[1] D. Scharstein, R. Szeliski, A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, International journal of computer vision, 47(1) (2002) 7-42.
[2] A.M. Fotouhi, R. Abolghasem, Optimizing Disparity Candidates Space in Dense Stereo Matching, aut journal of modeling and simulation, 43(2) (2011) 43-51.
[3] T. Kanade, M. Okutomi, A stereo matching algorithm with an adaptive window: Theory and experiment, IEEE transactions on pattern analysis and machine intelligence, 16(9) (1994) 920-932.
[4] O. Veksler, Stereo correspondence with compact windows via minimum ratio cycle, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(12) (2002) 1654- 1660.
[5] A. Fusiello, V. Roberto, E. Trucco, Efficient stereo with multiple windowing, in: Proceedings of IEEE Computer Society conference on computer vision and pattern recognition, IEEE, 1997, pp. 858-863.
[6] Y. Xu, D. Wang, T. Feng, H.-Y. Shum, Stereo computation using radial adaptive windows, in: 2002 International Conference on Pattern Recognition, IEEE, 2002, pp. 595-598.
[7] A.F. Bobick, S.S. Intille, Large occlusion stereo, International Journal of Computer Vision, 33(3) (1999) 181-200.
[8] S.B. Kang, R. Szeliski, J. Chai, Handling occlusions in dense multi-view stereo, in: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, IEEE, 2001, pp. I-I.
[9] H. Hirschmüller, P.R. Innocent, J. Garibaldi, Real-time correlation-based stereo vision with reduced border errors, International Journal of Computer Vision, 47(1) (2002) 229-246.
[10] O. Veksler, Fast variable window for stereo correspondence using integral images, in: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., IEEE, 2003, pp. I-I.
[11] K.-J. Yoon, I.S. Kweon, Adaptive support-weight approach for correspondence search, IEEE transactions on pattern analysis and machine intelligence, 28(4) (2006) 650-656.
[12] A. Hosni, M. Bleyer, M. Gelautz, C. Rhemann, Local stereo matching using geodesic support weights, in: 2009 16th IEEE International Conference on Image Processing (ICIP), IEEE, 2009, pp. 2093-2096.
[13] D. Huang, C. Shan, M. Ardabilian, Y. Wang, L. Chen, Local binary patterns and its application to facial image analysis: a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(6) (2011) 765-781.