[1] L. Vachhani, A. D. Mahindrakar, and K.
Sridharan. "Mobile robot navigation through a
hardware-efficient implementation for control law-based construction of generalized voronoi diagram." Mechatronics, IEEE/ASME Transactions on 16.6 (2011): 1083-1095.
[2] Altafini, Claudio. "A path-tracking criterion for an LHD articulated vehicle."The International Journal of Robotics Research 18.5 (1999): 435-441.
[3] A. KAMAGA, and Ahmed Rachid. "A simple path tracking controller for car-like mobile robots." Choice 1 (1997): 2.
[4] Altafini, Claudio. "Following a path of varying curvature as an output regulation problem." (2002).
[5] Wit, Jeff, Carl D. Crane, and David Armstrong. "Autonomous ground vehicle path tracking." Journal of Robotic Systems 21.8 (2004): 439-449.
[6] Antonelli, Gianluca, Stefano Chiaverini, and Giuseppe Fusco. "A fuzzy-logic-based approach for mobile robot path tracking." Fuzzy Systems, IEEE Transactions on 15.2 (2007): 211-221.
[7] Omid Mohareri, Rached Dhaouadi, and Ahmad B. Rad. "Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks."Neurocomputing 88 (2012): 54-66.
[8] Yang, Simon X., et al. "A bioinspired neurodynamics-based approach to tracking control of mobile robots." Industrial Electronics, IEEE Transactions on 59.8 (2012): 3211-3220.
[9] Bingül, Zafer, and Oğuzhan Karahan. "A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control." Expert Systems with Applications 38.1 (2011): 1017-1031.
[10] Park, Bong Seok, et al. "A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots." Control Systems Technology, IEEE Transactions on 18.5 (2010): 1199-1206.
[11] K. Shojaei, and A. M. Shahri. "Output feedback tracking control of uncertain non-holonomic wheeled mobile robots: a dynamic surface control approach."Control Theory & Applications, IET 6.2 (2012): 216-228.
[12] Zhong, Guoliang, et al. "Trajectory tracking of wheeled mobile robot with a manipulator considering dynamic interaction and modeling uncertainty."Intelligent Robotics and Applications. Springer Berlin Heidelberg, 2012. 366-375.
[13]
C. Canudas de Wit and O. J. Sordalen,
“Exponential stabilization of mobile robot with nonholonomic constraints,” IEEE Trans. Autom. Control, vol. 37, no. 11, pp. 1791–1797, Nov. 1992.
[14]
C. Samson, “Control of chained system application to path following and time-varying point-stabilization of mobile robots,” IEEE Trans. Autom. Control, vol. 40, no. 1, pp. 64–77, Jan. 1995.
[15] Zhong, Guoliang, et al. "Trajectory tracking of wheeled mobile robot with a manipulator considering dynamic interaction and modeling uncertainty."Intelligent Robotics and Applications. Springer Berlin Heidelberg, 2012. 366-375.
[16] Chwa, Dongkyoung. "Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances." Fuzzy Systems, IEEE Transactions on 20.3 (2012): 587-593.
[17] Jafar Keighobadi, and Mohammad B. Menhaj. "From nonlinear to fuzzy approaches in trajectory tracking control of wheeled mobile robots." Asian Journal of Control 14.4 (2012): 960-973.
[18] Cortes, Patricio, et al. "Delay compensation in model predictive current control of a three-phase inverter." Industrial Electronics, IEEE Transactions on 59.2 (2012): 1323-1325.
[19]
S. Zickler, T. Laue, O. Birbach, M. Wongphati, and M. Veloso, “SSLVision: The Shared Vision System for the RoboCup Small Size League”, RoboCup 2009: Robot Soccer World Cup XIII, vol. 5949, pp. 425–436, 2009.
[20]
E. Hashemi, M. Ghaffari Jadidi, O. Bakhshandeh, Trajectory planning optimization with dynamic modeling of four wheeled omni-directional mobile robots, in: Proc. of IEEE Int. Conf. on Computational Intelligence in Robotics and Automation, December 2009, pp. 272–277.
[21] Purwin, Oliver, and Raffaello D’Andrea. "Trajectory generation and control for four wheeled omnidirectional vehicles." Robotics and Autonomous Systems54.1 (2006): 13-22.