[1] S.T. Modules, Cancer Registration & Surveillance Modules., in, U.S.Nationa Institutes of Health, National Cancer Institute.
[2] D.L. Miller, Electric fields induced in chicken eggs by 60‐Hz magnetic fields and the dosimetric importance of biological membranes, Bioelectromagnetics, 12(6) (1991) 349-360.
[3] B. Srinivasan, A. Kolli, M. Esch, H. Abaci, M. Shuler, J. Hickman, TEER measurement techniques for in vitro barrier model systems. J Lab Autom, (2015).
[4] H. Sackin, L.G. Palmer, Electrophysiological analysis of transepithelial transport, Elsevier Boston, 2013.
[5] P. Dimbylow, Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz, Physics in Medicine & Biology, 51(10) (2006) 2383.
[6] C. Shi, X.G. Xu, Development of a 30‐week‐pregnant female tomographic model from computed tomography (CT) images for Monte Carlo organ dose calculations, Medical physics, 31(9) (2004) 2491-2497.
[7] R. Cech, N. Leitgeb, M. Pediaditis, Fetal exposure to low frequency electric and magnetic fields, Physics in Medicine & Biology, 52(4) (2007) 879.
[8] M. Ghazanfarpour, Z.A. Kashani, R. Pakzad, F. Abdi, F.A. Rahnemaei, P.A. Akbari, N. Roozbeh, Effect of electromagnetic field on abortion: A systematic review and meta-analysis, Open Medicine, 16(1) (2021) 1628-1641.
[9] R.H. Funk, Endogenous electric fields as guiding cue for cell migration, Frontiers in physiology, 6 (2015) 143.
[10] D.H. Elbrecht, C.J. Long, J.J. Hickman, Transepithelial/endothelial Electrical Resistance (TEER) theory and applications for microfluidic body-on-a-chip devices, Journal of Rare Diseases Research & Treatment, 1(3) (2016).
[11] D.O.N.W. Barrier, function of epithelia, Am. Physiol. Soc., (1981) 275–288.
[12] J.W. Massey, A.E. Yilmaz, AustinMan and AustinWoman: High-fidelity, anatomical voxel models developed from the VHP color images, in: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2016, pp. 3346-3349.
[13] S. Gabriel, R. Lau, C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in medicine & biology, 41(11) (1996) 2271.
[14] M. Saviz, L. Mogouon Toko, O. Spathmann, J. Streckert, V. Hansen, M. Clemens, R. Faraji-Dana, A new open-source toolbox for estimating the electrical properties of biological tissues in the terahertz frequency band, Journal of Infrared, Millimeter, and Terahertz Waves, 34(9) (2013) 529-538.
[15] D.C. Walker, Modelling the electrical properties of cervical epithelium, University of Sheffield., (October 2001).
[16] S. Marzban, M. Saviz, F. Towhidkhah, Significance of biological membranes for accurate computational dosimetry of low frequency electric fields, Journal of Electrical Bioimpedance, 9(1) (2018) 48-51.