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ABSTRACT: Image inpainting is the process of filling in damaged or missing regions in an image 
by using information from known regions or known pixels of the image. One of the most important 
techniques for inpainting is convolution-based methods, in which a kernel is convolved with the 
damaged image iteratively. Convolution based algorithms are very quick, but they don’t have good 
results in structures and textural regions and result in blurring. The kernel size in the convolution-based 
algorithm is a critical parameter. The large size results in edge blurring, and if the kernel size is small, the 
information may not be sufficient for reconstruction. In this paper, a novel convolution-based algorithm 
is proposed that uses known gradient of the pixels to construct a convolution mask. In this algorithm, 
the kernel size is controlled by the gradient of the image in the known regions. The algorithm computes 
the weighted sum of the known pixels in a neighborhood around a damaged pixel and replaces the value 
in the place of that damaged pixel. The proposed algorithm is fast and results in good edges and smooth 
regions reconstruction. It is an iterative algorithm and its implementation is very simple. Experimental 
results show the effectiveness of our algorithm.
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1- Introduction
Image inpainting is the process of filling in damaged or

missing regions in an image using information from known 
regions of the image. Fundamental applications of digital 
image inpainting include text, logo removal and all unwanted 
patterns removal from still images and videos, removing 
scratches or stains creating special effect in general. Most 
of the existing techniques follow a two-stage process: first 
damaged regions to be inpainted are selected (manually), then 
information is propagated inward from the surrounding area. 
Digital image inpainting was introduced by Bertalmio et al. 
[1]. It has attracted much attention in the research community 
and many different algorithms are proposed by researchers 
for this. The proposed methods in the state of the art can be 
divided into four main categories:

1- 1- Partial Differential Equation (PDE) based Algorithms
PDE based algorithms are designed to connect edges

or extent isophotes better into damaged regions [1]-[9]. 
Bertalmio et al. [1] proposed a model inspired by artists 
who inpainted an image, based on a nonlinear PDE. The 
algorithm [1] propagates edges into missed regions and 
smooths uniform regions. Chan [2] proposed an algorithm 
using Euler elastica curves to connect appropriate level lines. 
The algorithm in [2] is a generalization of Total Variation 

(TV) and Bertalmio’s algorithm [1]. Bertalmio et al. [3] used 
the similarities between equations in image processing and 
Navier-Stokes equations in dynamic fluid to propose a PDE 
based algorithm for image inpainting. Grossauer [4] proposed 
to use Ginzburg-Landau equation for image inpainting. This 
equation describes the phase transition in superconductors, 
and provides high contrast and low color smearing. A fourth 
order PDE based algorithm is presented in [5] based on 
minimizing the TV norm of an image. Li [6] proposed a 
nonlocal algorithm that minimizes the TV norm of images 
only in similar regions, using a texture synthesis method. In 
[7], Tai presented a two-step method for inpainting. First, 
the algorithm propagates isophote directions into damaged 
domains, using TV-Stokes equation. Afterwards, the image 
is restored to fit the constructed directions. In both steps 
nonlinear PDEs need to be solved. In [8], Telea presented 
an algorithm that can be looked as a PDE based method. 
The author calculated smoothness of an image in a known 
neighborhood of the current damaged pixel as a weighted 
average to inpaint current pixel. This method is fast, simple, 
and provides better results. Li et al. [9] proposed two fourth-
order Partial Differential Equations (PDEs) to inpaint 
the image. By analyzing these two PDEs and comparing 
their diffusion images, the authors can confirm if they are 
forward diffusion or backward diffusion. Finally, PDE-based 
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algorithms need to solve a differential equation, which is very 
time consuming. In addition, PDE-based algorithms result in 
discontinuity and blurring at the edges when the damaged 
region is large.

1- 2- Texture Synthesis Algorithms
Texture synthesis algorithms use a sample region around

a damaged pixel, compare all regions in the image with the 
sample region to find more similar regions in known parts of 
the image, and copy the best-founded region into the region to 
be inpainted [10]-[20]. Efros [14] proposed a texture synthesis 
method for texture inpainting. The algorithm first finds a 
set of pixels in an image whose neighborhoods are similar 
to the neighborhood around the current damaged pixel. The 
algorithm then keeps K  most similar regions and chooses 
one of the central pixels of candidate regions randomly and 
copies its value to the current damaged pixel. Criminisi [15] 
exploits a patch based (exemplar based) algorithm in which 
the filling order is considered by a priority function ensuring 
that linear structures are preserved. In [16], a new priority 
function is introduced that improves Criminisi’s work. Wong 
[17] proposed a nonlocal method for image inpainting. The
algorithm uses multiple similar samples in an image and the
contribution of each sample in construction damaged pixels is
determined by means of a weighting similarity function. The
algorithm in [18] automatically guides patch-based image
inpainting. For each patch, the algorithm estimates planar
projection parameters, then segments the known region into
planes. Finally, the planes in the known regions are copied
to the related damaged planes. In [19], Deng proposed a new
function to calculate the priority of patches. Recently, Ding
[20] proposed a new algorithm in which a priority function is
first calculated to fill in the damaged region around the edges
(to preserve the edges). In addition, a Gaussian-weighted
nonlocal texture similarity measure is proposed to obtaine
multiple candidate patches for each target patch. Additionally, 
the authors used α -trimmed mean filters to calculate the
mean of the candidate patches.

There are several other works that gain both PDE-based 1-1 
and texture synthesis 1-2 categories. Bertalmio [21] proposed 
to decompose an original image into two components with 
different characteristics: textures and structures. One is 
reconstructed by a texture synthesis algorithm and the other 
component is inpainted by a structure algorithm. In [22], the 
method utilizes image regularity statistics to extract dominant 
linear structures of the target image to reconstruct the edges. 
Guided by these structures, homography transformations 
are estimated and combined to globally repair the missing 
regions using the Markov random field model. Finally, all 
exemplar based (texture synthesis) algorithms need to search 
in all regions of the image to find candidate patches, therefore 
are too time consuming. To solve this, some papers proposed 
to copy the whole patch, which leads to edge discontinuity; 
but a large time is still needed to search all over the image.

1- 3- Deep Network Based Algorithms
Recently, several algorithms are proposed to inpaint

damaged regions of images based on deep learning methods. 
In these algorithms, a network is first trained with several 
images. Next, a damaged region is given to the trained network 
and estimates the damaged pixels. In [23], a new energy 
function is considered to compute the error of the network. 
The weights change to minimize this energy function. In [24], 
an encoder-decoder model is proposed to video inpainting, 
the encoder provides visible pixels revealed from the scene 
dynamics. These pixels are fed into the encoder. Afterwards, 
using temporal consistency, two architectures are proposed. 
The first model fills the text on the frames of video. The 
second architecture is designed to fill large holes. In [25], 
semantic conditions are explored to give better restored face. 
By leveraging the advantages that Bayesian decision theory 
deals with uncertainty, the proposed framework exploits deep 
representation into Bayesian decision theory and derives 
a deep representation calibrated evidence lower bound. 
Finally, all deep network-based methods need to train with 
a large database and this process is very time consuming. 
Additionally, the network should be trained by the related 
database for different scenes restoration.

1- 4- Convolution-based Algorithms
All the mentioned categories are quite slow. In contrast,

convolution-based methods are fast and simple to implement 
[26]-[30]. The authors [26] proposed a new algorithm that 
automatically distinguishes the damaged pixels from the 
known pixels and inpaints them. The gated convolution is 
trained by millions of images. Oliveira [27] proposed a fast 
image inpainting algorithm by convolving the borders of the 
damaged areas with a 3 3×  (fixed) mask, and shrinking the 
degraded regions. In [28], Hadhood modified the Oliveira’s 
method by considering only known pixels for averaging 
(fixed mask). Both methods result in blurring the edges. In 
[29], a convolution-based method is proposed in which the 
convolution kernel is constructed based on the difference of 
the pixels value distance (mask with variable weights). The 
proposed method has two parameters to be determined by 
the user. In [30], the authors improved the work in [29] by 
minimizing an energy function to find the patches. Finally, all 
convolution-based methods result in blurring when damaged 
region is large or curved. To overcome this drawback, we 
propose a novel convolution-based algorithm in which the 
gradient of the image is utilized to compute the weights in the 
kernel, which will preserve the edges. The proposed algorithm 
uses both vertical and horizontal gradient to calculate weights 
in a Gaussian convolving mask. The proposed algorithm is 
iterative, very simple to implement, and provides better 
results.

The paper is organized as follows. Section 2 presents 
the proposed algorithm. To evaluate the performance of the 
proposed method, some experimental results are given in 
Section 3. Finally, we conclude the paper in section 4.



H. Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI:   10.22060/eej.2022.20857.5444

13

2- Proposed Convolution based Image Inpainting
In this section, a new method based on convolution is

proposed to reconstruct damaged regions of an image. As 
stated before, in the convolution-based method, a mask 
(kernel) is convolved by the degraded image. The main 
drawback of these methods is that they usually utilize the 
same mask for different regions of an image (i.e. a similar 
mask (in weights or in size)) is used for both edge and 
smooth regions. This leads to smoothing the edges or image 
blurring. Moreover, from the interpolation point of view, the 
more information is considered in the interpolation process, 
the more accurate approximation can be obtained. In order 
to take more information into account for the reconstruction 
process, the size of the convolving kernel should be increased 
in convolution-based methods, while results in blurring in the 
discontinuous regions, such as the edges. To avoid blurring 
and to be accurate simultaneously when convolving, the 
kernel size should be large when the damaged region of the 
image is in a smooth area to be more accurate, while the 
kernel size should be small in discontinuous regions to avoid 
blurring. To reach this goal, it is proposed to use the gradient 
of the image to distinct smooth regions from non-smooth 
regions.

To reach this goal, it is proposed to use a Gaussian 
function for computing the weights, while the kernel size is 
controlled by the image gradient. As we know, in the smooth 
regions, the gradient of an image is low and approaches to 
zero, while the gradient of an image in the regions including 
discontinuity like the edges is high. Therefore, if the gradient
is in the exponent of the Gaussian function, it can control 
the kernel size. Consider pixel i  in the boundary of the 
damaged region and an m m×  neighborhood around it. 
The information is transferred from known pixels in this 
neighborhood to the damaged pixel i . The approximated 
value of the damaged pixel is the weighted average of the 
known pixels in this neighborhood. The weight for the known 
pixel j  in the kernel is calculated as follows:

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (1)

where ix  and iy  are the coordinates of pixel i , and 
j
max I∇  is the maximum of the gradient of the image in pixel 

j . j
max I∇  is calculated as follows:

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|}  (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (2)

Note that norm 2 can be chosen for j
max I∇  as well. 

However, it needs more mathematical operations when norm 
2 is used, and it is faster to use maximum instead of norm 2 
while calculating the gradient or edges. In (2), j

v I∇  and j
h I∇  

show the vertical and the horizontal gradient of the image, 
which are calculated as follows:

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (3)

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (4)

If the weights are calculated according to equation (1), 
the gradient increases and the value of Gaussian function 
decreases in the regions including edges (i.e. the weights 
decrease). Therefore, even if the kernel size ( m ) is large, 
the weights assigned to corresponding pixels are low. This 
way, information is transferred from a little number of pixels, 
and this avoids averaging in the regions including edges, and 
therefore avoids image blurring. On the contrary, the gradient 
becomes low and the weights assigned to corresponding pixels 
becomes high in the smooth regions of an image. This way, 
more pixels are taken into account in the averaging process 
and the approximation is more accurate. When a pixel is on 
the edge, the kernel size decreases and when a pixel is in the 
smooth region, the kernel size increases. In fact, when a pixel 
is in the smooth region (i.e. when the kernel size increases), 
more pixels are participated in calculating the damaged 
pixel and this pixel is reconstructed smoothly. If a pixel is 
on an edge, less number of pixels are participated in the 
reconstruction and the damaged pixel is reconstructed sharply, 
which is necessary when pixel is on the edge. Additionally, it 
is necessary to compare the proposed kernel with the bilateral 
kernel [29]. In bilateral approach, the kernel is computed by
two factors, the first is the gray level difference between two 
pixels and second is the Euclidean distance of two pixels. 
However, we used the gradient of pixel for computing the 
kernel in the proposed method. Where the gradient is high 
(i.e. edge), the kernel size decreases by assigning zero to 
more pixels and where the gradient is small (i.e. smooth 
regions), the kernel size increases and calculates the average 
of the values of the pixels. However, in the bilateral approach, 
even if the two values of the pixels are the same but in a large 
distance, the weight assigned to that pixel for reconstruction 
becomes low. Finally, the value of the damaged pixel i  is 
calculated as the following weighted sum.

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩  (5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (5)

where   is the m m×  neighborhood of pixel i , W
is the normalizing factor ( ),ij j j

j

W w M x y
∈

= ∑


, and ( ),j jM x y
is a mask that shows whether the pixel is known or not (i.e. 

( ), 1j jM x y =  if the pixel is known and ( ), 0j jM x y =  if 



﻿



14

the pixel is damaged). We consider the mask M  to avoid 
transferring information from damaged regions. Therefore, the 
algorithm should start from where the information is known. 
To this goal, first the pixels in the boundary of the damaged 
region are selected and the weighted sum is calculated. Next, 
a value is calculated for each damaged pixel in the boundary 
of the damaged region. Afterwards, the damaged region 
is shrunk. This process continues until damaged region 
vanishes. All the above process is repeated several times to 
result in a better result. The proposed algorithm is shown 
in Table 1. In all iterations, the damaged region is given 
to the algorithm, and is filled by the algorithm. In the first 
iteration, the information is propagated only from the known 
surrounding pixels; but in the other iterations, the information 
is propagated from all the surrounding pixels. This is because 
in iteration 1 the damaged pixels are unknown, but in other 
iterations the damaged pixels are reconstructed in the iteration 
1. In the proposed algorithm, first the damaged region (which
we want to inpaint) is detected manually in mask Ù , and
copied to 1Ù  as lines 1 and 2 of the algorithm illustrate. Next, 
the algorithm goes to line 6 and the boundary of the damaged 
region is extracted. Afterwards, the algorithm finds values for 
damaged pixels in lines 7 to 9 and all the damaged pixels 
in the boundary of damaged region in the original image is 
replaced in line 10 and ends for the loop; next in line 11 of 
the algorithm, the damaged region is shrunk. After that, the 
algorithm returns to line 5 and the steps are repeated till all 
the damaged pixels are filled. It is necessary to note that Ù
, which is a binary mask that separates damaged pixels and 
known pixels with zeros and ones respectively, is updated 
in each iteration, while loop in line 12 and the locations 
according to the damaged pixels of the original image in Ù  

change to one. Therefore, the value of Ù  (i.e. location of 
damaged pixels) is lost in each iteration (the loop) and should 
be re-initialized for the next iteration, which is done in line 
4. Note that locations according to damaged pixels of the
original image in Ù  get zero value before inpainting while
all locations according to damaged pixels of the original
image in Ù  get value one after one iteration, therefore Ù
is fully filled with ones. At this time, one iteration of the
algorithm is completed and the algorithm returns to line 3
and the next iteration starts. Fig. 6 shows how MSE decreases
when the number of iterations increases.In the next section,
the proposed algorithm is evaluated and compared to other
algorithms.

3- Simulation Results
In this section, the proposed algorithm is evaluated

and compared with several state-of-art algorithms 
([9],[20],[28],[29],[30]) in both qualitative and quantitative. 
Usually, the original image doesn’t exist in the image 
inpainting, therefore there is no well-defined criterion for 
quantitative comparison. However, to have a fair comparison, 
we degrade several images intentionally and reconstruct 
them by the proposed algorithms and some algorithms in 
the state of art and compute the Mean Square Error (MSE) 
by eq. (6) for each algorithm. Additionally, we compute the 
implementation time of each algorithm to compare the speed 
of each one. All the algorithms are implemented by Matlab 
R2019b on an Intel core i7-6500 CPU 2.50 GHz with 8 GB 
RAM on a 64-bit operating system. In all simulations, the 
kernel size of Gaussian in the proposed method is 13 13×  and 
the number of iterations is fixed to 600 iterations, which may 
not be needed in all figures. 

Table 1. Inpainting AlgorithmTable 1. Inpainting Algorithm

Algorithm 1 

1: Get the damaged region Ω (get damaged region mask as a binary image) and the input image 

𝐼𝐼(𝑥𝑥, 𝑦𝑦). 
2: Ω1 = Ω 

3: For iteration = 1 to T 

4:        Ω = Ω1 

5:        While Ω ≠ ∅ do 

6:                   𝜕𝜕Ω ← the boundary of damaged regions 

7:                   For all pixels in 𝜕𝜕Ω do 

8:             𝒩𝒩 ← neighborhood of each pixel 

9:     Calculate the weights using (1) 

10:           Replace the pixel value of the image 𝐼𝐼(𝑥𝑥, 𝑦𝑦) in 𝜕𝜕Ω using (5) 

11:                  End For 

12:           Shrink the damaged region Ω 

13:     End While 

14: End For 
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𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)  (6)

Where N  and K  are the number of rows and columns 
of the image, f  shows the original image and   ˆf  shows the
restored image.

In Fig. 1, an image ( 384 256× ) with very sharp straight 
edges is degraded with a text (1b). As Figs. 1c-1g show the 
performance of the algorithm of Ding [20] suppress the other 
the state-of-the-art algorithms; but the proposed algorithm 
performs better than Ding’s algorithm [20], as it can be seen 
from the above of color pencils.

In Fig. 2, an image ( 267 182× ) with smooth edges is 
degraded with some lines with different sizes (2b). In this 
figure, all algorithms perform similarly. The algorithm 
proposed by Ding [20] is wrong in finding similar patches due 
to the rapid change in gradient of the image, which results in 
bad restoration. All the convolution-based algorithms result 
in blurring the image, especially at the edge of lemon. In 
this image, the edges are not sharp, therefore the obtained 
gradient is low and cannot guide neither the exemplar-based 
approaches nor gradient based methods.

In Fig. [3], an image ( 384 256× ) including curved sharp 
edges and some textural regions is degraded with some lines 
(3b). It can be seen from this figure that all algorithm result 
in discontinuity in the edges, but the proposed algorithm has 
the best performance. For example, in the sharp edge in the 
lowest orange, no algorithm can restore the edges without 
artifact except the proposed method (see the lowest degraded 
region in the edge).

In Fig. 4, degraded region is on the elbow of the 
cameraman ( 256 256× ), which there is no similar other 
region and is a curved sharp edge. As can be seen in the Figs. 
4c,4d, and 4e, all convolution-based methods [28], [29], and 
[30] cannot restore this kind of edge. As Fig. 4g shows, PDE
based methods ([9]) result in blurring in this kind of edges.
Additionally, as Fig. 4f shows, Ding’s algorithm [20] doesn’t
have a good performance since there is no similar edge in this
figure, consequently, the Ding’s algorithm [20] cannot find the 
similar patch and doesn’t result in good restoration. However,

the proposed method controlled by the local gradient of the 
image can restore the elbow of cameraman well. Although 
the restored image is not completely the same, it is not blurred 
and has no artifact (i.e., the restored image is satisfactory). 
In Fig. 5, an object removal is considered in which we try 
to remove the man from the sunset image ( 300 168× ). Fig. 
5b shows the mask for removing the man. As it can be seen 
from this figure, no convolution-based algorithm and no PDE 
based method can restore the image satisfactorily. This is 
because the gradient in the textural area changes very rapidly, 
therefore the information cannot be transferred from known 
pixels to unknown pixels. However, it as can be seen from Fig. 
5f that Ding’s algorithm [20] can restore the image very well 
since it can find similar patches in this image. Moreover, this 
algorithm results to discontinuity at the edge of the road.To 
compare the performance of the proposed algorithm with the 
state of the art, the MSE between the original image and the 
restored image is shown in Table 2. As this table shows, the 
proposed method results in less MSE among the algorithms, 
and has a good visible quality. Therefore, the simulation results 
show the effectiveness of the proposed method. Additionally, 
in Table 3, the implementation time of the algorithms is 
compared. The PDE based algorithms and the exemplar-
based algorithms need too much time for restoration, while 
the convolution-based algorithms are nearly real time. As can 
be seen, the proposed method has a comparable run time with 
convolution based like Bilateral [29]. It should be noted that 
in figure 1 to 4 the algorithm tries to reconstruct a damaged 
image whose original image is available and comparison 
between the reconstructed and the original image is feasible. 
However, in figure 5, the algorithm tries try to remove the 
person from image, therefore the reconstructed image is not 
similar to the original and therefore the MSE could not be 
computed for Fig. 5.As stated before, there is no criterion for 
image inpainting. In this paper, MSE is considered to show 
the performance of the proposed method. Another important 
factor in the inpainting algorithms is the implementation 
time. Considering both the implementation time and MSE, 
the results shows that the proposed algorithm has better MSE 
and an intermediate implementation time.

In addition, there are other inainting results for 
interested reviewer on the web: https://cloud.vru.ac.ir/
s/4AQiosBKctDDpb9

Table 2. MSE between the original image and the restored image Table 2. MSE between the original image and the restored image

Algorithm Li [9] 
Bilateral 

[29] 

Hadhood 

[28] 
Anh [30] Ding [20] Proposed 

Fig. 1 1.441 0.857 3.825 0.884 0.4 0.281 

Fig. 2 2.007 0.387 0.725 0.225 1.092 0.433 

Fig. 3 0.277 0.220 0.661 0.21 0.362 0.184 

Fig. 4 0.047 0.042 0.262 0.038 0.038 0.012 

Table 3. Implementation time (s)

Algorithm Li [9]
Bilateral

[29]

Hadhood 

[28]

Anh 

[30]
Ding [20] Proposed

Fig. 1 40381.232 141.153 0.024 4.647 66182.095 1323.940

Fig. 2 665.854 2.802 0.009 1.427 145.477 32.482

Fig. 3 22927.482 43.626 0.126 2.478 35107.882 71.125

Fig. 4 42.705270 12.958 0.007 1.240 31.067 30.984
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Table 3. Implementation time (s) 

Table 2. MSE between the original image and the restored image

Algorithm Li [9]
Bilateral

[29]

Hadhood 

[28]
Anh [30] Ding [20] Proposed

Fig. 1 1.441 0.857 3.825 0.884 0.4 0.281

Fig. 2 2.007 0.387 0.725 0.225 1.092 0.433

Fig. 3 0.277 0.220 0.661 0.21 0.362 0.184

Fig. 4 0.047 0.042 0.262 0.038 0.038 0.012

Table 3. Implementation time (s)

Algorithm Li [9] 
Bilateral 

[29] 

Hadhood 

[28] 

Anh 

[30] 
Ding [20] Proposed 

Fig. 1 40381.232 141.153 0.024 4.647 66182.095 1323.940 

Fig. 2  665.854 2.802 0.009 1.427 145.477 32.482 

Fig. 3 22927.482 43.626 0.126 2.478 35107.882 71.125 

Fig. 4 42.705270 12.958 0.007 1.240 31.067 30.984 

Fig. 1. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh
[30], 

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood 
[28], (e) Anh [30], (f) Ding [20], (g) Li [9], (h) Proposed method
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Fig. 2. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh 
[30], 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Fig. 2. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30], (f) Ding 
[20], (g) Li [9], (h) Proposed method

Fig. 3. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh 

[30], (f) Ding [20], (g) Li [9], (h) Proposed method

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Fig. 3. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh 
[30], (f) Ding [20], (g) Li [9], (h) Proposed method



﻿



18

(d) (e) (f) 

Fig. 4. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30], 
(f) Ding [20], (g) Li [9], (h) Proposed method

(g) (h) 

(a) 

(d) (e) 

(b) 

(f) 

(c) 

Fig. 5. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30], 
(f) Ding [20], (g) Li [9], (h) Proposed method
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Additionally, the proposed method is applied to Places2 
dataset, and the results are compared with the algorithm in 
[31]. The Fréchet Inception Distance (FID) score is obtained 
as 32.1 for the proposed algorithm, while it is obtained as 11.7 
for [31]. Therefore, the FID scores confirm that [31] results 
in much better reconstruction than the proposed method. 
Additionally, the implementation time of the algorithm in 
[31] is three times faster than the proposed method, but it
is necessary to mention that in this comparison, we consider
only prediction time for [31] and the learning time isn’t
considered.

4- Conclusion and Future Work
In this paper, a new convolution-based method for image

inpainting is proposed. the proposed method utilizes the 
image gradient in the exponent of Gaussian function when 
calculating the weights. In this way, the size of Gaussian 
kernel can be controlled in different regions of the image. 
The experimental results confirm the effectiveness of the 
algorithm. However, as we see in the formulation, the gradient 
of the image is calculated only in two vertical and horizontal 
orientations. In the future work we will try to improve this to 
get better results.
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