) 172-181.
[22] P. Chauhan, C. Gupta, M. Tripathy, High speed fault detection and localization scheme for low voltage DC microgrid, International Journal of Electrical Power & Energy Systems, 146 (2023) 108712.
[23] Z. Li, H. Sui, R. Zhang, G. Wang, H. Cai, Short-circuit fault detection scheme for DC microgrids on offshore platforms, Journal of Power Electronics, 23(5) (2023) 839-849.
[24] A.A. Emhemed, K. Fong, S. Fletcher, G.M. Burt, Validation of fast and selective protection scheme for an LVDC distribution network, IEEE Transactions on Power Delivery, 32(3) (2016) 1432-1440.
[25] R. Mohanty, S. Sahoo, A.K. Pradhan, F. Blaabjerg, A Cosine Similarity-Based Centralized Protection Scheme for dc Microgrids, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(5) (2021) 5646-5656.
[26] G. Madingou, M. Zarghami, M. Vaziri, Fault detection and isolation in a DC microgrid using a central processing unit, in: 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), IEEE, 2015, pp. 1-5.
[27] Y. Bai, A. Rajapakse, Fault detection and localization in a ring bus DC microgrid using current derivatives, in: 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, 2020, pp. 1-6.
[28] A. Meghwani, S. Chakrabarti, S. Srivastava, A fast scheme for fault detection in DC microgrid based on voltage prediction, in: 2016 National Power Systems Conference (NPSC), IEEE, 2016, pp. 1-6.
[29] L. Kong, H. Nian, Fault detection and location method for mesh-type DC microgrid using pearson correlation coefficient, IEEE Transactions on Power Delivery, 36(3) (2020) 1428-1439.
[30] G.K. Rao, P. Jena, Fault detection in DC microgrid based on the resistance estimation, IEEE Systems Journal, 16(1) (2021) 1009-1020.
[31] D. Spoor, J.G. Zhu, Improved single-ended traveling-wave fault-location algorithm based on experience with conventional substation transducers, IEEE Transactions on Power Delivery, 21(3) (2006) 1714-1720.
[32] C. Li, P. Rakhra, P. Norman, P. Niewczas, G. Burt, P. Clarkson, Modulated low fault-energy protection scheme for DC smart grids, IEEE Transactions on Smart Grid, 11(1) (2019) 84-94.
[33] R.M. May, Simple mathematical models with very complicated dynamics, in: The Theory of Chaotic Attractors, Springer, 2004, pp. 85-93.
[34] M.J. Feigenbaum, The universal metric properties of nonlinear transformations, Journal of Statistical Physics, 21(6) (1979) 669-706.
[35] B. Taheri, A. Shahhoseini, Direct current (DC) microgrid control in the presence of electrical vehicle/photovoltaic (EV/PV) systems and hybrid energy storage systems: A Case study of grounding and protection issue, IET Generation, Transmission & Distribution, (2023).
[36] LT/HT Power & Control Cables.
[37] A. Sistani, S.A. Hosseini, V.S. Sadeghi, B. Taheri, Fault Detection in a Single-Bus DC Microgrid Connected to EV/PV Systems and Hybrid Energy Storage Using the DMD-IF Method, Sustainability, 15(23) (2023) 16269.
[38] L. Shen, Q. Cheng, Y. Cheng, L. Wei, Y. Wang, Hierarchical control of DC micro-grid for photovoltaic EV charging station based on flywheel and battery energy storage system, Electric power systems research, 179 (2020) 106079.
[39] A.M. Harb, I. Batarseh, L.M. Mili, M.A. Zohdy, Bifurcation and chaos theory in electrical power systems: analysis and control, in, Hindawi, 2012.
[40] S.H. Kellert, In the Wake of Chaos: Unpredictable Order in Dynamical Systems, University of Chicago Press, 1993.
[41] P. Sakarung, S. Chatratana, Nonmember, Application of PSCAD/EMTDC and Chaos Theory to Power System Ferroresonance Analysis, (2005).
[42] N.K. Pareek, V. Patidar, K. Sud, Discrete chaotic cryptography using external key, Physics Letters A, 309(1-2) (2003) 75-82.
[43] S. Salehimehr, B. Taheri, F. Razavi, M. Parpaei, M. Faghihlou, A new power swing detection method based on chaos theory, Electrical Engineering, 102(2) (2020) 663-681.
[44] D.L. Gerber, O.A. Ghatpande, M. Nazir, W.G.B. Heredia, W. Feng, R.E. Brown, Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings, Applied Energy, 308 (2022) 118308.
[45] B. Taheri, M. Sedighizadeh, Detection of power swing and prevention of mal‐operation of distance relay using compressed sensing theory, IET Generation, Transmission & Distribution, 14(23) (2020) 5558-5570.
[46] M. Mola, A. Afshar, N. Meskin, M. Karrari, Distributed Fast Fault Detection in DC Microgrids, IEEE Systems Journal, 16(1) (2022) 440-451.
[47] N.K. Sharma, S.R. Samantaray, C.N. Bhende, VMD-enabled current-based fast fault detection scheme for DC microgrid, IEEE Systems Journal, 16(1) (2021) 933-944.
[48] Y. Yang, C. Huang, D. Zhou, Y. Li, Fault detection and location in multi-terminal DC microgrid based on local measurement, Electric Power Systems Research, 194 (2021) 107047.
[49] R. Bhargav, B.R. Bhalja, C.P. Gupta, Novel fault detection and localization algorithm for low-voltage DC microgrid, IEEE Transactions on Industrial Informatics, 16(7) (2019) 4498-4511.
[50] M. Monadi, C. Gavriluta, A. Luna, J.I. Candela, P. Rodriguez, Centralized Protection Strategy for Medium Voltage DC Microgrids, IEEE Transactions on Power Delivery, 32(1) (2017) 430-440.
[51] S. Dhar, R.K. Patnaik, P. Dash, Fault detection and location of photovoltaic based DC microgrid using differential protection strategy, IEEE Transactions on Smart Grid, 9(5) (2017) 4303-4312.