Online Non-Intrusive Efficiency Monitoring of Pumping Systems

Document Type : Research Article

Authors

School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Moving toward a sustainable energy future requires improving the efficiency of energy systems. The fact that about 22% of industrial electricity is consumed by induction-motor-driven centrifugal pumps, highlights the importance of continuous monitoring of such systems to ensure they are operating at their best efficiency points. This results in the overall reduction of energy consumption and consequently lowers the carbon footprint of pumping systems. This paper presents a non-intrusive approach towards estimating the efficiency of the whole motor pump chain. The motor efficiency is calculated using only motor electrical signals along with the nameplate information. To estimate the pump efficiency, a hybrid method is adopted which uses the pump characteristic curve, impeller speed, and affinity laws. Both estimation algorithms are based on electrical signature analysis (ESA) which requires only motor terminal quantities i.e. current and voltage. The proposed methods are tested on laboratory setups and the experimental results show their accuracy in estimating the efficiency of induction-motor-driven pumps. Given the non-intrusive nature of the proposed method, a simple data acquisition system to acquire motor current and voltage signals along with a microprocessor to implement the algorithms discussed here can be integrated into a single affordable board to be used in utilities for continuous efficiency monitoring purposes.

Keywords

Main Subjects


[1]      Abdelaziz EA, Saidur R, Mekhilef S. A review on energy saving strategies in industrial sector. Renew Sustain Energy Rev 2011;15:150–68. https://doi.org/10.1016/j.rser.2010.09.003.
[2]      Chuan W, Xiaoke H, Desheng Z, Bo H. Numerical and experimental study of the self‐priming process of a multistage self‐priming centrifugal pump. Energy Res 2019:1–19.
[3]      Ahonen T, Kortelainen JT, Tamminen JK, Ahola J. Centrifugal pump operation monitoring with motor phase current measurement. Int J Electr Power Energy Syst 2012;42:188–95. https://doi.org/10.1016/j.ijepes.2012.04.013.
[4]      Lu B, Habetler TG, Harley RG. A survey of efficiency-estimation methods for in-service induction motors. IEEE Trans Ind Appl 2006;42:924–33.  https://doi.org/10.1109/TIA.2006.876065.
[5]      IEEE Standard Test Procedure for Polyphase Induction Motors and Generators. IEEE Stand 112-2004, Nov 2004 2004.
[6]      El-Ibiary Y. An Accurate Low-Cost Method for Determining Electric Motors’ Efficiency for the Purpose of Plant Energy Management. IEEE Trans Ind Appl 2003;39:1205–10. https://doi.org/10.1109/TIA.2003.813686.
[7]      Hsu JS, Kueck JD, Olszewski M, Casada DA, Otaduy PJ, Tolbert LM. Comparison of induction motor field efficiency evaluation methods. IEEE Trans Ind Appl 1998;34:117–25. https://doi.org/10.1109/28.658732.
[8]      Bijan MG, Pillay P. Efficiency estimation of the induction machine by particle swarm optimization using rapid test data with range constraints. IEEE Trans Ind Electron 2019;66:5883–94. https://doi.org/10.1109/TIE.2018.2873121.
[9]      Mutluer M, Bilgin O. Application of a hybrid evolutionary technique for efficiency determination of a submersible induction motor. Turkish J Electr Eng Comput Sci 2011;19:877–90. https://doi.org/10.3906/elk-1003-428.
[10]    Gómez JR, Quispe EC, De Armas MA, Viego PR. Estimation of induction motor efficiency in-situ under unbalanced voltages using genetic algorithms. Proc 2008 Int Conf Electr Mach ICEM’08 2008:25–8. https://doi.org/10.1109/ICELMACH.2008.4799965.
[11]    Phumiphak T, Chat-Uthai C. Estimation of induction motor parameters based on field test coupled with genetic algorithm. PowerCon 2002 - 2002 Int Conf Power Syst Technol Proc 2002;2:1199–203. https://doi.org/10.1109/ICPST.2002.1047592.
[12]    Ahonen T, Tamminen J, Ahola J, Viholainen J, Aranto N, Kestilä J. Estimation of pump operational state with model-based methods. Energy Convers Manag 2010;51:1319–25. https://doi.org/10.1016/j.enconman.2010.01.009.
[13]    Ahonen T, Tamminen J, Ahola J, Kestilä J. Frequency-converter-based hybrid estimation method for the centrifugal pump operational state. IEEE Trans Ind Electron 2012;59:4803–9. https://doi.org/10.1109/TIE.2011.2176692.
[14]    Pöyhönen S, Ahonen T, Ahola J, Punnonen P, Hammo S, Nygren L. Specific speed-based pump flow rate estimator for large-scale and long-term energy efficiency auditing. Energy Effic 2019;12:1279–91. https://doi.org/10.1007/s12053-018-9751-4.
[15]    Luo H, Zhou P, Shu L, Mou J, Zheng H, Jiang C, et al. Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model. Energies 2022;15:1–19. https://doi.org/10.3390/en15093309.
[16]    Arun AS, Subramaniam U, Madurai Elavarasan R, Raju K, Shanmugam P. Sensorless parameter estimation of VFD based cascade centrifugal pumping system using automatic pump curve adaption method. Energy Reports 2021;7:453–66. https://doi.org/10.1016/j.egyr.2021.01.002.
[17]    Arun Shankar VK, Umashankar U, Paramasivam S, Hanigovszki N. An Energy Efficient Control Algorithm for Parallel Pumping Industrial Motor Drives System. Proc 2018 IEEE Int Conf Power Electron Drives Energy Syst PEDES 2018 2018:1–6. https://doi.org/10.1109/PEDES.2018.8707618.
[18]    Wu Y, Wu D, Fei M, Xiao G, Gu Y, Mou J. The Estimation of Centrifugal Pump Flow Rate Based on the Power–Speed Curve Interpolation Method. Processes 2022;10:2163. https://doi.org/10.3390/pr10112163.
[19]    Sadighi A, Kim W. Adaptive-Neuro-Fuzzy-Based Sensorless Control of a Smart-Material Actuator 2011;16:371–9.
[20]    Chi S, Zhang Z, Xu L. Sliding-mode sensorless control of direct-drive PM synchronous motors for washing machine applications. IEEE Trans Ind Appl 2009;45:582–90. https://doi.org/10.1109/TIA.2009.2013545.
[21]    Genduso F, Miceli R, Rando C, Galluzzo GR. Back EMF sensorless-control algorithm for high-dynamic performance PMSM. IEEE Trans Ind Electron 2010;57:2092–100. https://doi.org/10.1109/TIE.2009.2034182.
[22]    Chen Z, Tomita M, Doki S, Okuma S. An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors. IEEE Trans Ind Electron 2003;50:288–95. https://doi.org/10.1109/TIE.2003.809391.
[23]    Wang X, Kennel R, Ma Z, Gao J. Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection. Conf Proc - 2012 IEEE 7th Int Power Electron Motion Control Conf - ECCE Asia, IPEMC 2012 2012;4:2367–71. https://doi.org/10.1109/IPEMC.2012.6259225.
[24]    Lu B, Habetler TG, Harley RG. A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring. IEEE Trans Ind Appl 2008;44:1666–74. https://doi.org/10.1109/TIA.2008.2006297.
[25]    Hsu (Htsui) JS. Monitoring of defects in induction motors through air-gap torque observation. IEEE Trans Energy Convers 1995;31:1016–21.
[26]    Andrus WE, Duncan RO, Flint CW, Moore V a, Barber M. IEEE Std 118TM-1978 (Withdrawn 2005) Standard Test Code for Resistance Measurement 1992;1978.
[27]    Cheng S, Du Y, Restrepo JA, Zhang P, Habetler TG. A nonintrusive thermal monitoring method for induction motors fed by closed-loop inverter drives. IEEE Trans Power Electron 2012;27:4122–31. https://doi.org/10.1109/TPEL.2012.2188045.
[28]    Habetler TG, Harley RG, Gritter DJ. A Stator and Rotor Resistance Estimation Technique for Conductor Temperature Monitoring. Ind Appl Conf 2000:381–7.
[29]    Zhen L, Xu L. Sensorless field orientation control of induction machines based on a mutual MRAS scheme. IEEE Trans Ind Electron 1998;45:824–31. https://doi.org/10.1109/41.720340.
[30]    Deng A, Zou J, Shao Z, Huang G, Shi L, Deng W. Improvement on asynchronous motor system identification based on interactive MRAS. Proc 2015 27th Chinese Control Decis Conf CCDC 2015 2015:448–53. https://doi.org/10.1109/CCDC.2015.7161734.
[31]    Lee S Bin, Habetler TG. An online stator winding resistance estimation technique for temperature monitoring of line-connected induction machines. IEEE Trans Ind Appl 2003;39:685–94. https://doi.org/10.1109/TIA.2003.811789.
[32]    Karanayil B, Rahman MF, Grantham C. Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive. IEEE Trans Ind Electron 2007;54:167–76. https://doi.org/10.1109/TIE.2006.888778.
[33]    Zinger DS, Elbuluk ME, Mir S. PI and fuzzy estimation for the stator resistance in direct torque control of induction machines 1994.
[34]    Cabrera LA, Elbuluk ME. Tuning the stator resistance of induction motors using artificial neural network. PESC Rec - IEEE Annu Power Electron Spec Conf 1995;1:421–7. https://doi.org/10.1109/PESC.1995.474845.
[35]    Bose BK, Patel NR. Quasi-fuzzy estimation of stator resistance of induction motor. IEEE Trans Power Electron 1998;13:401–9. https://doi.org/10.1109/63.668097.
[36]    Lee K, Frank S, Sen PK, Polese LG, Alahmad M, Waters C. Estimation of induction motor equivalent circuit parameters from nameplate data. 2012 North Am Power Symp NAPS 2012 2012. https://doi.org/10.1109/NAPS.2012.6336384.
[37]    Saidur R. A review on electrical motors energy use and energy savings. Renew Sustain Energy Rev 2010;14:877–98. https://doi.org/10.1016/j.rser.2009.10.018.
[38]    Aiello M, Cataliotti A. An Induction Motor Speed Measurement Method Based on Current Harmonic Analysis With the Chirp-Z Transform. IEEE Trans Instrum Meas VOL 54, NO 5 Oct 2005 2005.
[39]    Bharadwaj RM, Parlos AG. Neural state filtering for adaptive induction motor speed estimation. Mech Syst Signal Process 2003;17:903–24. https://doi.org/10.1006/mssp.2002.1523.
[40]    Hurst KD, Habetler TG. Sensorless Speed Measurement Using Current Harmonic Spectral Estimation in Induction Machine Drives. Electronics 1996;11.
[41]    Hammo S, Viholainen J. Testing the accuracy of pump flow calculation without metering. World Pumps 2005;2005:36–9. https://doi.org/10.1016/S0262-1762(05)70846-4.
[42]    Hinkkanen M, Leppänen VM, Luomi J. Flux observer enhanced with low-frequency signal injection allowing sensorless zero-frequency operation of induction motors. IEEE Trans Ind Appl 2005;41:52–9. https://doi.org/10.1109/TIA.2004.840958.
[43]    Holtz J. Sensorless control of induction machines - With or without signal injection? IEEE Trans Ind Electron 2006;53:7–30. https://doi.org/10.1109/TIE.2005.862324.
[44]    Bane P, Veran V, Boris D, Dragan M, Nikola V. Rotor slot harmonics based induction machine speed estimation. Int Symp Power Electron 2017.
[45]    Arabaci H. A genetic algorithm approach for sensorless speed estimation by using rotor slot harmonics. Lect Notes Eng Comput Sci 2015;2219:265–9.
[46]    Martin G. Chirp Z-Transform Spectral Zoom Optimization with MATLAB. Sandia Natl Lab Rep SAND2005-7084 2005.
[47]    Pritchard PJ, Mitchell JW. Fox and McDonald’s Introduction to Fluid Mechanics. 9th ed. John Wiley & Sons; 2016.