Optimization and Torque Improvement of a Salient-Pole Permanent Magnet Synchronous Machine by Three-step Skewed Pole Shoe Method

Document Type : Research Article

Authors

Department of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

In this paper, a novel method to design and optimization of a 1.5 kW, 4-pole, 36-slot salient-pole permanent magnet synchronous machine (SPPMSM) based on a three-step skewed pole shoe method to reduce the output torque ripple and the cogging torque is investigated. In the first step, an initial model of the SPPMSM is designed, simulated, and verified through the Finite-Element method (FEM). The simulation results ensure the electromagnetic performance of the initial model of the machine under any operating conditions. Next, a novel method to re-design and optimize the SPPMSM based on a three-step skewed pole shoe shape is presented.. The significant results obtained from the optimized model of the SPPMSM are as: The output average torque and the air gap flux density are increased approximately by 12.65% and 3.33%, respectively compared to the initial design of the SPPMSM. The torque ripple is an important parameter in the design of the machine, and so, is decreased by about 16.03% which is equal to 10.41% in comparison with the initial model which is equal to 12.41%. The cogging torque in the initial model of the SPPMSM is equal to 0.036 N.m and with a 19.44% reduction, in the optimized model, it is 0.029 N.m. And finally, the back-EMF voltage of the SPPMSM is improved by 1.27% compared to the initial design model.

Keywords

Main Subjects


[1]      B. Fonseca, J. O. P. Pinto, W. I. Suemitsu, R. C. Garcia, and M. L. M. Kimpara, “Torque Ripple Reduction Using Hierarchical-like Fuzzy Controller of a Five-Phase Salient Pole Permanent Magnet Synchronous Motor Drive,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., vol. 2021-Octob, 2021, doi: 10.1109/IAS48185.2021.9677108.
[2]      H. Parivar and A. Darabi, “Design and Modeling of a High-Speed Permanent Magnet Synchronous Generator with a Retention Sleeve of Rotor,” Int. J. Eng., vol. 34, no. 11, pp. 2433–2441, Nov. 2021, doi: 10.5829/IJE.2021.34.11B.07.
[3]      G. Dajaku and D. Gerling, “Air-Gap Flux Density Characteristics of Salient Pole Synchronous Permanent-Magnet Machines,” IEEE Trans. Magn., vol. 48, no. 7, pp. 2196–2204, 2012, doi: 10.1109/TMAG.2012.2190144.
[4]      Z. Shi et al., “Torque Analysis and Dynamic Performance Improvement of a PMSM for EVs by Skew Angle Optimization,” IEEE Trans. Appl. Supercond., vol. 29, no. 2, Mar. 2019, doi: 10.1109/TASC.2018.2882419.
[5]      H. Parivar and A. Darabi, “A Proposed Method to Rotordynamic Analysis of a High-speed Permanent Magnet Synchronous Machine by Retention Sleeve,” SJEE, vol. 20, no. 2, pp. 269–281, Jun. 2023, doi: 10.2298/SJEE2302269P.
[6]      H. Huang, D. Li, X. Ren, and R. Qu, “Analysis and Reduction Methods of Cogging Torque in Dual PM Vernier Machines with Unevenly Distributed Split Teeth,” IEEE Trans. Ind. Appl., vol. 58, no. 4, pp. 4637–4647, 2022, doi: 10.1109/TIA.2022.3173896.
[7]      J. Qi et al., “Suppression of Torque Ripple for Consequent Pole PM Machine by Asymmetric Pole Shaping Method,” IEEE Trans. Ind. Appl., vol. 58, no. 3, pp. 3545–3557, 2022, doi: 10.1109/TIA.2022.3159629.
[8]      M. Liu, X. Zhu, Z. Xiang, L. Quan, T. Wang, and T. Zhu, “Cogging Torque Reduction of Halbach Array Permanent Magnet Motor Based on Magnetic Field Energy Equivalence,” Proc. 2021 IEEE 4th Int. Electr. Energy Conf. CIEEC 2021, May 2021, doi: 10.1109/CIEEC50170.2021.9510795.
[9]      L. Wu, G. Ming, L. Zhang, and Y. Fang, “Improved Stator/Rotor-Pole Number Combinations for Torque Ripple Reduction in Doubly Salient PM Machines,” IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 10601–10611, Nov. 2021, doi: 10.1109/TIE.2020.3032926.
[10]    H. S. Zhang, M. L. Yang, Y. Zhang, J. Y. Tuo, S. Luo, and J. Xu, “Analytical Calculation of Surface-Inset PM In-Wheel Motors and Reduction of Torque Ripple,” IEEE Trans. Magn., vol. 57, no. 1, Jan. 2021, doi: 10.1109/TMAG.2020.3034882.
[11]    M. Yousuf, F. Khan, J. Ikram, R. Badar, S. S. H. Bukhari, and J. S. Ro, “Reduction of Torque Ripples in Multi-Stack Slotless Axial Flux Machine by Using Right Angled Trapezoidal Permanent Magnet,” IEEE Access, vol. 9, pp. 22760–22773, 2021, doi: 10.1109/ACCESS.2021.3056589.
[12]    W. Chen, J. Ma, G. Wu, and Y. Fang, “Torque Ripple Reduction of a Salient-Pole Permanent Magnet Synchronous Machine with an Advanced Step-Skewed Rotor Design,” IEEE Access, vol. 8, pp. 118989–118999, 2020, doi: 10.1109/ACCESS.2020.3005762.
[13]    H. Parivar and A. Darabi, “Taguchi Method for Design and Optimization of a High-Speed Permanent Magnet Synchronous Generator Protected by Retention Sleeve,” http://www.sciencepublishinggroup.com, vol. 7, no. 2, p. 21, 2022, doi: 10.11648/J.EAS.20220702.12.
[14]    W. Fei, P. C. K. Luk, and W. Liang, “Comparison of torque characteristics in permanent magnet synchronous machine with conventional and herringbone rotor step skewing techniques,” ECCE 2016 - IEEE Energy Convers. Congr. Expo. Proc., 2016, doi: 10.1109/ECCE.2016.7854944.
[15]    W. Fei and Z. Q. Zhu, “Comparison of cogging torque reduction in permanent magnet brushless machines by conventional and herringbone skewing techniques,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 664–674, 2013, doi: 10.1109/TEC.2013.2270871.
[16]    O. Ocak and M. Aydin, “An Innovative Semi-FEA Based, Variable Magnet-Step-Skew to Minimize Cogging Torque and Torque Pulsations in Permanent Magnet Synchronous Motors,” IEEE Access, vol. 8, pp. 210775–210783, 2020, doi: 10.1109/ACCESS.2020.3038340.
[17]    X. Sun et al., “Skew angle optimization analysis of a permanent magnet synchronous motor for EVs,” Proc. 2018 IEEE Int. Conf. Appl. Supercond. Electromagn. Devices, ASEMD 2018, Dec. 2018, doi: 10.1109/ASEMD.2018.8558826.
[18]    M. Mirzaei Alavijeh and S. Shamlou, “A quantitative comparison among different types of auxiliary slot, auxiliary tooth, and the slot opening in split-pole Vernier machine,” Electr. Eng., vol. 102, no. 3, pp. 1483–1492, Sep. 2020, doi: 10.1007/S00202-020-00969-W/FIGURES/12.
[19]    H. Parivar, S. M. Seyyedbarzegar, and A. Darabi, “An Improvement on Slot Configuration Structure of a Low-Speed Surface-Mounted Permanent Magnet Synchronous Generator with a Wound Cable Winding,” Int. J. Eng., vol. 34, no. 9, pp. 2045–2052, Sep. 2021, doi: 10.5829/IJE.2021.34.09C.01.
[20]    A. Kioumarsi, M. Moallem, and B. Fahimi, “Mitigation of torque ripple in interior permanent magnet motors by optimal shape design,” IEEE Trans. Magn., vol. 42, no. 11, pp. 3706–3711, Nov. 2006, doi: 10.1109/TMAG.2006.881093.
[21]    G. H. Lee, S. Il Kim, J. P. Hong, and J. H. Bahn, “Torque Ripple reduction of interior permanent magnet synchronous motor using harmonic injected current,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1582–1585, Jun. 2008, doi: 10.1109/TMAG.2008.915776.
[22]    S. H. Han, T. M. Jahns, W. L. Soong, M. K. Güven, and M. S. Illindala, “Torque ripple reduction in interior permanent magnet synchronous machines using stators with odd number of slots per pole pair,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 118–127, Mar. 2010, doi: 10.1109/TEC.2009.2033196.
[23]    J. Kwack, S. Min, and J. P. Hong, “Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method,” IEEE Trans. Magn., vol. 46, no. 6, pp. 2108–2111, 2010, doi: 10.1109/TMAG.2010.2044871.
[24]    G. H. Kang, Y. D. Son, and G. T. Kim, “A novel cogging torque reduction method for interior type permanent magnet motor,” Conf. Rec. - IAS Annu. Meet. (IEEE Ind. Appl. Soc., pp. 119–125, 2007, doi: 10.1109/IAS.2007.4347776.
[25]    K. C. Kim, D. H. Koo, J. P. Hong, and J. Lee, “A study on the characteristics due to pole-arc to pole-pitch ratio and saliency to improve torque performance of IPMSM,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2516–2518, 2007, doi: 10.1109/TMAG.2007.893524.
[26]    C. A. Borghi, D. Casadei, A. Cristofolini, M. Fabbri, and G. Serra, “Application of a multiobj active minimization technique for reducing the torque ripple in permanent-magnet motors,” IEEE Trans. Magn., vol. 35, no. 5 PART 3, pp. 4238–4246, 1999, doi: 10.1109/20.799073.
[27]    D. Lin, S. L. Ho, and W. N. Fu, “Analytical prediction of cogging torque in surface-mounted permanent-magnet motors,” IEEE Trans. Magn., vol. 45, no. 9, pp. 3296–3302, Sep. 2009, doi: 10.1109/TMAG.2009.2022398.
[28]    R. Islam, I. Husain, A. Fardoun, and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152–160, 2009, doi: 10.1109/TIA.2008.2009653.
[29]    D. Žarko, D. Ban, and T. A. Lipo, “Analytical solution for cogging torque in surface permanent-magnet motors using conformal mapping,” IEEE Trans. Magn., vol. 44, no. 1, pp. 52–65, 2008, doi: 10.1109/TMAG.2007.908652.
[30]    N. K. Endla, “Analytically determined graph based solution for minimum cogging in spm motors with integer slots per pole,” 2019 IEEE Int. Electr. Mach. Drives Conf. IEMDC 2019, pp. 1325–1329, May 2019, doi: 10.1109/IEMDC.2019.8785237.
[31]    T. Hong, X. Bao, W. Xu, J. Fang, and Y. Xu, “Reduction of Cogging Torque by Notching Groove on Magnets in SMPMSM,” 2019 22nd Int. Conf. Electr. Mach. Syst. ICEMS 2019, Aug. 2019, doi: 10.1109/ICEMS.2019.8921986.
[32]    X. Wang, Y. Yang, and D. Fu, “Study of cogging torque in surface-mounted permanent magnet motors with energy method,” J. Magn. Magn. Mater., vol. 267, no. 1, pp. 80–85, Nov. 2003, doi: 10.1016/S0304-8853(03)00324-X.
[33]    K. Y. Hwang, J. H. Jo, and B. I. Kwon, “A study on optimal pole design of spoke-type ipmsm with concentrated winding for reducing the torque ripple by experiment design method,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4712–4715, 2009, doi: 10.1109/TMAG.2009.2022645.
[34]    W. Zhao, T. A. Lipo, and B. Il Kwon, “Torque Pulsation Minimization in Spoke-type Interior Permanent Magnet Motors with Skewing and Sinusoidal Permanent Magnet Configurations,” IEEE Trans. Magn., vol. 51, no. 11, Nov. 2015, doi: 10.1109/TMAG.2015.2442977.
[35]    E. Sulaiman, G. M. Romalan, and N. A. Halim, “Skewing and notching configurations for torque pulsation minimization in spoke-Type interior permanent magnet motors,” ICCEREC 2016 - Int. Conf. Control. Electron. Renew. Energy, Commun. 2016, Conf. Proc., pp. 202–207, Jan. 2017, doi: 10.1109/ICCEREC.2016.7814984.
[36]    B. Poudel, E. Amiri, P. Rastgoufard, and B. Mirafzal, “Toward Less Rare-Earth Permanent Magnet in Electric Machines: A Review,” IEEE Trans. Magn., vol. 57, no. 9, Sep. 2021, doi: 10.1109/TMAG.2021.3095615.