[1] M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev., vol. 35, pp. 1084–1094, 2006.
[2] N. Flidj, G. Laurent, J. Aubard, G. Lvi, A. Hohenau, J. R. Krenn, and F. R. Aussenegg, “Grating-induced plasmon mode in gold nanoparticle arrays,” The Journal of Chemical Physics, vol. 123, no. 22, pp. –, 2005.
[3] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett., vol. 84, pp. 4721–4724, May 2000.
[4] C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep., vol. 2, pp. 1–6, 2012.
[5] A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Del Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express, vol. 17, no. 5, pp. 3741–3753, 2009.
[6] F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano, vol. 2, no. 4, pp. 707–718, 2008.
[7] A. Gopinath, S. V. Boriskina, N. Feng, B. M. Reinhard, and L. Del Negro, “Photonic-plasmonic scattering resonances in deterministic aperiodic structures,” Nano Letters, vol. 8, no. 8, pp. 2423–2431, 2008.
[8] S.J Oldenburg, R.D Averitt, S.L Westcott, and N.J Halas, “Nano-engineering of optical resonances,” Chemical Physics Letters, vol. 288, no. 24, pp. 243 – 247, 1998.
[9] S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” The Journal of Physical Chemistry B, vol. 103, no. 40, pp. 8410–8426, 1999.
[10] M.F. Pantoja, M.G. Bray, D.H. Werner, P.L. Werner, and A.R. Bretones, “A computationally efficient method for simulating metal-nanowire dipole antennas at infrared and longer visible wavelengths,” Nanotechnology, IEEE Transactions on, vol. 11, no. 2, pp. 239–246, March 2012.
[11] V. A. Podolskiy, A. K. Sarychev, E. E. Narimanov, and V. M. Shalaev, “Resonant light interaction with plasmonic nanowire systems,” Journal of Optics A: Pure and Applied Optics, vol. 7, no. 2, pp. S32, 2005.
[12] B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature materials, vol. 9, no. 9, pp. 707–715, 2010.
[13] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley-VCH, Weinheim, Germany, 2004.
[14] J. D. Jackson, Classical Electrodynamics, Wiley, New York, NY, 1975.
[15] W. Cai and V. Shalaev, Optical Metamaterials, Springer, New York, 2010.
[16] E. Krugel, The Physics of Interstellar Dust, IOP Publishing Ltd, London, UK, 2003.
[17] CST Microwave Studio 2012, CST Gmbh (http://www.cst.com), 2012.
[18] M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, Wiley-VCH, Weinheim, Germany, 2011.