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ABSTRACT 

 In this work, time domain analysis is used to solve Adler’s equation in order to obtain the required time, 

for an oscillator under external injection, reaching the steady-state condition. Mathematical approach has 

been applied to fully describe the transient of frequency acquisition in injection-locked LC and Ring 

oscillators considering their time-varying nature. Then, the analysis is verified by simulations of a ring as 

well as a typical RF-LC oscillator. Likewise, the effect of initial phase difference of injection signal on 

locking time and phase noise is theoretically studied. For Ring oscillators, a delay-based time–domain and 

perturbation analysis are used to reveal the dependency of circuit parameters to the locking time. Finally, the 

design insights are deduced which enable the designers to evaluate and minimize the timing budget required 

to achieve injection locking in designing a fast locking oscillator. The mathematical consequences in this 

work explain why there is no transient behavior while ring oscillator signal propagates from a stage to 

another, or why the initial phase shift of injection signal has no effect on the phase noise of oscillator.  
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1- INTRODUCTION 

A free-running oscillator can be influenced by the 

frequency of an externally injected oscillator. If certain 

conditions are satisfied, the injected frequency could take 

over the free-running frequency of the oscillator. This 

process is called Injection Locking which has been 

thoroughly analyzed in [1]-[5] and widely used in modern 

analog electronics for many applications such as 

frequency division [6]-[8], multiplication [9], 

quantization noise reduction in synthesizers [10], stability 

and phase noise reduction [11]-[15]. 

There is a time interval required for the original 

oscillator to adjust its frequency according to the injected 

frequency [3]. This time interval is called locking time, 

tLock. Reference [3] defines this time in a special case for 

the high level injection. And also in [2], a definition and 

analysis are presented to locking time in microwave 

oscillators. Since the equation obtained for phase is very 

unwieldy and complicated, the numerical methods are 

used in mentioned references to depict locking time 

related curves. 

In recent years, because of shorter settling times (in the 

order of nanoseconds) required for UWB PLL-based 

synthesizers or any fast frequency-hopped systems, the 

significance of locking time of injection locked 

oscillators has been grown considerably [16]-[19]. As a 

result, some careful attempts have been done to describe 

the injection locking transient which clarifies the time 

varying nature of LC-oscillator responding to external 

injections [16]. Unfortunately, there is no analysis about 

Ring oscillators as well as phase noise in this work. 

Besides, there are other approaches that have defined a 

time constant for oscillator settling time after externally 

injection locked using perturbation theory [20]-[22]. 

Although this approach accurately describes the effective 

parameters in time domain steady state response, it 

ignores the time varying (LTV) nature of oscillator.    

Therefore, in this work, based on the phase-domain 

analysis presented by Adler [1], a closed-form 

relationship is obtained for the locking time improving 

our previous work, [23], by taking into account the time 

varying nature of oscillator.  In fact, the main focus of 

this work is the complete study for the transient behavior 

of Injection-locked LC and Ring oscillators including the 

effect of settling time on phase noise. Both time domain 

and perturbation theory are used to fully describe the 

settling process. So, at first, the LC oscillators are 

analyzed and the findings, which match the conclusions 

of [16], are expanded to understand the process in ring 

oscillators.  However, since Adler-equation-based 

approach is highly dependent on Q, the oscillator quality 

factor, it may not be suitable in describing the 

relationship between the circuit parameters and the 

locking time for a ring oscillator. Hence, to get around 

the abovementioned problem, a time-domain delay-based 

model proposed in [24] is utilized to relate the circuit 

parameters with the locking time. Then, using 

Generalized-Adler equation and perturbation theory, the 

phase noise of oscillators are analyzed. In fact, using this 

method, not only the phase noise is extracted in more 

intuitive manner, but also the transient governing the 

phase noise in the oscillators under external frequency 

injection is described exactly.  

The paper is organized as follows. In section I, the 

theoretic basis required for time-domain or perturbation 

theory is discussed. Section II and III introduce the study 

of transient behavior of injection locked LC and Ring 

oscillators, respectively. Section IV includes Phase noise 

analysis, and in Section V simulation results are 

presented. Finally, the conclusion section summarizes the 

most important results of this paper. 

2-REQUIRED BACKGROUND FOR INJECTION 

LOCKING EQUATIONS 

The main purpose of injection locking is to influence an 

oscillator with over another one. Fig. 1 is introduced as a 

basic model for transient behavior study or phase noise 

analysis in LC and Ring oscillators under external 

frequency injection which sums up the most important 

outlooks in this area throughout the literature [20]-[22]. 

In this figure, a conventional LC-cross-coupled oscillator 

equivalent circuit under external frequency injection (Iinj) 

is shown. Noise current source in in the model indicates 

the resultant white noise injected to the output node of 

oscillator. The cross-coupled transistor pair of the 

oscillator is modeled with the voltage-to-current 

transconductor which commutates tail current I. So, the 

Fourier series expansion can be used to extract the current 

incoming to the Tank. Only the main harmonic is 

sustained through the band pass filtering nature of the 

Tank. The dashed line in transconductor shown in the 

figure is related to the equivalent model for conventional 

differential pair (not cross-coupled) used in gain stages of 

ring-type oscillators.  

R

L
C

Iinj θinj

in θn

VOSC θ(t)
I

-

+ 4I
θ(t)π 

Differential Pair Cross-Coupled Pair

First 

Harmonic

Noise and Injection Signals  

Fig. 1. Equivalent circuit of LC or Ring oscillator including 

white-noise source and Injection current. Dashed line with 

the zero inductance L is related to one stage of a ring 

oscillator 

Therefore, employing the dashed path, and eliminating 

the inductor L, one stage of a ring oscillator equivalent 

circuit is resulted like [22]. Thus, Fig. 1 includes all the 

necessary subjects for our study. 

Suppose that we have an original oscillator with a free-

running frequency ω0, an amplitude of Iosc and a quality 

factor of Q. If another oscillator with a frequency of ωinj 

and an amplitude of Iinj is injected into the original 

oscillator, the angular frequency, dθ/dt, can be obtained 

by Adler’s well-known equation, as shown below [1]: 

http://eej.aut.ac.ir/
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where ωL is the lock range. This means that, if the 

distance between injected and primary frequency, called 

detuning, is smaller than ωL, the injected frequency falls 

within the lock range and injection locking can occur. 

Note that, (1) is derived with the assumption of small 

detuning, ω0 – ωinj, and small injection strength, ρ = 

Iinj/Iosc. This concept can be shown mathematically as 

below: 

0 0L inj L             (2) 

An equivalent form of Adler equation has also been 

derived in which by using the variable substitution θ → θ 

- θinj , it changes to the previous form (eqn. (1)) [11]-[15]. 

Both forms which can be helpful for different types of 

analysis will be applied in this work. 

0

0 sin ( )
2

inj

inj

osc

Id

dt Q I


       (3) 

When dθ/dt goes to zero, locking will happen. Under 

this condition, equation (1) specifies that the 

instantaneous frequency becomes the same as the injected 

frequency. After locking has occurred, the compensating 

phase shift φss, which has a non-zero value for non-zero 

detuning, can be determined as below: 

1

0sin [( ) ]ss inj L                                          (4) 

Two useful approaches can be considered. First, the 

perturbation method is employed for the examination of 

system characteristics near the locking. It means that, by 

assuming θinj = ωinj t + φss in which φss is the constant 

phase shift because of injection signal, and θ = ωinjt +̂  , 

where, ̂  is the phase small fluctuations, then 

substituting into equation (3), the following equation is 

resulted: 

 0
ˆ 1ˆ ˆ

2

injId
Cos

dt Q I 
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  
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Where, 

 01

2
Cos

Q


 


       (6) 

 that τθ is phase-stability time-constant of the oscillator 

response to the external injection. Differential equation 

(5) can be solved analytically with the following answer: 

   ˆ ˆ 0 exp
t

t


 


 
  

       

(7)  

Where,  ˆ 0  is the integration constant which contains 

the effect of initial phase shift of injection signal on the 

phase fluctuations. Now, the system approaches locking 

while ̂  goes to zero and the time that this event happens 

can be assumed as the locking time. Therefore, study of 

locking time can be categorized into two independent 

factors, which are:  

1) time-constant τθ that is permanent for every initial 

condition and determines the system agility to accept the 

injected signal. In fact, this factor represents the time-

invariant approach (LTI model) for an oscillator. The 

larger the time-constant, the longer is the locking time. 

Therefore, with small quality factor, larger injection 

strength, or injecting as near as possible to the free-

running frequency of oscillator, the locking time becomes 

shorter.  

2)  ˆ 0 , which shows the initial phase difference 

between injection and free-running signals. In other 

words, the time of applying an injection signal can be 

important for the system stability due to time varying 

nature of oscillator (LTV model). However, two things 

are required to be considered. First, this initial condition 

is extracted assuming near-locking condition for 

oscillator, so  ˆ 0  is very small in this condition, and 

also in the injection instant, it can be greater in 

comparison with the locking instant, so the limitation of 

small fluctuations of phase for perturbation analysis could 

not be satisfied. Second, there is no information about the 

phase fluctuations near or far from the locking and this 

parameter is only a random small fluctuation. So, another 

analysis is necessary to find the effect of initial phase 

shift of injection signal. Since we are interested in a 

special period of time, it seems logical to use time-

domain analysis which is the subject of next section. 

3- TIME DOMAIN ANALYSIS OF ADLER 

EQUATION  

In previous section, a perturbation analysis shows that 

the initial condition of signal injection is also important in 

locking time study. In this section, time-domain analysis 

is employed to portrait this effect. Again, we return to the 

Adler equation (1), and using the variable substitution, u 

= tan(θ/2), and the trigonometric relationships below, this 

equation can be solved. 

))2(tan1()2tan(2)sin( 2      
(8) 

21

2

u

dtdu

dt

d






      
(9)

 

The abbreviation (Δω0 = ω0  ωinj) can be used which is 

called detuning, as mentioned before. Adler’s equation 

can be re-written like (10): 

http://eej.aut.ac.ir/
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In (10), the denominator can be solved resulting in two 

potential distinct roots. Variation of θ or u tends to be 

zero in the vicinity of both denominator roots. Then, θ 

goes to φss, or equivalently the parameter u goes to 

tan(φss/2) in this state. Therefore, both of the roots are 

demonstrating the steady-state phase shift. But, what is 

the deference between roots? In order to reveal the 

discrepancy, the denominator should be changed to a 

perfect square form: 
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Therefore, the denominator of (11) can be separated in 

terms of roots. Definitely, because of real and physical 

nature of injection locking process, none of the roots are 

imaginary. This means the exponential form for system 

solutions. Thus, (11) can be re-written as in the 

following: 
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where ωI is also an important parameter in injection 

locked or unlocked driven oscillators, called Beat 

frequency. Plus sign in (14) is for low-side injection 

while minus sign is for high-side injection. It is enough to 

analyze one situation and in the opposite case, only the 

position of the roots is exchanged. So, without loss of 

generality, only the positive detuning will be studied in 

continue. 

In the solving process, integration constant is required 

which demonstrates the initial phase difference between 

injected and free-running frequency at the time of 

injection, t0. Note that for t=t0 , the initial phase shift is 

resulted and assumed θ0 (or u0 = tan(θ0 /2)). So, we can 

consider integration constant in right-hand-side integral 

as t0, or transfer to the left-hand-side by its equivalent 

value in terms of parameter u through the following 

equation that extracted from integrating (12): 

0

0
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t Ln

 
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Using integration constant t0 can be useful for 

extracting a closed-form formula for locking time while 

assuming the constant θ0, has the meaningful results for 

understanding the locking time behavior in terms of the 

system roots. Now, solving the Adler equation 

analytically results in equation below, which shows time-

varying nature of response as mentioned in [19]. In many 

references, the Adler equation is solved neglecting time 

varying treatment of the oscillator phase [2]-[3].   

    0 11

2 0 2

exp .I

u uu u
t

u u u u





 
                           

(15) 

For the positive detuning, the exponential term is 

growing by the time and approaches infinity independent 

of initial phase shift u0. So, u approaches to the smaller 

root, u2. Intuitively, with u0 in the vicinity of u2, the state 

of  occurs which effectively pushes u to the root 

u2. This state is equal to the Stable-point in [19] implying 

the minimum locking time, so smaller root is called stable 

root, u2 = us. 

In the other hand, it is clear from right-hand-side of (15) 

that if the initial phase shift approaches u1, parameter u 

also approaches u1. But, in this case, a state of  

occurs. In fact, if u0 is exactly equal to the u1, parameter u 

will become exactly u1. But, in a practical oscillator, 

because of the phase noise, it is impossible reaching 

exactly one point. Therefore, oscillator does not reach the 

steady state with the phase of u1. Consequently, at first , it 

settles to u1, but does not sustain in this state and returns 

to the stable root.  As a result, the time of settling 

becomes longer in this state. Last state is equal to the 

meta-stable point mentioned in reference [19] which 

results in the maximum locking time. Therefore, we call 

this root as meta-stable root, ums, to coordinate with the 

definitions introduced in literature.  

Consequently, the oscillator phase never tends to meta-

stable root ums, but, the closer is the initial phase shift to 

this root, the longer is the locking time. Moreover, the 

equation (15) was rearranged using t0 as an integration 

constant, and the phase relationship can be manipulated 

as below: 

http://eej.aut.ac.ir/
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In order to determine the time required for an oscillator 

to reach the steady state in post-injection situation, a 1% 

criterion within its maximum value is used. 
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Using Equation (17), it can be shown that the locking 

time can be estimated by:  
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Equation (18) completely analyzes the settling time 

containing the term which shows the effect of initial 

phase shift of injection signal, while, in the reference 

[23], the locking time formula didn’t consider the 

dependency of locking time to the initial injection 

condition. But, it has useful information about parameters 

of locking time. In Fig. 2, tLock versus the normalized 

frequency and Q is depicted neglecting the time-

dependent part. This figure shows that an injection with a 

frequency equals to the free-running frequency results in 

the minimum value of tLock. Therefore, when the injection 

frequency distances the free-running frequency, tLock 

becomes longer. Likewise, the extent of the lock range is 

another parameter which affects the locking time, 

directly. Since lock range is inversely proportional to Q, 

for a constant Δω0, the greater the lock range, the shorter 

the locking time is. These results are similar to the 

conclusions of [21]-[22], and of perturbation theory done 

in section II.  

In Fig. 3, the locking time is plotted based on equation 

(18) which contains both LTI and LTV approaches in the 

case of low-side injection as well as high-side injection. 

A similar plot has depicted using simulations in [16] 

where there is not any closed-form formula for locking 

time, but using the abovementioned analysis in this work, 

equation (18) supplies a mathematical relationship to 

better understanding of the locking process. Locking time 

in this figure is normalized by the beat frequency. So, far 

from roots, using LTI approach, the locking time 

becomes approximately 4/ωI as mentioned in [16], and 

[21], otherwise, it reaches zero near stable root, and 

approaches its maximum value in the vicinity of meta-

stable root.  

ωinj / ω0

Quality Factor Q

tLock

 

Fig. 2.  tLock versus normalized frequency and quality factor Q 

 

Fig. 3.  tLock versus Initial phase difference 

4- PHASE NOISE CONSIDERATIONS OF 

INJECTION LOCKED OSCILLATORS  

In recent years, many of the works have addressed the 

phase noise of the oscillators. Assuming LTI process for 

an oscillator, some of references have described the 

oscillator phase noise due to the white noise and studied 

completely the 1/f 
2
 region of output spectrum [25]-[27]. 

Some other works used the time-varying nature of 

oscillatory systems, and applying Impulse-sensitivity-

function approach [28], Phasor-based frequency domain 

methods [29]-[30], or mixing both of these methods [31] 

have examined the oscillator phase noise. Making 

decision to select one of the abovementioned methods 

leads to a trade-off between accuracy and intuition. 

Accurate methods based on LTV models need sometimes 

the primary simulations to extract special characteristics 
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of a circuit [32], or rely on the numerical methods [33]. 

So, they could not be a proper choice in this work to 

study the transient governing the phase noise. Some 

works have also studied the phase noise in injection-

locked oscillators [34]-[35]. 

The method introduced by Mirzaei in [21]-[22] assumes 

the phase noise as an injection signal to the oscillator. 

Since the transient behavior of injection locked oscillator 

can be described using Adler differential equation, so the 

transient treatment of phase noise can also be studied this 

way easily and accurately. Only the white noise induced 

directly in the Tank circuit of oscillator is analyzed to 

expand the proposed theory. In Fig. 1, a conventional 

cross-coupled oscillator equivalent circuit under external 

frequency injection (Iinj) is shown. Noise current source in 

in the figure indicates the resultant white noise injected to 

the output node of oscillator. Assuming the noise source 

in as a sinusoidal noise with the angular frequency of ω0 

+ ωm, which is injected into the noiseless oscillator, the 

Adler equation can be rewritten as the following [21]: 

 

 

0

0 42

n n

n n

i Sind

Idt Q
i Cos

  
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
 

 

                     (19) 

Replacing  θn – θ = ωmt, and θ → ωosct +̂  , (which ̂  

can be assumed as the phase noise in this section), then 

substituting into (19), and knowing that noise current 

amplitude in comparison with oscillator output current is 

very small, the following equation is resulted: 
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2 4
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Equation (20) simply can be integrated: 

   

    

0

0

0

0

ˆ
2 4

2 4

]
t

n
m

t
m

n
m m

m

i
t Cos t

Q I

i
Cos t Cos t

Q I

 
 



 
 



  

            (21) 

So, assuming in
2
/2 = 4KT/R and 4RI/π=Vosc , the phase-

noise is resulted as below: 
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The term (1+2cos
2
(ωmt0)) multiplied by the phase noise 

of oscillator is a term that shows the effect of initial phase 

shift or equivalently time-shift of injected noise due to 

time-varying nature of oscillatory system. The output 

voltage and its phase noise are shown in Fig. 4, and it is 

appeared that in the zero-crossings of output voltage, the 

phase noise is maximum while in the max or min points, 

the phase noise has its minimum value which is 

coincident to the results of the ISF based phase noise 

study in [28] 
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Fig. 4. Phase noise of oscillators as a function of the noise 

injection time 

Now, the phase noise is analyzed again with the 

existence of another injection signal with amplitude of Iinj 

and phase of θinj as can be seen in Fig. 1. For this purpose, 

the noise current in is assumed to be an injection noise 

signal to the oscillator in the angular frequency of 

ω0+ωm, so Adler equation can be rearranged as below to 

demonstrate the instantaneous phase of the oscillator: 

   

   

0

0 42

inj inj n n

inj inj n n

I Sin i Sind

Idt Q
I Cos i Cos

   


   


  
 

   

 (23)  

Assuming the amplitudes of injection signal and noise 

current are small in comparison with oscillator current, 

equation (23) changes to: 

    0

0
2 4

inj inj n n

d
I Sin i Sin

dt Q I

 
            (24) 

Applying perturbation analysis using near-locking 

condition, in addition, assuming θn – θ = ωmt, the 

following equation is resulted: 

    0 0
ˆ

ˆ
2 4 2 4

inj n
m

I id
Cos Sin t

dt Q I Q I

   
            (25) 

This differential equation can be rearranged as the 

following which is similar to the response of first-order 

circuit to the sinusoidal voltage or current excitation: 

 

 0 0

ˆ 1 ˆ

1
,

2 4 2 4

n m

inj n
n

d
a Sin t

dt

I i
Cos a

Q I Q I


 



  




 

 

                        (26) 

Therefore, the time-domain response for deviation of 

oscillator phase shift is extracted as below: 
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          (27) 

It is evident from (27) that the initial condition of 

injection does not affect the phase fluctuations after 

stability of oscillator. In other words, the period that the 

phase-noise needs to reach steady-state is the same as the 

period that required for oscillator signal to reach stability. 

The smaller the time-constant τ, the more agile the system 

is. Approximately, after a time period 4τ, phase noise 

approaches to its final value which can be calculated as 

the following: 
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         (28) 

In equation (28), the effects of external injection on 

phase noise can be found, but, the effect of the time of 

noise injection could not be shown, because all the initial 

conditions are exponentially damped and are not effective 

in the steady-state solution. In next section, this study will 

be verified using simulations for both LC and Ring 

oscillators. Letting Iinj=0 results in the same equation for 

phase noise with [25] model or [21] analysis of stand-

alone oscillator phase noise formula. The results also 

match the phase noise formula extracted in [34] which 

has assumed the locked oscillator similar to first-order 

PLL. As it is found from (28), every attempt to shorten 

the time constant τ, leads to the final phase noise 

reduction which means increasing injection strength ρ, or 

injecting as near as possible to the oscillator free-running 

frequency, decreases the phase noise. However, the 

quality factor Q plays double role. Hence, with smaller Q, 

the internal phase noise of oscillator increases, but, 

considering the denominator of (28), the phase noise 

reduction also increases. In other words, smaller Q means 

greater lock range and this phenomenon facilitates the 

locking of injection signal, and since the injection locking 

makes the oscillator phase noise superior, therefore, the 

smaller Q attempts to reduce the phase noise. 

Consequently, decreasing Q in injection-locked oscillator 

leads to phase noise increase but not with the similar 

order that a stand-alone oscillator may suffer from 

smaller Q. In fact, some of phase noise reduction is 

compensated through accelerating the injection locking 

because of greater lock range, and also reduces the phase 

noise. 

5- SIMULATION RESULTS 

To examine the transient behavior studied in the 

previous sections, a scenario for simulation is designed to 

verify the results of both LTI and LTV findings. First, an 

LC-cross-coupled oscillator is simulated to demonstrate 

the accuracy of locking time formula. 

 A typical 3.65 GHz LC oscillator has been simulated in 

a CMOS-180n technology Using Hspice. The injected 

current level is approximately 3.24 dB below the 

oscillator current level and the lock range of this 

oscillator is 605 MHz. After 80 ns, the oscillator reaches 

an initial stable state. Then, a signal is injected into the 

original oscillator with a frequency of 4.1 GHz with the 

initial phase shift of 180
0
, the simulated locking time is 

about 9.05 ns, while Equation (18) predicts a locking time 

of 9.40 ns, as shown in Fig. 5.  

In order to measure the locking time from the 

simulations, a method similar to the phase detection in 

PLLs is used. The phase difference of the injected signal 

(as the reference) and the output signal is converted to 

amplitude variations via a phase detector. Now, the rate 

of change in the resultant amplitude is measured at the 

instant the injected signal is applied (300 ns), and then it 

is used to find the time matching the 1% criterion, i.e. the 

locking time.  

Then, to study the locking time dependency to the 

initial injection phase, we employ two types of LC cross-

coupled oscillators shown in Fig. 6, and a conventional 

four-stage-ring oscillator. Advanced Design System 

(ADS) tools are used for simulations in the following 

circuits. To simulate the circuits of the paper using ADS, 

the technology file of TSMC 180 nm is used. Locking 

time can be found using time domain simulations tools of 

the software. It should be noted that, the LC oscillator is 

designed in one stage, and, Ring oscillator is a four-stage 

differential oscillator. in the ring oscillator with the even 

number of stages, the inversion in wiring is necessary to 

correct functionality of the circuit.  

 

Fig. 5.  Output signal and locking time for CMOC 

LC oscillator 
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Fig. 6. Free-running LC oscillator under injection 

In LC-Oscillator, the free-running frequency is about 

1.985 GHz, Q = 7.9, ωL = 157.8 MHz, injection 

frequency is 50 MHz higher than oscillator frequency. 

Stable root is tan(φss/2) = -19.48
0
, then meta-stable root 

is 199.48
0
. In Fig. 7, signal injection with the initial phase 

difference near the stable root is depicted, while, the 

resulted output momentary variations is shown in Fig. 8. 

This case is related to the minimum locking time which is 

clear in the simulation results. In the other hand, signal 

injection with the initial phase difference in the vicinity 

of meta-stable root is depicted in Fig. 9, while, the 

resulted output momentary variations is shown in Fig. 10. 

This case is related to the maximum locking time which 

is clear in the figures as it is mentioned in previous 

sections. Finally, the time of injection is not important in 

the amount of phase noise which is shown in Fig. 11, and 

unchanged for both the initial phase shifts used in the 

simulation scenario, as well as all possible initial phase 

differences. 

A similar approach is used to examine the time 

dependent nature of transient response in a 4-stage ring 

oscillator. The free-running frequency of 1.754 GHz 

oscillator with the output current of 8 mA becomes 

injection locked by the current signal with the amplitude 

of 2 mA with injection frequency of 6 MHz higher than 

the carrier frequency.  

 

Fig. 7. Initial phase difference of LC oscillator near the 

smaller root 

 

Fig. 8. Output time variations of LC Oscillator, smaller 

root 

 

Fig. 9. Initial phase difference of LC oscillator near the 

meta-stable root 

 

Fig. 10. Output time variations of LC Oscillator, meta-

stable root 

 

Fig. 11. Phase noise of LC oscillator under external 

injection 

Offset Frequency, Hz 
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Fig. 12. Initial phase difference of Ring oscillator near the 

stable root 

 
Fig. 13. Output time variations of Ring Oscillator, stable 

root 

 
Fig. 14. Initial phase difference of Ring oscillator near the 

meta-stable root 

 

 
Fig. 15. Output time variations of Ring Oscillator, meta-

stable root 

The results for locking time in Ring oscillators are 

similar to the LC counterparts, as seen in Figs. 12-15.  

6- CONCLUSION  

In this paper, a theoretical study is proposed to describe 

the transient behavior in both LC and Ring oscillators 

under the external frequency injection. In fact, a time-

domain solution to Adler’s equation is presented for 

obtaining the locking time taking into account the time-

varying nature of oscillators. It is shown that, an 

oscillator reshapes its output signal after being injection 

locked based on two roots which are called stable and 

meta-stable roots. Moreover, the effect of initial phase 

shift in the locking time is completely formulized. Then, 

this analysis is expanded to study the transient response 

and its specifications in Ring oscillators. The results show 

that, similar to the LC oscillators, there are two roots 

which shape the transient form of output response, in 

addition, the initial phase shift is also the most effective 

factor in oscillator settling time. Next, the phase noise of 

the oscillator under frequency injection is examined. 

Then, a mathematical approach is introduced to justify 

why initial phase shift is not able to change the phase 

noise of injection locked oscillator. Circuit simulations 

are employed to verify the expressed locking time 

equation and proposed transient analysis. The results 

have good agreement with the theory. 
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