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stabilization of the large wind turbine generator in the presence of time-varying delay and polytopic ~ Available Online: Feb. 01, 2024
uncertainty. Two critical assumptions are considered for the turbine model involving the model’s
parameters are uncertain, and the blade-pitch control input actuates by a time-varying unknown delay  Keywords:
parameter. A set of intervals is considered for the uncertain and delay parameters, which are assumed to be
given and known. Then, a novel algorithm is proposed to design a proper controller for this system based
on the Lyapunov-Krasovskii functional approach. The proposed controller simultaneously compensates
for the effects of both delay parameters and uncertain parameters. To validate the results in this study,
two simulation examples are proposed considering different turbines to compare the performance of — Output feedback controller
the designed controller with previously designed controllers. The results reveal the superiority of the
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proposed controller compared to the existing controller.

1- Introduction

Wind power is one of the fastest-growing electrical
industries and owns the rapid development progress among
the other renewable power generation elements. Various
types of this machine are developed and implemented in
both theoretical and real applications. Due to the advantages
of these machines, the stability and stabilizability analysis
problems of wind turbines are frequently encountered in
recent studies[1].

Large wind turbines attract more interest among
researchers due to their massive structures and enormous
blade spans[2][3]. With the enlargement of wind turbine
generating capacity, it is vital to develop feasible, reliable,
and robust control strategies in wind energy conversion
systems to achieve maximum power performance. Tracking
the full allowable power is one of the essential topics in this
regard[4].

The control objectives considerably depend on the
wind speed and its variations over the nominal values. The
variable speed controller is exploited when it is below the
nominal value[4]. The main control objective is to extract
the maximum energy from wind power at its operating
point. When the wind speed is above the nominal rate, the
pitch controller is utilized in which the control objective is
to maintain the output power constant. Since the variable-
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speed wind turbine can produce higher energy and lower
component mechanical stress, this type of turbine has become
a field of increasing interest[5][6]. Some exciting methods
for designing simple controllers have been developed during
the past fifty years[7][8]. These methods provide acceptable
performances. However, extending a general method for
tuning the designing parameters is impossible[9].

Consideration of the delay in the model of wind machines
is not usual in previous studies. However, the time-varying
delay in this model is generally apparent due to the natural
properties of its dynamics[10]. Additionally, hydraulic
pressure-driven unit in large power wind generation
system causes a time-varying delay in the wind generation
system[11][12]. Unfortunately, no study basically and
directly investigates the time-varying delay in the wind model
equations. Indeed, the proposed controllers, regardless of the
time- varying delay in the system’s model[13].

Regarding this issue, scholars have conducted so much
research. In 2020, Yuan et al., in a paper called “Multivariable
robust blade pitch control design to reject periodic loads
on wind turbines,” developed a multivariable robust IPC
framework to reject periodic loads. They modeled the
inter-blade coupling to provide response characteristics
in the frequency domain. In this research, Systematic case
investigations demonstrate that, with the proposed IPC
strategy, one can achieve significant periodic load mitigation
as well as fatigue alleviation in speed-varying wind fields[ 14].
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In the same year, Civelek published a paper on optimizing
fuzzy logic (Takagi-Sugeno) blade pitch angle controller in
wind turbines by genetic algorithm. They designed a fuzzy
controller to control the wind turbine blades is optimized
with a genetic algorithm that is improved. They also added
some new features to enhance Advanced Intelligent Genetic
Algorithm’s (AIGA’s) performance. One of these is the
addition of acceptable error concept (AEC). Moreover,
the maximum number of crossover points in AIGA is
determined as a function of the length of the chromosome.
This implementation improved the algorithm. Simulation
results indicate that optimization improves the output power
[15]. In 2021, Khaksari et al. presented an article entitled
“an observer-based blade-pitch controller for wind using
finite sliding mode in high wind speed.” They deal with the
difficulty of designing a robust dynamic output feedback
controller for the wind machine. This research exploits the
designing controller problem of wind turbines in the presence
of time-varying delays and uncertain parameters. This article
proposes a novel algorithm that designs a proper controller
based on the idea of Finsler’s Lemma[16]. Again in 2021,
Zhang and Plestan published a paper called “Individual/
collective blade pitch control of floating wind turbine based
on adaptive second order sliding mode.” They applied a
new control strategy based on an adaptive second-order
sliding mode approach to a floating wind turbine system in
the above- rated region. The proposed controller is partially
based on multi-blade coordinates transformation that
combines collective and individual collective blade pitch
control for power regulation, platform pitch motion reduction
and reduction of blades fatigue load. They implemented the
proposed controller on FAST simulator and demonstrates high
level of performances[17]. In the following year, 2022, Elsisi
and his partners presented research entitled “Robust Design
of ANFIS-Based Blade Pitch Controller for Wind Energy
Conversion Systems Against Wind Speed Fluctuations.” They
proposed an adaptive neuro-fuzzy inference system (ANFIS)
as an effective control technique for blade pitch control of
the WECS instead of conventional controllers. Their research
also suggested an effective strategy to prepare a sufficient
dataset for training and testing the ANFIS controller. They
developed a new optimization algorithm named the mayfly
optimization algorithm (MOA) to find the optimal parameters
of the proportional integral derivative (PID) controller to find
the optimal dataset for training and testing of the ANFIS
controller[18].

This paper proposes an algorithm to design an output
feedback controller for wind turbine machines in the presence
of time-varying delays and uncertain model parameters.
Indeed, the basic turbine model obtained in the literature is
given. Then, the algorithm’s proper controller is designed and
applied to the turbine model. Therefore, the main novelty of
this paper is to develop an algorithm that is used to design the
controller for the uncertain model with a time-varying delay.
The proposed controller is presented based on the idea of
the Lyapunov Krasovskii functional. This idea is frequently
encountered in previous studies[19][20].

The controller should guarantee the model’s robust
stability for all possible values of model coefficients and
consider the time-varying delay. For this purpose, a set
of mathematical tools is used to design the controller, as
mentioned in the following[21][22].

This paper is organized as follows: Section 2 proposes the
transfer function model from pitch to tower fore- aft deflection,
including a time-varying delay in the hydraulic pressure-
driven unit of the wind generation system. In Section 3, the
main idea of this paper is mentioned, which is an algorithm
to design a proper controller for the uncertain model in the
presence of a time-varying delay. The simulation examples
are presented in section 4, consisting of two samples with
different dimensions turbines. The simulation results reveal
the superiority of the proposed controller. Finally, Section 5
concludes the paper.

2- System model
At the operating point, the linear model of blade-tower
dynamics is considered to be the following equation[21]:

f(s) = Gp(s)B(s) (1)

where f is the tower fore-aft modal deflection and /3
is the deviation of the pitch angle from its nominal value.
Indeed, equation (1) states a causal linear equation exists for
the tower deflection and the pitch angle deviation.

The transfer model G, (s) is assumed to have the
following form:

2
a,s” +as +a,

G,(s)=

_S4+b3S3+b2S2+bIS +b, @

The transfer function coefficients {a,. }3:0 and {bi }j:o
represents the time constant of the wind generation model.
The pitch-driven model is influenced by the hydraulic
pressure-driven, which causes a time delay in the generation
model [21]. It complexes the controller design and stability
analysis of the model. According to this effect, the model

equation (2) will be modified as follows:

2
a,s” +a,s +a,

)

G,(s)=

_S4+b3S3+b2S2+b1S +b, 3

where 7 is the time delay parameter.

Usually, the time delay parameter is assumed to be constant
and time-invariant in the previous studies [21]. However, this
assumption can significantly affect the model’s stability due
to the time-varying nature of the delay parameter. Hence,
the delay parameter is assumed to be time-varying as given
below:



A. Rokhsari and R. Abolpour, AUT J. Electr: Eng., 56(1) (Special Issue) (2024) 7-18, DOI: 10.22060/eej.2023.21542.5481

vt: ©(t) € [1;, 1] 4)

where 7, and 7, are the values of the lower and upper
bounds of the time-varying delay, respectively.

It is worth mentioning that the time derivation of the delay
should be finite due to some physical constraints. Hence, the
following assumption is considered:

vt: |T(t)| < 1p 6))

where 7, is the upper bound of the time derivation of the
mentioned delay parameter.

According to the model deviations and time and physical
dependency of the model, the transfer function coefficients
(3) have fixed but unknown values[23]. Thus, the following
equations describe the uncertainty bounds of these
coefficients:

a; € [gi,&i] fori=0,1,2

(6)
b; € [b;, b;] fori=10123

The values of these coefficients depend on the physical
specification of the wind machine and environment
parameters. Hence, the lower and upper bounds in equations
(6) have been determined to cover the reasonable deviations
of the physical and environmental parameters[24].

Before presenting the main idea of this paper, the
following lemmas are needed to present.

Lemma 1 [25]. Assume g(#):R —>R" is a vector
function, Q is a symmetric positive definite matrix and ¢,
and C, are positive numbers (02 >, ) Then, the following
inequality is satisfied:

(c,—¢, )I:g(a)T Qg(o)da>

(ec)-sle)) Qf'e(@) Qe(@)dn

Lemma 2 (Finsler’s Lemma) [26]. Let x € R", Q e R™™
be a symmetric positive definite matrix and B e R™" such that
rank (B) <n . Then, the following statements are equivalent:

i) Vx: Bx=0-xTQx<0
ii) 3X € R™™:. Q+XB+BTXT <0
i)  BYTQB<0

where B* is the null matrix of the matrix B, which
means BB+ =0.

3- Controller design

This section presents the main idea of this paper, which is
an algorithm to design an output feedback controller for the
model (3).

This section consists of three subsections: extracting the
closed-loop system, output feedback stabilizability analysis,
and proposing the design algorithm. The controller structure
is presented in the first subsection, and the closed-loop model
is extracted based on the controller and open-loop model
(3). The closed-loop model is an LTI system with polytopic
uncertainty and a state delay. The second subsection
investigates the stability analysis of the closed-loop system
and proposes a theorem for this purpose based on the idea
of the Lyapunov Krasovskii functional. Finally, the third
subsection proposes the design algorithm for this paper.

3- 1- Extracting the closed-loop system
Firstly, model (3) is transformed into the state-space
model as follows:

x(t) = A(b)x(t) + BA(t — (1))
®)

f@) = C(a)x(t)

where x (t) e R* is the state vector of this model. The
system’s matrices are obtained as given below:

The uncertain parameters @ and b respectively belong to
the following uncertain spaces 7, and 7, based on equation

(6).

7w, =cof|ay.a,a,].[aa.a,],

(10)

(11)

Above, notation co {} stands for the convex combination
operator.
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To unify the notations, assume @ =|a’ b" " contains the
whole uncertain parameters of the model. € will belong to the
uncertain space 7, which is the Cartesian product of spaces
7, and 7, . In the rest of this paper, notations € and 7
are respectively noted by the uncertain vector and uncertain
space[27][28].

Using this assumption, the model (8) can be rewritten as
given below:

x(t) = A(0)x(t) + BB(t — (1))

(12)
f@®) =C@)x()
Now, consider the following controller:
xc(t) = Ac(/l)xc(t) + B, (ﬂ)f(t)
(13)

.B(t) = Cc(.u')xc(t)

where x € R" in which n_ is the controller order and
A, (#):R" ->R"™ ,B (u):R" ->R"™andC_(u):R" - R"
are matrix functions of the design vector gzeR"™ . System
matrices consist of some known and unknown parameters
where the unknown ones are denoted by x, including 7,
entries. The design vector & should be precisely determined
to establish the system’s stability.

Remark 1. Controller (13) can include known and
unknown parameters that imply its free structure. This free
structure consequences the controller’s flexibility that can be
exploited in exceptional cases like PID.

Using (12) and (13), the closed-loop model can be
obtained as follows:

(14)

where z (t) :[IxT () xI(¢ )JT is the state vector of the
closed-loop model. For the convenience of the notations,
consider the following matrix definitions:

A(6) Onn,

ACW =15 we®) AW

(15)

10

Onn  BCc()
dqd(#) - I:OTL'TL OTL ‘:L ] (16)
Using definitions (15-16), model (14) leads to (17):
z(t) = A6, Wz(t) + Ag(Wz(t — 7(t)) (17)

The stability of the above model is deeply investigated in
the following subsection of this paper.

3- 2- Output feedback stabilizability analysis

Firstly, Definition 1 introduces the robust exponential
stability of the closed-loop model (17).

Definition 1. The closed-loop model (17) is said to be
robustly exponential stable if there exist continuous vector

functions M(#) and ¢(8) that hold the following conditions:

v em c(6) >0 (18)

ve € m,Vt € R,: [lz(®)] < M(8)e~*®Yz(0)|| (19)

where z(t) is any possible trajectory of the closed-loop
model (17).

Theorem 1 proposes a set of LMMI conditions to
investigate the robust exponential stability for the closed-loop
model (17) vial Lyapunov Krasovskii functional approach in
the sequel[29].

Theorem 1. Assume there exists a real vector He R",
symmetrlc positive definite matrices P e R™", {Q, } cR™
and {R } cR™ and also matrix Y(8):7 — RS“X“ that
satisfy the followmg conditions:

VO e m:
e Y e YTu YTu
[cbl R (-t —Ry Ry P l
| * ¢2 Om,m Om,m Om,m|+
* * b3 Omm Omm (20)
* * * by 0m,m
* * * * ds
He{Y(e) [‘A(e' |J-) Om,m ‘Ad(u) 0m,m - [m,m]} <0

. 5 .
where m =n+n_ and matrices {¢1 }1:1 are defined with

the following equations:
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$=7P+Q +Q,+Q;-

e Th e e T
R, -(1-1)—R, ———R,
Ul T, T
-
¢y = —e7Y1Q; — eT R
1
21
— . . e Yu
$3 =—e (1 -DQ - (1-1) - R,
by = —e7VuQz — e_:u R3

(I)s = TlRl + TRZ + TuR3

Then, model (17) will be robustly exponential stable.
Proof. Consider the following Lyapunov Krasovskii
functional:

Vv, = 2T (t)Pz(t) (22)
Vo = fip €79 27T (0 Q2(0)dax (23)
Voo = fi eV 2T (@Qpz(@)da 4
Vo = [, €7V 2T (@Qaz()der (25)
Vo=V, +Vy,+V,5 (26)
Van = 2 fora @Y CPZT B RiZ(BYABd  (27)
Vo = [0 i € YEPIT @) Ryz(B)dBda (28
Vig = [0 [ € YEPT(B) Ryz(B)dBda (20
Vs =Vs; + Vs, + Vs (30)

Then, the foremost Lyapunov Krasovskii function is
considered to be as follows;

11

The time-derivation of the first Lyapunov Krasovskii

functional will be obtained as follows:

V, = —yV; + yzT()Pz(t) +

(32)

zT ()Pz(t) + 2T ()Pz(t)
Using the Leibnitz formula [30], one obtains:

Vou = =YVp1 + 27 (0Qz(t) —

(33)
e Yz (t — 1)Quz(t — 1))
Vo, = —YVo, + 27 (0)Qaz(t) —

(34)
e Y (1—-1)zT(t—1)Quz(t— 1)
Vo3 = —YVp3 + 27 (£)Q3z(t) —

(35)

e Ytu ZT(t - Tu)Q3Z(t - Tu)

Using equations (32-34), the following equation is

obtained:

Vy < —yVo + 2" (£)(Qy + Q2 + Q3)z(t) —

e VmzT(t —1)Q2(t — 7)) —

(36)
e V(1 —1)zT(t —1)Qz(t — 1) —
e Vtu ZT(t - Tu)Q3Z(t - Tu)
Also, using the Leibnitz formula, one obtains:
Va1 = —yVaq + 12T ()R 2(t) —
t (37)
ft_n e V=037 (@) R z(a)da
Vo = —yV3, + 12T (£)Ryz(t) —
(38)

(1—-1p) ftt_r e V0T () Ryz(a)da
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Vaz = —¥Va3 + 1,27 (O)R52(t) —

, (39
ft_Tu e V3T (q) Ryz(a)da

According to Lemma 1, the following equations will be
obtained:

Vap < —yVaq + 12T (OR12(8) —
(40)

eV

= (2() = 2(t = 1)) Ry (2(0) = 2(t — 7))

T

Vsp < —yV3, + 12T ()R2(E) —
41)

—yu (
(1 = 7p) == (2(t) - z(t = 1)) Ry (2(t) — z(t = 1))

u

Vs < —yVasz + 12T (0)R32(0) —
(42)

e YTu

(2(t) — 2(t — 7)) Rs(2(t) — z(t — 1))

Ty

Using equation (39-41), the following equation is
obtained:

Vs < —yVa + 2T(6) (1R, + TR, + T,R3)2(t) —

e~

Yt
: (2(t) — z(t — 1) Ry (2(0) — z(t — 1)) —

T
. (43)
(2(t) — z(t — 1)) Ry(2(t) — z(t — 1))

e

(1-1p) T

e

= (2(8) = 26 = 7)) Ry (2(0) = 2(¢ ~ )

T

Using equations (31), (35), and (44), the time derivation
of the primary Lyapunov function can be written as follows:

V< —yW+
-v7 ~-YTu ~Ytu
o SR Q- mR SR P
g * 0P Onxn Onxn 0n><nZ (44)
* * b3 Onxn Onxn
[* * * ¢4 Onan
* * * * ds
where

T

é’(t):[zT(t) z' (t—-7) z'(t-7) z'(t-7,) iT(t)J

Using condition (43) and based on Finsler’s Lemma, one
has:

12

V< —yV (45)

The above equation establishes the robust, exponentially
stable closed-loop model (17).

It must be noted that the conditions of Theorem 1 are
not LMI for two crucial reasons. First, the matrix function
Y (0):7 = R°™™ is not explicitly in this theorem and
has a general form. Second, there exist some coupling
terms between the Lyapunov and design parameters in the
He{Y(6)[ A(0,1)0,,,, A1) 0,, -1, ]}. Theorem
2 is proposed to cope with these issues, and an ILMI-based
methodology is exploited in the next section.

Theorem 2. Let vector 4 € R™, symmetric positive
definite matrices PeR™™, (Q} <R™, {R} cR™

i=1
and matrix {Y,} c R*™ that satisfy the following

0'ed ()
conditions:
ve',0" € d,(n):
e~ YU e YTu e Ylu
R 1- R P
b1 1 ( ) ™ 2 o 3
* ¢, Om,m Omm Omm
’ ’ s
* * ¢3 0m,m 0m,m | (46)
* * * by Om,m
l * * * * bs J

He{Yel[‘A(e”' H) Om,m Cﬂd(u) Om,m - Im,m]} <0

where g_(9) is the set of corner points of d and {¢ }15:
are given in the statement of Theorem 1. Then, model (175
will be robustly exponential stable.

Proof. Conditions (45) imply (20) through considering
Y as the convex combination of the {Yé‘ }é,ee © in
Theorem 1. Hence, robust exponential stability is achieved
according to Theorem 1.

3- 3- Proposing the Design Algorithm

As stated earlier, the conditions of Theorem 1 are not
LMI. Thus, these conditions cannot be directly solved by LMI
solvers. To cope with this issue, an algorithm is developed
that exploits an ILMI methodology. Briefly, the steps of the
proposed algorithm are presented in the following:

Algorithm:

Set k=0.

Consider ﬂ(o) is a random vector.

Solve the optimization problem P1 by considering
4 ZAC(,U(k)), B, :BC(/J“‘} and C, :ch,u(k)) to obtain P
, {QE”};, {RE“) * and {Yévk)}&,ea ., and h.
If h®) <0 returns Ac(y(k)), B,(u¥) and ¢ (uY) as the
solutions of the algorithm.

o

Solve the optimization problem P1 by considering P = p®
3 3
> {Ql }?:1 = {ng)}.:l > {Ri };3:1 = {ng)}i:l and {YH'}a'eac(,,) = {Yé'k)}griac(,,) to
obtain A, B and C**) and K&V,
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Table 1. Configuration parameters of the first wind turbine

parameter

value

rotor diameter

tower height
rated power
wind speed

pitch angle

70m
90m
1.5MW
15m/s
0°

if WY —h < g , it terminates and returns null.

Set k =k +1 and go to step 3.

In the third step of the proposed algorithm, the optimization
problem P1 is mentioned, which is entirely described in the

following:
P1:

min h
hP Qi) (R} Y
P>0
R;>0,Q; >0 fori=1,23

ve',0" € 8.(n):

[ e~ YU ~YTu e Ylu 'I
|¢1 - Ry (1-1p) - R; T Ry P |
I * b2 0m,m 0m,m Om,m|+
* * ¢3 Om,m Om,m
* * * ¢4 Om,m
* * * * ¢5

He{YGI,[C/l(e”: W Omm Aq(C) Opm

¢1=YP+Q1 +Q2+Q3— _YT1R1
-1 -1p) e—T\:u R, - S R3

¢y = —e7YIQ, — e_:l Ry

b3 = —e V™ (1—1p)Q, — (1 - T0) 5
by = —eYuQ, — e_:u R;3

¢s = Ry + TuRy + TyR3

24268 —4.63455-147.3

- Im,m]} < hISnxSn

YTu R
Ty 2

—0.25s

G, (s)

T " +4.8575 +126.257 +266.45 + 3659

13

Remark 2. The parameter € is a threshold value considered
to guarantee convergence and stop the algorithm if there is no
feasible solution.

Therefore, the proposed algorithm will design a proper output
feedback controller for model (14) under conditions (4-6).

4- Simulation

Two examples are considered in this section to convey the
efficiency and performance of the design algorithm compared
to the other previous methods. It is worth mentioning that
the considered model assumptions of the model (14) are not
directly used in the earlier methods. Hence, the other methods
are designed to compare the results by removing some
assumptions. However, the obtained controllers are applied
to the original model.

The simulation results of this section reveal the superiority
of the proposed algorithm compared to the previous methods.

Example 1. This model is given in the paper [12]. The
following table presents some physical and environmental
parameters of this model (Table 1):

Using the parameter values of Table 1, the transfer
function of the wind machine is obtained as follows [12]:

G, (s)

2.426s* —4.63455s—147.3

— o025 (47)
s* +4.857s’ +126.2s> +266.4s +3659

It has been supposed that the coefficients of the above
model can have up to 10% error from the nominal values
in equation (46). Also, the delay-dependent parameters are
assumed to be 7, =0.2, 7, =0.3 and 7, =0.1.

Using the proposed algorithm of this paper, the proper
controller is obtained, which is presented in the following:

A = [ 240363 —121.8684]
€ 1883.4176 —444.4847)

_ [-1.2180 48)
Be [—4.4264

C. = [-.7260 —.3313]

The following figures show the results of this simulation
example:
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1

10

Fig. 1. The pitch angle of the first simulation example

1

1000

500

T
pr—

-500

_1000 1 1 1 1 1

Fig. 2. Modal deflection of the first simulation example

14
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0.214

0.212

0.21

0.208

0.206

0.204

0.202

0.2

25

t

Fig. 3. Time-varying delay of the first simulation example

Table 2. Configuration parameters of the second wind turbine

parameter value
rotor diameter 15m
tower height 25m
rated power 50kW
wind speed 15m/s
pitch angle 0.75°
6
4
|
2
-4
-6 s . . : : |
0 10 20 30 40 50 60
t

Fig. 4. The pitch angle of the second simulation example

15
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100
50 |
“  0f A
-50
-100 ' - - . | |
0 10 20 30 40 50 60

Fig. 5. Modal deflection of the second simulation example
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Fig. 6. Time-varying delay of the second simulation example
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As can be seen, the designed controller stabilizes the
uncertain time-varying delay model (43).

Example 2. Consider a wind machine with the following
parameters [12] (Table 2),

Then, the wind machine has the following transfer
function equation, which is given from [12]:

—0.25455% —0.0647s +0.9384
Gp (S ) = 3 2 4
" +2.28s” +878.55 " +437.7s +7.7x10

—0.25s

(49)

Assume the numerator coefficients have a 10% error
concerning the nominal values. Also, assume 7, =0.1,
7,=04 and 7, =0.5.

Using the proposed algorithm of this paper, the proper
controller is obtained, which is presented in the following:

_ [0.0919 0.1601 ]
¢ 0.1224 —-0.8797F

_10.4916 (50)
Be = [0.3892]

C. = [0.9089 0.5857]

The following figures show the results of this simulation
example:

This example also shows the performance of the designed
controller to stabilize the closed-loop model.

5- Conclusion

Wind power is one of the fastest-growing electrical
industries and owns the rapid development progress among
the other renewable power generation elements. Various
types of this machine are developed and implemented in
both theoretical and real applications. The control objectives
considerably depend on the wind speed and its variations over
the nominal values. Since the variable-speed wind turbine
can produce higher energy and lower component mechanical
stress, this type of turbine has become a field of increasing
interest. Consideration of the delay in the model of wind
machines is not usual in previous studies. However, the time-
varying delay in this model is generally apparent due to the
natural properties of its dynamics. Unfortunately, no study
basically and directly investigates the time-varying delay in
the wind model equations. Indeed, the proposed controllers,
regardless of the time-varying delay in the system’s model.

This study investigates the problem of designing a
controller for the wind turbine model in the presence of
time-varying delays and uncertain parameters. The proposed
controller is based on the idea of the Lyapunov Krasovskii
functional and guarantees the globally exponential stability
of the wind turbine model. Two examples are considered
to convey the efficiency and performance of the design
algorithm compared to the other previous methods. The other
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methods are designed to compare the results by removing
some assumptions. However, the obtained controllers are
applied to the original model.

In the first example, the designed controller stabilizes
the uncertain time-varying delay model. The second one
demonstrates the performance of the designed controller
to stabilize the closed-loop model. The simulation results
reveal the proposed algorithm’s superiority, efficiency, and
performance compared to the previous methods.
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