[1] M. Y. İmeci, B. Tütüncü, and Ş. T. İmeci, “A 3-dB 90 degrees microstrip hybrid directional coupler at 2.27 GHz,” AEU-International J. Electron. Commun., vol. 163, p. 154606, 2023.
[2] L. Nouri, S. I. Yahya, A. Rezaei, M. A. Chaudhary, and B. N. Nhu, “A novel configuration of microstrip coupler with low loss and suppressed harmonics,” AEU-International J. Electron. Commun., vol. 165, p. 154653, 2023.
[3] B. Dai, B. Zhang, Z. Niu, Y. Feng, Y. Liu, and Y. Fan, “A novel ultrawideband branch waveguide coupler with low amplitude imbalance,” IEEE Trans. Microw. Theory Tech., vol. 70, no. 8, pp. 3838–3846, 2022.
[4] N. Sun, Y. Zhao, X. Yang, and H. Deng, “A simple SIW balanced directional coupler with high common‐mode suppression,” Microw. Opt. Technol. Lett., vol. 65, no. 2, pp. 434–440, 2023.
[5] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, “Local metamaterial-based waveguides in gaps between parallel metal plates,” IEEE Antennas Wirel. Propag. Lett., vol. 8, pp. 84–87, 2008.
[6] N. Kiani, F. T. Hamedani, and P. Rezaei, “Implementation of a Graphene-Based RGW Coupler for THz Applications,” 2023.
[7] M. M. M. Ali, S. I. Shams, M. Elsaadany, G. Gagnon, and K. Wu, “Graphene-based terahertz reconfigurable printed ridge gap waveguide structure,” Sci. Rep., vol. 12, no. 1, p. 21111, 2022.
[8] S. Farjana, E. Alfonso, P. Lundgren, V. Vassilev, P. Enoksson, and A. U. Zaman, “Multilayer Dry Film Photoresist Fabrication of a Robust> 100 GHz Gap Waveguide Slot Array Antenna,” IEEE Access, 2023.
[9] W. Y. Yong, A. Vosoogh, A. Bagheri, C. Van de Ven, A. Haddadi, and A. Alayon Glazunov, “An Overview of Recent Development of the Gap-Waveguide Technology for mmWave and sub-THz Applications,” 2023.
[10] D. Zarifi and M. Nasri, “Design of a Ku-band filter based on groove gap waveguide technology,” Prog. Electromagn. Res. Lett., vol. 76, pp. 71–76, 2018.
[11] C. Máximo-Gutiérrez, J. Hinojosa, and A. Alvarez-Melcon, “Design of evanescent mode band-pass filters based on groove gap waveguide technology,” AEU-International J. Electron. Commun., vol. 164, p. 154628, 2023.
[12] A. H. Haghparast and P. Rezaei, “High performance H-plane horn antenna using groove gap waveguide technology,” AEU-International J. Electron. Commun., vol. 163, p. 154620, 2023.
[13] U. Nandi, A. U. Zaman, A. Vosoogh, and J. Yang, “Millimeter wave contactless microstrip-gap waveguide transition suitable for integration of RF MMIC with gap waveguide array antenna,” in 2017 11th European Conference on Antennas and Propagation (EUCAP), IEEE, 2017, pp. 1682–1684.
[14] E. Nematpour, M. H. Ostovarzadeh, and S. A. Razavi, “Development of a wide band TEM-based Bethe Hole coupler using ridge gap waveguide technology,” AEU-International J. Electron. Commun., vol. 111, p. 152933, 2019.
[15] P. Mahdavi, S. E. Hosseini, and P. Shojaadini, “Broadband Three-Section Branch-Line Coupler Realized by Ridge Gap Waveguide Technology from 12 to 20 GHz,” IEEE Access, 2023.
[16] A. Polemi, S. Maci, and P.-S. Kildal, “Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails,” IEEE Trans. Antennas Propag., vol. 59, no. 3, pp. 904–913, 2010.
[17] E. Rajo-Iglesias and P.-S. Kildal, “Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides,” IET microwaves, antennas Propag., vol. 5, no. 3, pp. 282–289, 2011.
[18] R. Levy, “Directional couplers,” Adv. microwaves, vol. 1, pp. 115–209, 1966.
[19] P. A. Rizzi, Microwave engineering: passive circuits, vol. 449. Prentice Hall New Jersey, 1988.
[20] A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and P.-S. Kildal, “Design of transition from coaxial line to ridge gap waveguide,” in 2009 IEEE Antennas and Propagation Society International Symposium, IEEE, 2009, pp. 1–4.
[21] R. Huang, Y. Wu, and W. Wang, “A Low Insertion Loss Wideband mm-Wave Crossover with Three-Section Branch-Line Structure Based on Ridge Gap Waveguide Technology,” AEU-International J. Electron. Communication., p. 154720, 2023.
[22] J. Liu, A. Vosoogh, A. U. Zaman, and P.-S. Kildal, “Design of a cavity-backed slot array unit cell on inverted microstrip gap waveguide,” in 2015 International Symposium on Antennas and Propagation (ISAP), IEEE, 2015, pp. 1–4.
[23] M. Mbaye, L. Talbi, K. Hettak, and A. Kabiri, “Design of 15 dB directional coupler using substrate‐integrated waveguide technology,” Microw. Opt. Technol. Lett., vol. 54, no. 4, pp. 970–973, 2012.
[24] E. Nematpour, M. H. Ostovarzadeh, and S. A. Razavi, “Ku Band Bethe Hole Coupler Using Gap Waveguide Technology,” J. Telecommun. Inf. Technol., no. 3, pp. 70–74, 2019.
[25] A. Amine, L. Talbi, and K. Sellal, “Design of a Bethe‐hole directional coupler using substrate integrated waveguide technique,” Microw. Opt. Technol. Lett., vol. 53, no. 8, pp. 1730–1734, 2011.