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ABSTRACT: Artificial intelligence (AI) shows good potential for detecting and discriminating faults 
in electrical machines, however, they require initial training with sufficient data, which is almost 
impossible to collect for working electrical machines in the field. This paper proposes an effective 
approach to solve this problem by getting the required training data from exact simulation results. To 
evaluate this idea, the finite elements method is used to simulate a three-phase induction motor (IM) in 
the healthy state as well as the stator inter-turn fault, broken rotor bar fault, and mixed eccentricity fault 
conditions. Then, for every fault condition, some fault indices are extracted from the stator line current 
and used to arrange and train a suitable support vector machine (SVM) model to detect and discriminate 
the fault condition. A similar IM is prepared in the laboratory, where, its stator line currents are sampled 
and recorded under the healthy and the fault conditions, and the same fault indices are extracted from 
the stator currents. Some penalties, which are determined by comparing experimental test results and 
corresponding simulation results in the healthy state, are applied to the experimentally attained values of 
the indices. The modified indices are then applied to the trained SVM models, where, the attained results 
confirm the trained SVM models are equally able to detect and discriminate the faults in the real IMs. 
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1- Introduction
Condition monitoring to detect incipient faults is 

an undeniable necessity for electrical machines. Many 
researchers have examined the use of artificial intelligence 
methods (AIMs) for this purpose. This is due to the potential 
capability of the AIMs to separate the fault effect in the used 
fault indices from the effects of the other factors such as the 
load level change, supply voltage imbalance, distortion, etc. 
However, the AIMs are often case-sensitive, which means an 
AIM trained for detecting a fault in an induction motor may 
not perform exactly for detecting the same fault in another 
induction motor of the same type and rating. This is due to 
minor differences in the constructions of the motors, which 
may present during production and/or assembly processes. In 
addition, three-phase voltages applied to the stator terminals 
may include different power quality measures, which affect 
the used fault indices.   

 To detect the stator inter-turn short circuit (ISC) fault in 
induction motors (IMs), some harmonics of the stator current, 
symmetrical components of the stator current and voltage as 
well as some graphical indices like the current Concordia 
pattern (CCP) and the pendulum swing phenomenon (PSP) 
have been proposed [1-6]. The IM fault classification based 
on the mentioned indices along with the support vector 
machine (SVM) model has been widely accepted. Detecting 

different IM faults by using SVM and kNN methods 
examined in [7]. The SVM model was trained to detect the 
stator ISC fault by using experimentally attained voltage 
imbalance in [8], CCP index in [9], motor current signature 
analysis (MCSA), and wavelet transform analysis results 
in [10]. In [11], three different SVM classification models 
were used to detect the ISC and insulation breakdown faults 
by considering the voltage imbalance, which demonstrated 
good accuracy. The ISC fault detection using artificial neural 
network (ANN) with monitoring experimental data has been 
studied in [12]. The SVM models were utilized to detect the 
ISC faults in permanent magnet synchronous motors by using 
experimental data in [13], in inverter-connected IMs by using 
simulation results in [14], and also by using experimental 
data in [15, 16]. 

Broken rotor bar (BRB) fault and mixed eccentricity (ME) 
fault indices have been already presented in the machine’s 
instantaneous power [17], stator current [18], rotor force 
and torque [19, 20], magnetic flux density [21, 22], leakage 
flux [23] and external magnetic field [24]. Mechanical fault 
detection in the IMs has been proposed in [25] by using a 
second-order observer and in [26] through using a multi-
sensor fusion scheme. Reference [27] utilized the SVM 
classification method to identify the rotor bar failure by 
extracting the harmonic curve level, harmonic crest angle, 
and harmonic amplitude from the power spectrum density 
(PSD) of the steady-state stator current. By evaluating several 
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harmonic indices on the stator phase current in [28-30] and 
on the power density spectrum in [27], high percentage 
of success achieved based on the experimental data. In 
addition, detection of BRB fault investigated by using 
experimental current wavelet transform in a SVM model 
and pattern recognition under different loads [31]. In [32], 
BRB fault detection with a combined SVM method based 
on harmonic index and wavelet transform analysis achieved 
99% accuracy. A BRB fault detection method based on the 
SVM with simulation and experimental data presented in 
[33]. In [34], wavelet transform results and time-amplitude 
features are utilized in an SVM classification method to 
investigate eccentricity faults produced due to the inner and 
outer raceway bearing faults. The eccentricity and bearing 
faults detection using experimental data and SVM have been 
examined in [35-39]. Detection of eccentricity resulting from 
the bearing faults was investigated based on the use of current 
harmonic amplitudes with experimental data [40] and using a 
combined SVM-Fuzzy method and three SVM classification 
methods in [41]. Due to the high advantage of the SVM, this 
method is also used to investigate detecting IM combined 
faults. Detection of combined BRB and eccentricity faults 
has been studied using the multi-label classification method 
and the machine starting current in [42], using the pattern 
recognition based on the minimum Bayes error and the stator 
current in [43], and using ANN and stator current harmonics 
in [44, 45]. Reference [46] used a decision fusion system 
(DFS) to classify and reduce the time in investigating the IM 
states, which includes the healthy motor as well as the motors 
with the stator short-circuit faults, the rotor unbalancing, the 
rotor bending, the broken rotor bar, eccentricity, and bearing 
faults. Then, 6 classification methods including SVM, LDA, 
kNN, IIS, GMM, and LVQ were used to classify the faults. 
Reference [47] used the SVM method based on Radial Basic 
Function (RBF) to detect stator and rotor faults, including 
asymmetry states, shaft bending, loose of mechanical parts, 
short circuit, phase imbalance, and broken rotor bars in 
induction motors. In reference [48], SVM used through Park’s 
vector method to classify the healthy condition from broken 
rotor bar fault and stator short circuit fault. A comparison 
between single-class and double-class SVMs performed 
based on the frequency indices to detect the healthy state 
form BRB defect, winding ISC and eccentricity defects by 
considering unbalance supply voltages in [49]. Detection of 
BRB, static eccentricity (SE), and ME faults separately using 
frequency indices of the stator current by SVM models and 
automatic expert system investigated using experimental data 
in [50]. In addition, using the SVM method to detect ISC, 
BRB, and eccentricity faults investigated on electric drives of 
the wind farms in [51].

 All the above-mentioned AIMs require initial training with 
a complete and valid dataset before they can make accurate 
decisions about the fault occurrence. In most of the above 
references, the training is based on some experimental data. 
However, it is not possible to prepare such a dataset for large 
machines working on production lines. Another noteworthy 
point in the above references is that in all cases, the training 

and verification platforms are the same. This means that 
the proposed AIM goes through the learning process in an 
experimental or simulation environment, and then, goes 
through evaluation and testing in the same environment. 
Therefore, there is no guarantee that it will work in other 
conditions or for other machines. 

This paper proposes an effective approach to using 
AIMs for diagnosing faults in working electrical machines. 
According to this approach, the data obtained from simulation 
are used for training and evaluation of the AIMs. The main 
requirement for this approach is accurate modeling and 
simulation of the behavior of healthy and faulty machines in 
various working conditions. In this paper, the most accurate 
modeling method available, which is the finite elements 
method (FEM), is used to simulate the IM behavior under 
the healthy state, the stator inter-turn short circuit fault, the 
broken rotor bars fault, and the eccentricity fault conditions. 
Then, some well-known indexes of the faults are extracted 
from the stator line currents and used to train and evaluate a 
suitable SVM model to detect and separate every fault type. 
Afterward, the same IM is tested in the laboratory under 
healthy and faulty conditions, and the corresponding fault 
indexes are extracted from the stator current. The studies 
indicate that by applying some pre-specified corrections to 
the indices values extracted from the experimental results, it 
will be possible to detect and discriminate the real IM faults 
by using the same SVM models. The required correction 
to the experimental indices is determined by comparing 
the healthy state values of the indices in the corresponding 
experimental and simulation results. As another contribution, 
the proposed approach brings some generality to the AIM-
based fault diagnosis tasks. This is because the IMs of the 
same type and rating have the same FEM models; therefore, 
the AIM prepared this way is the same for all the IMs of the 
same type and rating. However, every individual IM may 
need a different correction rate for modifying the measured 
fault indices before applying to the SVM. 

2- The SVM Classification Model
As the introduction implies, the SVM classification model 

has been widely used to detect electrical machine faults.  This 
model is classified as a pattern recognition algorithm that 
requires supervised learning. The main benefit of the SVM 
model is that, unlike the ANNs, it does not get trapped in 
local extremums. This model can provide an acceptable 
solution for problems with large data and may contain a 
compromise between the complexity of the classifier and the 
fault occurrence rate [52]. To be used in the SVM model, the 
required data set D should contain n members as follows [52]:
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where x is a p-dimensional real vector containing different 
variables of a data point and y is the output variable of the 
SVM model, which classifies the input data point. In the 
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SVM model, the aim is to find the maximum distance of the 
marginal points or the separating hyperplane that separates 
the points with yi=1 from the points with yi=-1. Each separator 
hyperplane is a set of x points that satisfy the following 
condition:
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where w is a normal vector to the separating plane. The vectors 
w and b are chosen to bring the maximum distance between 
two hyperplanes on both sides of the separator hyperplane, 
which are described by:
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If the data points are linearly separable, it will be possible 
to include the side hyperplanes on the edge of the points 
without any common points and then increase their distance 
to a maximum value. For a double-class dataset in 2-D 
space (X1, X2), Fig.1 shows the data points, the separating 
plane (designated by w.xi-b=0), the side plains (designated 
by w.xi-b=1 and w.xi-b=-1), the vector normal w and the 
geometrical distance between the two side planes (2/||w||) 
that is also called the margin. The data point vectors located 
on the side planes are called support vectors. The margin 
is maximized by minimizing ||w||. To prevent data points 
from entering  the margin, the following conditions must be 
satisfied:
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that are also expressed as follows:
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Considering the constraint (5), an optimization problem 
obtains as follows to determine w and b vectors:
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Alternatively, ||w|| can be replaced by ||w||2/2 to attain a 
nonlinear optimization problem:
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Using non-negative Lagrange coefficients (αi), the above 
equation can be written as follows:

 

Fig. 1. Illustrating some SVM parameters and concepts [53] 
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To find saddle points, the problem is solved using standard 
nonlinear programming, where the answer can be expressed 
as a linear combination of learning data vectors:
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Only a few αi will be greater than zero. The corresponding 
xi will be exactly the support vector that will satisfy the 
condition. Therefore, the support vectors must fulfill the 
following conditions:

   1
( , ) , 1,1

n

i i i i i
D x y x R y


     (1) 

 

. 0w x b   (2) 

 

. 1

. 1
w x b
w x b

 
  

 (3) 

 

. 1  , if   y 1

. 1, if   y 1
i i

i i

w x b
w x b

  
    

 (4) 

 

( . ) 1,  1i iy w x b i n      (5) 

 

( , )
min

. . ( . ) 1 ;  1
w b

i i

w

s t y w x b i n    
 (6) 

 

2

( , )

1min  
2

. . ( . ) 1 ; 1
w b

i i

w

s t y w x b i n    

 (7) 

 

2

( , ) ( ) 1

1min  max  ( ( . ) 1)
2

n

i i iw b i
w y w x b






    
 

  (8) 

 

1

n

i i i
i

w y x


  (9) 

 

( . ) 1i iy w x b   (10) 

 

1

1 ( . )
svN

i i
isv

b w x y
N 

   (11) 

 

 (10)

Then. the vector b is defined as follows: 
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where Nsv is the average of all the support vectors, which 
makes the algorithm more robust. More details about the 
SVM method are available in [52].

3- Dataset Preparation:
Two extensive datasets are prepared: one dataset from 

simulation results and the other dataset from experimental test 
results. Each dataset contains required data of the healthy and 
defective IMs with ISC, BRB, and ME faults by considering 
balanced and unbalanced three-phase supply voltages. The 
first dataset is prepared through simulation using FEM. A part 
of this dataset is used for SVM training and the other part is 
used for its testing and evaluation. After obtaining the desired 
result from the training and evaluation by the first dataset, 
another evaluation is performed using the second dataset. By 
obtaining the desired result from the second evaluation, the 
ability to detect faults in the real IMs using the trained SVMs 
is confirmed.

3- 1- Preparation  of Simulation Dataset
Ansys Maxwell-2D software is used to prepare the 

simulation dataset. The behavior of the healthy and faulty IMs 
under the ISC, BRB, and ME faults with different severities 
is simulated by considering balanced and unbalanced supply 
voltages. Then, some well-known indices of the mentioned 
faults are evaluated and analyzed to verify the simulation 
results. The simulations are performed for a 1.1 kW, 380 

Table 1. Technical data of the IMTable 1. Technical data of the IM 
Parameter Value 

Rated Power 1.1 [kW] 
Rated Voltage 380 [V] 
Rated Frequency  50 [Hz] 
Pole Pairs  2 
Connection Y 
Stator Slots Number 36 
Rotor Slots Number     28 
Healthy Air Gap Length 0.3 [mm] 
Air Gap Mean Radius 40 [mm] 
Stack Length 60 [mm] 
Stator Winding Turn Per Coil 63 [Turn] 
Stator Resistance Per Phase 7.8 [Ω/Phase] 
Rotor Bar Resistance 9.72 [µΩ] 
End Ring Resistance 8 [µΩ] 
Leakage inductance of Stator 18.8 [mH/Phase] 
Leakage inductance of Rotor Bar 0.571 [µH] 
Leakage inductance of End Ring 0.051 [µH] 
Inertia Moment 0.002385 [Kg.m2] 
Winding Scheme of Phase “A”  

A-1-12’-2-11’-3-10’-19-30’-20-29’-21-28’-X 
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V, 50 Hz, 4-pole IM with a star connection. Table 1 shows 
the technical data of the IM. The RMxprt feature of Ansys 
Electronic Desktop 2020 is used to design a healthy IM 
according to the specifications given in Table 1 and also 
according to the structural and dimensional features of the 
proposed IM. To model the stator ISC fault, the number of 
shorted turns is reduced from the number of coil turns in the 
corresponding slots of the stator. To apply the ME fault, the 
Maxwell Eccentricity feature embedded in the Maxwell ACT 
Extensions Wizards is used with desired degrees. The BRB 
fault is applied by simply removing the broken rotor bar from 
the 2-D FEM model as shown in Fig. 2.

3- 2- Preparation of Experimental Dataset
To prepare the experimental dataset, a real IM with 

the same specifications as presented in Table 1 is used, on 
which, it is possible to apply the ISC, BRB, and ME faults 
temporarily. Fig. 3 shows the aforementioned experimental 

set-up, where the mentioned induction motor is coupled 
to a synchronous generator to apply the load to the motor.  
To prevent the IM from being affected by the possible 
eccentricity of the synchronous generator, a special disc 
coupling with a clamp connection type DMPA-C is used [54]. 
Fig. 4 shows a photograph of this coupling device. The stator 
terminals of the synchronous generator are connected to a 
variable resistive load bank. By changing the resistance of 
the load bank, the load of the induction motor is adjusted. To 
sample and record the stator line voltages and currents, DAQ 
card type PCI-1716, along with current sensors type LTS6-
NP and voltage sensors type LV25-P are used along with the 
LabView-V2012 software. 

To apply the BRB fault, a rotor containing the required 
number of broken bars replaces the healthy rotor. A rotor 
bar breaks by drilling on it. Fig. 5 shows photographs of the 
rotors, where the healthy rotor is located at the top, the rotor 
with 1 broken bar is at the middle and has two holes on a rotor 

 

 

Fig. 2. Induction motor simulated in Ansys Maxwell software with a broken rotor bar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Induction motor simulated in Ansys Maxwell software with a broken rotor bar

          

Fig. 3. Photographs of the laboratory setup 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Photographs of the laboratory setup
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bar and the rotor with 2 broken bars is at the bottom and has 
four holes on two bars (two holes on every bar). 

To create ME fault, the original bearings of code 6205 
are temporarily substituted with bearings of code 6906. 
Compared to the original bearing, the new bearing has a larger 
inner diameter and a smaller outer diameter. The inner and 
outer diameters mismatch of the new bearing is compensated 
by making and installing suitable rings inside and outside it. 
Now, if the used rings have eccentricity, which means that the 
inner and outer circles of the ring do have not the same center, 
it will cause mixed eccentricity in the motor. The positions 
of the thinnest and thickest points of the rings are tagged on 
them at manufacturing time. This allows aligning the bearings 
on both ends of the rotor when installation to prevent creating 
inclined eccentricity. Fig. 6 shows photographs of the original 
bearing code 6205, substituted bearing code 6906, and 
fabricated outer and inner rings.

To create the stator winding ISC fault, a number of taps 
are extracted from various turns of a stator coil. By shorting 
every two extracted taps, temporary ISC fault is produced 
with different severities from 2 turns up to 32 turns. 

4- Preparing SVM Models to Detect Faults
In this section, three separate SVM models are prepared 

using the simulation dataset to diagnose and discriminate 
stator ISC fault, BRB fault, and mixed eccentricity fault, 
respectively. Then, the models are evaluated with the rest 
of the simulation dataset. In the following, the evaluation is 
performed with the experimental dataset. Finally, each SVM 
model is evaluated with experimental data related to the other 
two faults. In all cases for the SVM model, the box constraint 
for the Soft Margin is equal to 10 and the kernel function 
is considered to be a Radial Basic Function with a sigma 
(scaling factor) value of 0.7.

 

Fig. 4 Photograph of the proposed coupling devise 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Photograph of the proposed coupling devise

 

Fig. 5. Top to bottom: photograph of the healthy rotor, photograph of the rotor with one broken bar, and 

photograph of the rotor with two broken bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Top to bottom: photograph of the healthy rotor, photograph of the rotor with one broken 
bar, and photograph of the rotor with two broken bars.
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4- 1- Stator ISC Fault Detection using SVM
Various indices and methods have been examined in the 

literature to detect the stator ISC fault in three-phase IMs. 
In this article, the current Concordia pattern is employed 
for this purpose [3, 4, 12]. In a healthy state with balanced 
three-phase supply voltages, the mentioned pattern is a circle, 
but the occurrence of the ISC fault or the supply voltage 
imbalance causes its shape to change to an ellipse. Fig. 7 
shows the current Concordia pattern for the intended IM in 
healthy conditions with balanced/unbalanced supply voltages 
and in ISC fault conditions with balanced supply voltages, 
which are calculated and drawn using the fundamental 
harmonic of the stator currents resulting from the simulation. 
As can be seen, the current Concordia pattern is a visual 
index to detect the ISC fault; however, a quantitative index 
is needed to be utilized in the SVM model. In this study, the 
major diameter (MaD) to minor diameter (MiD) ratio of 
the ellipse is considered a quantitative measure. In order to 

make it possible to separate the effects of the supply voltage 
imbalance and the stator ISC fault, there is a need for another 
criterion. In this study, the amplitude of the negative sequence 
voltage (NSV) component of the stator is selected for this 
purpose. Therefore, the proposed SVM model will have two 
inputs: the MaD/MiD ratio of the Concordia pattern ellipse 
and the amplitude of the NSV component in the stator supply 
voltage.

Using the simulation dataset, 30 samples of the current 
Concordia pattern are extracted and utilized for the SVM 
training. Table 2 introduces the samples. A rather weak ISC 
fault condition, which includes 2 shorted turns, is applied for 
training because this makes detection of the severer faults 
more reliable. Fig. 8-a shows the SVM model training result. 
Then, 70 other samples are used for the initial evaluation 
of the trained SVM model. The conditions of the samples 
exploited for evaluation are presented in Table 3. Fig. 8-b 

                

Fig. 6. Left to right: photograph of the fabricated inner ring, photograph of the fabricated outer ring, photograph 

of the new bearing code 6906 and photograph of the original bearing code 6205 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Left to right: photograph of the fabricated inner ring, photograph of the fabricated outer ring, 
photograph of the new bearing code 6906 and photograph of the original bearing code 6205

 
Fig. 7. The current Concordia pattern for healthy IM with balanced supply voltages (─), healthy IM with 

unbalanced supply voltages (***), and defective IM with 20-turns shorted in a stator phase winding (---) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The current Concordia pattern for healthy IM with balanced supply voltages (─), healthy IM with 
unbalanced supply voltages (***), and defective IM with 20-turns shorted in a stator phase winding (---)
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Table 2. The samples employed to train the SVM model in different conditions

 

 

 

Table 2. The samples employed to train the SVM model in different conditions 

SCIM Condition 
Negative Sequence Component of the Supply Voltage (V) Number of 

samples 0 2 4 8 12 
Healthy √     7 
Healthy  √    2 
Healthy   √   2 
Healthy    √  2 
Healthy     √ 2 

2-turns shorted √     7 
2-turns shorted  √    2 
2-turns shorted   √   2 
2-turns shorted    √  2 
2-turns shorted     √ 2 

Total Training Samples 30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 8. The training of the SVM model for ISC fault detection based on simulation data: a) training result, b) initial 

evaluation result  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The training of the SVM model for ISC fault detection based on simulation data: a) training re-
sult, b) initial evaluation result )
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shows the evaluation result, where the accuracy of fault 
diagnosis reaches 100%. 

The trained SVM model is then evaluated using 
experimental results. To obtain accurate results before this 
evaluation, it is necessary to inspect the correspondence 
of the behavior of the healthy motor in the simulation and 
experimental results. For this purpose, 10 samples of the 
current Concordia pattern acquired from the experimental 
results in the healthy state are applied to the trained SVM 
model. Fig. 9-a shows the result. As can be seen, the gravity 
center of the samples for the healthy experimental results is 
placed away from the SVM separator compared to the gravity 
center of the healthy samples from the simulation results 
(Fig.8-a). This is due to some simplifying assumptions in the 
simulation, such as using two-dimensional FEM, ignoring the 
rotor bars skewing effect, and inherent asymmetry of the real 

IM. Sampling errors in the experimental test results should 
also be added to the above reasons. The investigation shows 
to create a relative correspondence for the desired application 
of the trained SVM model; it is required to correct the ratio of 
the diameters of the Concordia pattern ellipse obtained from 
the experimental results with a fixed correction factor. After 
applying this correction factor, 20 experimental samples 
consisting of 10 samples from the healthy IM and 10 samples 
from the defective IM with different fault severities are studied. 
Table 4 shows the conditions of the experimental samples 
used in this evaluation. As can be seen, the mains electricity 
system, which supplies the IM in the laboratory, includes 
different negative sequence voltage components between 2 
to 4 volts. Fig. 9-b shows the result of the evaluation of the 
trained SVM model for healthy and faulty experimental data, 
which indicates that the diagnostic accuracy is equal to 100%.

Table 3. Samples used for initial evaluation of the trained SVM model with simulation resultsTable 3. Samples used for initial evaluation of the trained SVM model with simulation results 

 
SCIM Condition 

Negative Sequence Component of the Supply Voltage (V) Number of 
samples 0 2 4 8 12 

Healthy √     6 
Healthy  √    2 
Healthy   √   2 
Healthy    √  2 
Healthy     √ 2 

2-turns shorted √     3 
2-turns shorted  √    1 
2-turns shorted   √   1 
2-turns shorted    √  1 
2-turns shorted     √ 1 
4-turns shorted √     3 
4-turns shorted  √    1 
4-turns shorted   √   1 
4-turns shorted    √  1 
4-turns shorted     √ 1 
6-turns shorted √     3 
6-turns shorted  √    3 
6-turns shorted   √   3 
6-turns shorted    √  3 
6-turns shorted     √ 3 
8-turns shorted √     3 
8-turns shorted  √    3 
8-turns shorted   √   3 
8-turns shorted    √  3 
8-turns shorted     √ 3 

20-turns shorted √     3 
20-turns shorted  √    3 
20-turns shorted   √   3 
20-turns shorted    √  3 

Total Evaluation Samples 70 
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Table 4. Experimental samples used to evaluate the SVM modelTable 4. Experimental samples used to evaluate the SVM model 

SCIM Condition Negative 
Voltage (V) 

Number of 
samples SCIM Condition Negative 

Voltage (V) 
Number of 

samples 

Healthy 2.77 1 2-turns shorted 2.40 1 
Healthy 2.91 1 4-turns shorted 2.60 1 
Healthy 3.11 1 6-turns shorted 2.64 1 
Healthy 3.15 1 8-turns shorted 2.66 1 
Healthy 3.18 1 10-turns shorted 2.80 1 
Healthy 3.20 1 12-turns shorted 2.86 1 
Healthy 3.32 1 14-turns shorted 3.11 1 
Healthy 3.40 1 16-turns shorted 3.20 1 
Healthy 3.73 1 18-turns shorted 3.30 1 
Healthy 4.00 1 20-turns shorted 3.54 1 
Total Evaluation Samples 10 Total Evaluation Samples 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

     
Fig. 9. Final evaluation of the SVM trained for ISC fault detection by using experimental data: a) healthy samples 

before correction, b) healthy and defective samples after correction 
 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Final evaluation of the SVM trained for ISC fault detection by using experimental data: a) healthy 
samples before correction, b) healthy and defective samples after correction



S. H. Rafiei et al., AUT J. Electr. Eng., 56(1) (Special Issue) (2024) 57-78, DOI: 10.22060/eej.2023.22349.5534

67

4- 2- BRB Fault Detection using SVM
The BRB fault adds some harmonics to the stator current 

spectrum whose exact frequencies are computed by [5, 6]:

1 2bb sf ks f   (12) 

 

me s rf f kf   (13)  

 

 (12)

where s is the slip, k=1, 2, … and fs is the fundamental 
frequency. These harmonics can be used to discriminate 
between the healthy state and the BRB fault condition. For 
instance, Fig. 10 shows the stator current normalized spectra 
in the healthy and 1-BRB fault conditions. Although some of 
the BRB-related harmonics exist in a healthy state, the BRB 
fault causes a significant increase in their amplitudes. For 
k=1, two frequencies 1 2bb sf s f− = − and 1 2bb sf s f+ = +  

obtain from (12), which are the lower and higher sideband 
frequencies of the BRB fault. In this article, the normalized 

amplitudes (in dB) of these two frequency components are 
appointed as the input of the SVM model. A dataset consisting 
of 54 simulation samples is arranged to train and evaluate the 
SVM model for BRB fault detection. This dataset includes 
24 samples of the healthy IM and 30 samples of the defective 
IM with one or two BRBs. Among the dataset, 24 samples 
are employed to train the SVM model, which includes 12 
samples of the healthy state and 12 samples of the defective 
state. The result of the SVM training is shown in Fig. 11-a. 
The rest of the samples are utilized for the initial evaluation 
of the SVM model, which includes 12 and 18 samples for 
the healthy and the defective states, respectively. Fig. 11-b 
shows the result of the evaluation, where it is evident that 
the accuracy rate of the evaluation is as high as 100%. In 
the following, the trained SVM model is evaluated using 
experimental results. Before this evaluation, it is necessary 
to examine the required matching between the proposed 
frequency components of the healthy IM in the corresponding 

           

           
Fig. 10. Normalized frequency spectra of the stator current attained through simulation (left column) and 

experimental tests (right column) under Healthy (first row) and 1-BRB (second row) fault condition that indicates 

the BRB-related sidebands with sign (♦) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Normalized frequency spectra of the stator current attained through simulation (left column) 
and experimental tests (right column) under Healthy (first row) and 1-BRB (second row) fault condition 

that indicates the BRB-related sidebands with sign (♦)
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simulation and experimental results. For this purpose, 10 
experimental samples of the healthy state are applied to the 
trained SVM model, as shown in Fig. 12-a. It is clear that 
the gravity center of the healthy experimental samples has 
a slight displacement compared to the gravity center of the 
healthy simulation samples, such that, the experimental 
samples are slightly away from the SVM separator curve. 
This difference is due to some simplifications and ignoring 
some effects in modeling and simulation, as mentioned in the 
previous subsection. Investigation shows that to make good 
compliance, a fixed correction factor should be applied to 
the normalized amplitudes of the frequency indices collected 
from the experimental results. By applying this modification, 
30 experimental samples including 10 healthy state samples 
and 20 defective state samples with one and two BRBs 
are studied. Fig. 12-b shows the result of the evaluation of 
the trained SVM model for the healthy and the defective 

experimental data, which indicates an accuracy rate of 100%.

4- 3- ME Fault Detection by SVM 
The ME fault adds harmonics to the stator current whose 

frequencies are calculated by [1]:1 2bb sf ks f   (12) 

 

me s rf f kf   (13)  

 

 (13)

where k=1, 2, …,  fs is the fundamental frequency, and fr is the 
rotor speed frequency. Substituting k=1 gives two sidebands 
around the fundamental harmonic with equal distances, 
which are named the higher sideband (HSB) and the lower 
sideband (LSB). These two harmonics are the main indices 
for detecting the ME fault in the IMs. Fig. 13 shows the stator 
current normalized spectra obtained through simulation and 

 
 

 
Fig. 11. The training of the SVM model for BRB fault detection based on simulation data: a) training result, b) 

initial evaluation result 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The training of the SVM model for BRB fault detection based on simulation data: a) training 
result, b) initial evaluation result
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experiments under a healthy state and a ME fault condition 
with 30% static and 20% dynamic components. The presence 
or amplification of the two mentioned sidebands due to the 
ME fault are evident in both the simulation and experimental 
results.

The normalized amplitudes of the two sidebands are 
selected as the input to the SVM model. A dataset consisting 
of 87 simulation samples is selected to train and evaluate the 
SVM model for the ME fault diagnosis. This dataset consists 
of 27 healthy samples and 60 ME samples with static and 
dynamic components from 5% to 20%. A set of 24 samples 
are applied to train this SVM model, which includes 12 
samples of the healthy motor and 12 samples of the defective 
motor. Fig. 14-a shows the training result. The remaining 63 
samples are utilized for the initial evaluation of this SVM 
model. Fig. 14-b shows the evaluation result. As can be seen, 
the accuracy of the initial evaluation of this model is 100%. 

Subsequently, the trained SVM model is evaluated by 
employing experimental results. Before this evaluation, 
like the previous two subsections, it is necessary to match 
the gravity center of the healthy experimental results to 
that of the simulation results. It is performed by modifying 
the normalized amplitudes of the two sidebands in the 
experimental results. For this purpose, 20 experimental 
samples of the healthy motor are employed. The attained 
modification is applied identically in all healthy and defective 
samples. By applying this modification, 50 experimental 
samples were studied, which consisted of 20 healthy samples 
and 30 defective samples with different eccentricity degrees 
including 30% static & 20% dynamic, 15% static & 25% 
dynamic, 40% dynamic, 20% dynamic, and 40% static. Fig. 
15 shows the result of the evaluation of the trained SVM 
model for experimental data, which indicates an accuracy 
rate of 98.6%. It should be noted that we often encounter ME 

 
 

 
Fig. 12. Final evaluation of the SVM trained for BRB fault detection using experimental data: a) healthy samples 

before correction, b) healthy and defective samples after correction 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Final evaluation of the SVM trained for BRB fault detection using experimental data: a) healthy 
samples before correction, b) healthy and defective samples after correction
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Fig. 13. Normalized frequency spectra of the stator current attained through simulation (left column) and 

experimental tests (right column) under Healthy (first row) and ME fault (second row) condition that indicates the 

ME-related sidebands with sign (*)  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13.Normalized frequency spectra of the stator current attained through simulation (left column) 
and experimental tests (right column) under Healthy (first row) and ME fault (second row) condition 

that indicates the ME-related sidebands with sign (*) 

 
 

 
Fig. 14. The training of the SVM model for ME fault detection based on simulation data: a) training result, b) 

initial evaluation result 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The training of the SVM model for ME fault detection based on simulation data: a) training 
result, b) initial evaluation result
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fault because of the inherent eccentricity of the real IM, even 
if it is required to create pure static or dynamic eccentricity.

4- 4- Examining Stability of the SVM Models against Other 
Fault Conditions 

In this section, every trained SVM model is examined 
against fault conditions that it has not been trained to detect 
them. This examination is accomplished using experimental 
data to verify possible misdiagnosis of the proposed faults. 
In every case, the related modifications as mentioned in the 
previous subsections are applied to the experimental results 
before applying them to the SVM models.  Fig.16 shows 

the examination result of the SVM model trained to detect 
the ISC fault against the experimental BRB and ME fault 
samples. As demonstrated, this SVM model does not classify 
the ME or BRB fault samples as defective ones, therefore, the 
ME and BRB defects are not classified as the ISC fault. 

Fig. 17 shows the examination result of the SVM model 
trained to detect the BRB fault against the ISC fault and the 
ME fault experimental samples. As can be seen, the SVM 
model classifies all the samples as the healthy state; therefore, 
the ISC or ME fault cannot be classified as the BRB fault. 
Fig. 18 presents the examination result of the SVM model 
trained to detect the ME fault against the ISC fault and 

 
Fig.15. Final evaluation of the SVM trained for the ME fault detection by using the healthy and the defective 

experimental data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Final evaluation of the SVM trained for the ME fault detection by using the healthy and the 
defective experimental data

 

Fig.16. Examining the SVM model trained for detecting ISC faults against the BRB and ME faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. Examining the SVM model trained for detecting ISC faults against the BRB and ME faults.
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BRB fault experimental samples. As it is obvious, the SVM 
model trained for ME fault detection evaluates the ISC and 
BRB faults as healthy conditions; therefore, an ISC or BRB 
fault is not classified as the ME defect. Overall functions and 
procedures to arrange the proposed fault diagnosis technique 
are illustrated in Fig. 19.

5- Conclusion
A new approach was proposed and examined for 

diagnosing different faults in induction motors using an 
artificial intelligence method that is the support vector 
machine model, in which, FEM simulation results were 

utilized to train and pre-evaluate the model. The trained 
SVM model for every fault condition was able to detect 
the same fault in the same real induction motor if the 
fault indices values extracted from the stator currents 
of the real motor had been modified using appropriate 
coefficients. The coefficients were determined to bring the 
experimental values of the indices in the healthy state to 
their corresponding values attained through simulation. 
Classification accuracies up to 100% are reached when 
diagnosing the faults in real induction motors. The attained 
SVM models were stable against the other fault conditions 
for which they were not trained. 

 
Fig.17. Examining the SVM model trained for detecting BRB fault against the ISC and ME faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Examining the SVM model trained for detecting BRB fault against the ISC and ME faults.

 
Fig.18. Examining the SVM model trained for detecting ME fault against the ISC and BRB faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Examining the SVM model trained for detecting ME fault against the ISC and BRB faults.
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Fig.19. Overall procedure to arrange the proposed fault diagnosis technique Fig. 19. Overall procedure to arrange the proposed fault diagnosis technique
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NomenclatureNomenclature 
SVM Support vector machine  
AIM Artificial intelligence method 
IM Induction motor 
ISC Inter-turn short circuit 
CCP Current Concordia pattern 
PSP Pendulum swing phenomenon 
kNN K-nearest neighbors 
MCSA Motor current signature analysis 
NSV Negative sequence voltage 
BRB Broken rotor bar 
ME Mixed eccentricity 
PSD Power spectrum density 
DFS Decision fusion system 
LDA Linear discriminant analysis 
GMM Gaussian mixture model 
LVQ Learning vector quantization 
IIS Improved iterative scaling 
RBF Radial basic function 
SE Static eccentricity 
FEM Finite elements method  
sigma Sigma parameter of RBF 
D Dataset 
xi SVM input vector  
yi SVM output vector 
w Normal vector  
b Bias parameter 
αi Non-negative Lagrange coefficients 
Nsv Average of all the support vectors 
DAQ Data Acquisition 
H Healthy situation 
MiD Minor diameter 
MaD Major diameter 
s  Motor slip 
fs Fundamental frequency 
fbb BRB index frequency   
fbb¯ BRB lower sideband frequency  
fbb

+ BRB higher sideband frequency  
fme ME index frequency  
fr Rotor speed frequency 
LSB ME lower sideband frequency  
HSB ME higher sideband frequency 
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