
AUT Journal of Electrical Engineering

AUT J. Electr. Eng., 55(1) (2023) 11-20
DOI: 10.22060/eej.2022.20857.5444

Gradient-Controlled Gaussian Kernel for Image Inpainting
Hossein Noori

Department of Electrical Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

ABSTRACT: Image inpainting is the process of filling in damaged or missing regions in an image
by using information from known regions or known pixels of the image. One of the most important
techniques for inpainting is convolution-based methods, in which a kernel is convolved with the
damaged image iteratively. Convolution based algorithms are very quick, but they don’t have good
results in structures and textural regions and result in blurring. The kernel size in the convolution-based
algorithm is a critical parameter. The large size results in edge blurring, and if the kernel size is small, the
information may not be sufficient for reconstruction. In this paper, a novel convolution-based algorithm
is proposed that uses known gradient of the pixels to construct a convolution mask. In this algorithm,
the kernel size is controlled by the gradient of the image in the known regions. The algorithm computes
the weighted sum of the known pixels in a neighborhood around a damaged pixel and replaces the value
in the place of that damaged pixel. The proposed algorithm is fast and results in good edges and smooth
regions reconstruction. It is an iterative algorithm and its implementation is very simple. Experimental
results show the effectiveness of our algorithm.

Review History:

Received: Dec. 06, 2021
Revised: Jul. 28, 2022
Accepted: Aug. 01, 2022
Available Online: Mar. 01, 2023

Keywords:

Image Inpainting

Image Reconstruction

Image Interpolation

11

1- Introduction
Image inpainting is the process of filling in damaged or

missing regions in an image using information from known
regions of the image. Fundamental applications of digital
image inpainting include text, logo removal and all unwanted
patterns removal from still images and videos, removing
scratches or stains creating special effect in general. Most
of the existing techniques follow a two-stage process: first
damaged regions to be inpainted are selected (manually), then
information is propagated inward from the surrounding area.
Digital image inpainting was introduced by Bertalmio et al.
[1]. It has attracted much attention in the research community
and many different algorithms are proposed by researchers
for this. The proposed methods in the state of the art can be
divided into four main categories:

1- 1- Partial Differential Equation (PDE) based Algorithms
PDE based algorithms are designed to connect edges

or extent isophotes better into damaged regions [1]-[9].
Bertalmio et al. [1] proposed a model inspired by artists
who inpainted an image, based on a nonlinear PDE. The
algorithm [1] propagates edges into missed regions and
smooths uniform regions. Chan [2] proposed an algorithm
using Euler elastica curves to connect appropriate level lines.
The algorithm in [2] is a generalization of Total Variation

(TV) and Bertalmio’s algorithm [1]. Bertalmio et al. [3] used
the similarities between equations in image processing and
Navier-Stokes equations in dynamic fluid to propose a PDE
based algorithm for image inpainting. Grossauer [4] proposed
to use Ginzburg-Landau equation for image inpainting. This
equation describes the phase transition in superconductors,
and provides high contrast and low color smearing. A fourth
order PDE based algorithm is presented in [5] based on
minimizing the TV norm of an image. Li [6] proposed a
nonlocal algorithm that minimizes the TV norm of images
only in similar regions, using a texture synthesis method. In
[7], Tai presented a two-step method for inpainting. First,
the algorithm propagates isophote directions into damaged
domains, using TV-Stokes equation. Afterwards, the image
is restored to fit the constructed directions. In both steps
nonlinear PDEs need to be solved. In [8], Telea presented
an algorithm that can be looked as a PDE based method.
The author calculated smoothness of an image in a known
neighborhood of the current damaged pixel as a weighted
average to inpaint current pixel. This method is fast, simple,
and provides better results. Li et al. [9] proposed two fourth-
order Partial Differential Equations (PDEs) to inpaint
the image. By analyzing these two PDEs and comparing
their diffusion images, the authors can confirm if they are
forward diffusion or backward diffusion. Finally, PDE-based

*Corresponding author’s email: h.noori@vru.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,

please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/eej.2022.20857.5444
https://www.orcid.org/0000-0001-5820-5613

﻿

12

algorithms need to solve a differential equation, which is very
time consuming. In addition, PDE-based algorithms result in
discontinuity and blurring at the edges when the damaged
region is large.

1- 2- Texture Synthesis Algorithms
Texture synthesis algorithms use a sample region around

a damaged pixel, compare all regions in the image with the
sample region to find more similar regions in known parts of
the image, and copy the best-founded region into the region to
be inpainted [10]-[20]. Efros [14] proposed a texture synthesis
method for texture inpainting. The algorithm first finds a
set of pixels in an image whose neighborhoods are similar
to the neighborhood around the current damaged pixel. The
algorithm then keeps K most similar regions and chooses
one of the central pixels of candidate regions randomly and
copies its value to the current damaged pixel. Criminisi [15]
exploits a patch based (exemplar based) algorithm in which
the filling order is considered by a priority function ensuring
that linear structures are preserved. In [16], a new priority
function is introduced that improves Criminisi’s work. Wong
[17] proposed a nonlocal method for image inpainting. The
algorithm uses multiple similar samples in an image and the
contribution of each sample in construction damaged pixels is
determined by means of a weighting similarity function. The
algorithm in [18] automatically guides patch-based image
inpainting. For each patch, the algorithm estimates planar
projection parameters, then segments the known region into
planes. Finally, the planes in the known regions are copied
to the related damaged planes. In [19], Deng proposed a new
function to calculate the priority of patches. Recently, Ding
[20] proposed a new algorithm in which a priority function is
first calculated to fill in the damaged region around the edges
(to preserve the edges). In addition, a Gaussian-weighted
nonlocal texture similarity measure is proposed to obtaine
multiple candidate patches for each target patch. Additionally,
the authors used α -trimmed mean filters to calculate the
mean of the candidate patches.

There are several other works that gain both PDE-based 1-1
and texture synthesis 1-2 categories. Bertalmio [21] proposed
to decompose an original image into two components with
different characteristics: textures and structures. One is
reconstructed by a texture synthesis algorithm and the other
component is inpainted by a structure algorithm. In [22], the
method utilizes image regularity statistics to extract dominant
linear structures of the target image to reconstruct the edges.
Guided by these structures, homography transformations
are estimated and combined to globally repair the missing
regions using the Markov random field model. Finally, all
exemplar based (texture synthesis) algorithms need to search
in all regions of the image to find candidate patches, therefore
are too time consuming. To solve this, some papers proposed
to copy the whole patch, which leads to edge discontinuity;
but a large time is still needed to search all over the image.

1- 3- Deep Network Based Algorithms
Recently, several algorithms are proposed to inpaint

damaged regions of images based on deep learning methods.
In these algorithms, a network is first trained with several
images. Next, a damaged region is given to the trained network
and estimates the damaged pixels. In [23], a new energy
function is considered to compute the error of the network.
The weights change to minimize this energy function. In [24],
an encoder-decoder model is proposed to video inpainting,
the encoder provides visible pixels revealed from the scene
dynamics. These pixels are fed into the encoder. Afterwards,
using temporal consistency, two architectures are proposed.
The first model fills the text on the frames of video. The
second architecture is designed to fill large holes. In [25],
semantic conditions are explored to give better restored face.
By leveraging the advantages that Bayesian decision theory
deals with uncertainty, the proposed framework exploits deep
representation into Bayesian decision theory and derives
a deep representation calibrated evidence lower bound.
Finally, all deep network-based methods need to train with
a large database and this process is very time consuming.
Additionally, the network should be trained by the related
database for different scenes restoration.

1- 4- Convolution-based Algorithms
All the mentioned categories are quite slow. In contrast,

convolution-based methods are fast and simple to implement
[26]-[30]. The authors [26] proposed a new algorithm that
automatically distinguishes the damaged pixels from the
known pixels and inpaints them. The gated convolution is
trained by millions of images. Oliveira [27] proposed a fast
image inpainting algorithm by convolving the borders of the
damaged areas with a 3 3× (fixed) mask, and shrinking the
degraded regions. In [28], Hadhood modified the Oliveira’s
method by considering only known pixels for averaging
(fixed mask). Both methods result in blurring the edges. In
[29], a convolution-based method is proposed in which the
convolution kernel is constructed based on the difference of
the pixels value distance (mask with variable weights). The
proposed method has two parameters to be determined by
the user. In [30], the authors improved the work in [29] by
minimizing an energy function to find the patches. Finally, all
convolution-based methods result in blurring when damaged
region is large or curved. To overcome this drawback, we
propose a novel convolution-based algorithm in which the
gradient of the image is utilized to compute the weights in the
kernel, which will preserve the edges. The proposed algorithm
uses both vertical and horizontal gradient to calculate weights
in a Gaussian convolving mask. The proposed algorithm is
iterative, very simple to implement, and provides better
results.

The paper is organized as follows. Section 2 presents
the proposed algorithm. To evaluate the performance of the
proposed method, some experimental results are given in
Section 3. Finally, we conclude the paper in section 4.

H. Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI: 10.22060/eej.2022.20857.5444

13

2- Proposed Convolution based Image Inpainting
In this section, a new method based on convolution is

proposed to reconstruct damaged regions of an image. As
stated before, in the convolution-based method, a mask
(kernel) is convolved by the degraded image. The main
drawback of these methods is that they usually utilize the
same mask for different regions of an image (i.e. a similar
mask (in weights or in size)) is used for both edge and
smooth regions. This leads to smoothing the edges or image
blurring. Moreover, from the interpolation point of view, the
more information is considered in the interpolation process,
the more accurate approximation can be obtained. In order
to take more information into account for the reconstruction
process, the size of the convolving kernel should be increased
in convolution-based methods, while results in blurring in the
discontinuous regions, such as the edges. To avoid blurring
and to be accurate simultaneously when convolving, the
kernel size should be large when the damaged region of the
image is in a smooth area to be more accurate, while the
kernel size should be small in discontinuous regions to avoid
blurring. To reach this goal, it is proposed to use the gradient
of the image to distinct smooth regions from non-smooth
regions.

To reach this goal, it is proposed to use a Gaussian
function for computing the weights, while the kernel size is
controlled by the image gradient. As we know, in the smooth
regions, the gradient of an image is low and approaches to
zero, while the gradient of an image in the regions including
discontinuity like the edges is high. Therefore, if the gradient
is in the exponent of the Gaussian function, it can control
the kernel size. Consider pixel i in the boundary of the
damaged region and an m m× neighborhood around it.
The information is transferred from known pixels in this
neighborhood to the damaged pixel i . The approximated
value of the damaged pixel is the weighted average of the
known pixels in this neighborhood. The weight for the known
pixel j in the kernel is calculated as follows:

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (1)

where ix and iy are the coordinates of pixel i , and
j
max I∇ is the maximum of the gradient of the image in pixel

j . j
max I∇ is calculated as follows:

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (2)

Note that norm 2 can be chosen for j
max I∇ as well.

However, it needs more mathematical operations when norm
2 is used, and it is faster to use maximum instead of norm 2
while calculating the gradient or edges. In (2), j

v I∇ and j
h I∇

show the vertical and the horizontal gradient of the image,
which are calculated as follows:

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (3)

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (4)

If the weights are calculated according to equation (1),
the gradient increases and the value of Gaussian function
decreases in the regions including edges (i.e. the weights
decrease). Therefore, even if the kernel size (m) is large,
the weights assigned to corresponding pixels are low. This
way, information is transferred from a little number of pixels,
and this avoids averaging in the regions including edges, and
therefore avoids image blurring. On the contrary, the gradient
becomes low and the weights assigned to corresponding pixels
becomes high in the smooth regions of an image. This way,
more pixels are taken into account in the averaging process
and the approximation is more accurate. When a pixel is on
the edge, the kernel size decreases and when a pixel is in the
smooth region, the kernel size increases. In fact, when a pixel
is in the smooth region (i.e. when the kernel size increases),
more pixels are participated in calculating the damaged
pixel and this pixel is reconstructed smoothly. If a pixel is
on an edge, less number of pixels are participated in the
reconstruction and the damaged pixel is reconstructed sharply,
which is necessary when pixel is on the edge. Additionally, it
is necessary to compare the proposed kernel with the bilateral
kernel [29]. In bilateral approach, the kernel is computed by
two factors, the first is the gray level difference between two
pixels and second is the Euclidean distance of two pixels.
However, we used the gradient of pixel for computing the
kernel in the proposed method. Where the gradient is high
(i.e. edge), the kernel size decreases by assigning zero to
more pixels and where the gradient is small (i.e. smooth
regions), the kernel size increases and calculates the average
of the values of the pixels. However, in the bilateral approach,
even if the two values of the pixels are the same but in a large
distance, the weight assigned to that pixel for reconstruction
becomes low. Finally, the value of the damaged pixel i is
calculated as the following weighted sum.

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩 (5)

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6)

 (5)

where  is the m m× neighborhood of pixel i , W
is the normalizing factor (),ij j j

j

W w M x y
∈

= ∑


, and (),j jM x y
is a mask that shows whether the pixel is known or not (i.e.

(), 1j jM x y = if the pixel is known and (), 0j jM x y = if

﻿

14

the pixel is damaged). We consider the mask M to avoid
transferring information from damaged regions. Therefore, the
algorithm should start from where the information is known.
To this goal, first the pixels in the boundary of the damaged
region are selected and the weighted sum is calculated. Next,
a value is calculated for each damaged pixel in the boundary
of the damaged region. Afterwards, the damaged region
is shrunk. This process continues until damaged region
vanishes. All the above process is repeated several times to
result in a better result. The proposed algorithm is shown
in Table 1. In all iterations, the damaged region is given
to the algorithm, and is filled by the algorithm. In the first
iteration, the information is propagated only from the known
surrounding pixels; but in the other iterations, the information
is propagated from all the surrounding pixels. This is because
in iteration 1 the damaged pixels are unknown, but in other
iterations the damaged pixels are reconstructed in the iteration
1. In the proposed algorithm, first the damaged region (which
we want to inpaint) is detected manually in mask Ù , and
copied to 1Ù as lines 1 and 2 of the algorithm illustrate. Next,
the algorithm goes to line 6 and the boundary of the damaged
region is extracted. Afterwards, the algorithm finds values for
damaged pixels in lines 7 to 9 and all the damaged pixels
in the boundary of damaged region in the original image is
replaced in line 10 and ends for the loop; next in line 11 of
the algorithm, the damaged region is shrunk. After that, the
algorithm returns to line 5 and the steps are repeated till all
the damaged pixels are filled. It is necessary to note that Ù
, which is a binary mask that separates damaged pixels and
known pixels with zeros and ones respectively, is updated
in each iteration, while loop in line 12 and the locations
according to the damaged pixels of the original image in Ù

change to one. Therefore, the value of Ù (i.e. location of
damaged pixels) is lost in each iteration (the loop) and should
be re-initialized for the next iteration, which is done in line
4. Note that locations according to damaged pixels of the
original image in Ù get zero value before inpainting while
all locations according to damaged pixels of the original
image in Ù get value one after one iteration, therefore Ù
is fully filled with ones. At this time, one iteration of the
algorithm is completed and the algorithm returns to line 3
and the next iteration starts. Fig. 6 shows how MSE decreases
when the number of iterations increases.In the next section,
the proposed algorithm is evaluated and compared to other
algorithms.

3- Simulation Results
In this section, the proposed algorithm is evaluated

and compared with several state-of-art algorithms
([9],[20],[28],[29],[30]) in both qualitative and quantitative.
Usually, the original image doesn’t exist in the image
inpainting, therefore there is no well-defined criterion for
quantitative comparison. However, to have a fair comparison,
we degrade several images intentionally and reconstruct
them by the proposed algorithms and some algorithms in
the state of art and compute the Mean Square Error (MSE)
by eq. (6) for each algorithm. Additionally, we compute the
implementation time of each algorithm to compare the speed
of each one. All the algorithms are implemented by Matlab
R2019b on an Intel core i7-6500 CPU 2.50 GHz with 8 GB
RAM on a 64-bit operating system. In all simulations, the
kernel size of Gaussian in the proposed method is 13 13× and
the number of iterations is fixed to 600 iterations, which may
not be needed in all figures.

Table 1. Inpainting AlgorithmTable 1. Inpainting Algorithm

Algorithm 1

1: Get the damaged region Ω (get damaged region mask as a binary image) and the input image

𝐼𝐼(𝑥𝑥, 𝑦𝑦).
2: Ω1 = Ω

3: For iteration = 1 to T

4: Ω = Ω1

5: While Ω ≠ ∅ do

6: 𝜕𝜕Ω ← the boundary of damaged regions

7: For all pixels in 𝜕𝜕Ω do

8: 𝒩𝒩 ← neighborhood of each pixel

9: Calculate the weights using (1)

10: Replace the pixel value of the image 𝐼𝐼(𝑥𝑥, 𝑦𝑦) in 𝜕𝜕Ω using (5)

11: End For

12: Shrink the damaged region Ω

13: End While

14: End For

H. Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI: 10.22060/eej.2022.20857.5444

15

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑒𝑒

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗)
2
+(𝑦𝑦𝑖𝑖−𝑦𝑦𝑗𝑗)

2

1
∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 (1)

∇𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 𝐼𝐼 = max{|∇𝑣𝑣𝑗𝑗𝐼𝐼|, |∇ℎ

𝑗𝑗 𝐼𝐼|} (2)

∇𝑣𝑣𝑗𝑗𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 + 1) − 𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗 − 1) (3)

∇ℎ
𝑗𝑗 𝐼𝐼 = 𝐼𝐼(𝑥𝑥𝑗𝑗 + 1, 𝑦𝑦𝑗𝑗) − 𝐼𝐼(𝑥𝑥𝑗𝑗 − 1, 𝑦𝑦𝑗𝑗) (4)

𝐼𝐼(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) =
1
𝑊𝑊∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐼𝐼(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑀𝑀(𝑥𝑥𝑗𝑗, 𝑦𝑦𝑗𝑗)𝑗𝑗∈𝒩𝒩(5)

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑ (𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖) − 𝑓𝑓(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖))

2𝑁𝑁𝑁𝑁
𝑖𝑖=1(6) (6)

Where N and K are the number of rows and columns
of the image, f shows the original image and ˆf shows the
restored image.

In Fig. 1, an image (384 256×) with very sharp straight
edges is degraded with a text (1b). As Figs. 1c-1g show the
performance of the algorithm of Ding [20] suppress the other
the state-of-the-art algorithms; but the proposed algorithm
performs better than Ding’s algorithm [20], as it can be seen
from the above of color pencils.

In Fig. 2, an image (267 182×) with smooth edges is
degraded with some lines with different sizes (2b). In this
figure, all algorithms perform similarly. The algorithm
proposed by Ding [20] is wrong in finding similar patches due
to the rapid change in gradient of the image, which results in
bad restoration. All the convolution-based algorithms result
in blurring the image, especially at the edge of lemon. In
this image, the edges are not sharp, therefore the obtained
gradient is low and cannot guide neither the exemplar-based
approaches nor gradient based methods.

In Fig. [3], an image (384 256×) including curved sharp
edges and some textural regions is degraded with some lines
(3b). It can be seen from this figure that all algorithm result
in discontinuity in the edges, but the proposed algorithm has
the best performance. For example, in the sharp edge in the
lowest orange, no algorithm can restore the edges without
artifact except the proposed method (see the lowest degraded
region in the edge).

In Fig. 4, degraded region is on the elbow of the
cameraman (256 256×), which there is no similar other
region and is a curved sharp edge. As can be seen in the Figs.
4c,4d, and 4e, all convolution-based methods [28], [29], and
[30] cannot restore this kind of edge. As Fig. 4g shows, PDE
based methods ([9]) result in blurring in this kind of edges.
Additionally, as Fig. 4f shows, Ding’s algorithm [20] doesn’t
have a good performance since there is no similar edge in this
figure, consequently, the Ding’s algorithm [20] cannot find the
similar patch and doesn’t result in good restoration. However,

the proposed method controlled by the local gradient of the
image can restore the elbow of cameraman well. Although
the restored image is not completely the same, it is not blurred
and has no artifact (i.e., the restored image is satisfactory).
In Fig. 5, an object removal is considered in which we try
to remove the man from the sunset image (300 168×). Fig.
5b shows the mask for removing the man. As it can be seen
from this figure, no convolution-based algorithm and no PDE
based method can restore the image satisfactorily. This is
because the gradient in the textural area changes very rapidly,
therefore the information cannot be transferred from known
pixels to unknown pixels. However, it as can be seen from Fig.
5f that Ding’s algorithm [20] can restore the image very well
since it can find similar patches in this image. Moreover, this
algorithm results to discontinuity at the edge of the road.To
compare the performance of the proposed algorithm with the
state of the art, the MSE between the original image and the
restored image is shown in Table 2. As this table shows, the
proposed method results in less MSE among the algorithms,
and has a good visible quality. Therefore, the simulation results
show the effectiveness of the proposed method. Additionally,
in Table 3, the implementation time of the algorithms is
compared. The PDE based algorithms and the exemplar-
based algorithms need too much time for restoration, while
the convolution-based algorithms are nearly real time. As can
be seen, the proposed method has a comparable run time with
convolution based like Bilateral [29]. It should be noted that
in figure 1 to 4 the algorithm tries to reconstruct a damaged
image whose original image is available and comparison
between the reconstructed and the original image is feasible.
However, in figure 5, the algorithm tries try to remove the
person from image, therefore the reconstructed image is not
similar to the original and therefore the MSE could not be
computed for Fig. 5.As stated before, there is no criterion for
image inpainting. In this paper, MSE is considered to show
the performance of the proposed method. Another important
factor in the inpainting algorithms is the implementation
time. Considering both the implementation time and MSE,
the results shows that the proposed algorithm has better MSE
and an intermediate implementation time.

In addition, there are other inainting results for
interested reviewer on the web: https://cloud.vru.ac.ir/
s/4AQiosBKctDDpb9

Table 2. MSE between the original image and the restored image Table 2. MSE between the original image and the restored image

Algorithm Li [9]
Bilateral

[29]

Hadhood

[28]
Anh [30] Ding [20] Proposed

Fig. 1 1.441 0.857 3.825 0.884 0.4 0.281

Fig. 2 2.007 0.387 0.725 0.225 1.092 0.433

Fig. 3 0.277 0.220 0.661 0.21 0.362 0.184

Fig. 4 0.047 0.042 0.262 0.038 0.038 0.012

Table 3. Implementation time (s)

Algorithm Li [9]
Bilateral

[29]

Hadhood

[28]

Anh

[30]
Ding [20] Proposed

Fig. 1 40381.232 141.153 0.024 4.647 66182.095 1323.940

Fig. 2 665.854 2.802 0.009 1.427 145.477 32.482

Fig. 3 22927.482 43.626 0.126 2.478 35107.882 71.125

Fig. 4 42.705270 12.958 0.007 1.240 31.067 30.984

H.Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI: 10.22060/eej.2022.20857.5444

 ﻿

16

Table 3. Implementation time (s)

Table 2. MSE between the original image and the restored image

Algorithm Li [9]
Bilateral

[29]

Hadhood

[28]
Anh [30] Ding [20] Proposed

Fig. 1 1.441 0.857 3.825 0.884 0.4 0.281

Fig. 2 2.007 0.387 0.725 0.225 1.092 0.433

Fig. 3 0.277 0.220 0.661 0.21 0.362 0.184

Fig. 4 0.047 0.042 0.262 0.038 0.038 0.012

Table 3. Implementation time (s)

Algorithm Li [9]
Bilateral

[29]

Hadhood

[28]

Anh

[30]
Ding [20] Proposed

Fig. 1 40381.232 141.153 0.024 4.647 66182.095 1323.940

Fig. 2 665.854 2.802 0.009 1.427 145.477 32.482

Fig. 3 22927.482 43.626 0.126 2.478 35107.882 71.125

Fig. 4 42.705270 12.958 0.007 1.240 31.067 30.984

Fig. 1. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh
[30],

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood
[28], (e) Anh [30], (f) Ding [20], (g) Li [9], (h) Proposed method

H. Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI: 10.22060/eej.2022.20857.5444

17

Fig. 2. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh
[30],

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30], (f) Ding
[20], (g) Li [9], (h) Proposed method

Fig. 3. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh

[30], (f) Ding [20], (g) Li [9], (h) Proposed method

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh
[30], (f) Ding [20], (g) Li [9], (h) Proposed method

﻿

18

(d) (e) (f)

Fig. 4. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30],
(f) Ding [20], (g) Li [9], (h) Proposed method

(g) (h)

(a)

(d) (e)

(b)

(f)

(c)

Fig. 5. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30],
(f) Ding [20], (g) Li [9], (h) Proposed method

H. Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI: 10.22060/eej.2022.20857.5444

19

Additionally, the proposed method is applied to Places2
dataset, and the results are compared with the algorithm in
[31]. The Fréchet Inception Distance (FID) score is obtained
as 32.1 for the proposed algorithm, while it is obtained as 11.7
for [31]. Therefore, the FID scores confirm that [31] results
in much better reconstruction than the proposed method.
Additionally, the implementation time of the algorithm in
[31] is three times faster than the proposed method, but it
is necessary to mention that in this comparison, we consider
only prediction time for [31] and the learning time isn’t
considered.

4- Conclusion and Future Work
In this paper, a new convolution-based method for image

inpainting is proposed. the proposed method utilizes the
image gradient in the exponent of Gaussian function when
calculating the weights. In this way, the size of Gaussian
kernel can be controlled in different regions of the image.
The experimental results confirm the effectiveness of the
algorithm. However, as we see in the formulation, the gradient
of the image is calculated only in two vertical and horizontal
orientations. In the future work we will try to improve this to
get better results.

References
[1] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester,

“Image Inpainting,” SIGGRAPH: Proceedings of the
27th Annual Conference on Computer Graphics and
Interactive Techniques, pp. 417 -424, 2000.

[2] T. F. Chan, J. Shen, S. H. Kang, “Euler’s elastica and

curvature based inpainting,” SIAM Journal of Applied
Mathematics, vol. 63, I. 2, pp. 564-592, 2002.

[3] M. Bertalmio, A. L. Bertozzi and G. Sapiro, “Navier-
stokes fluid dynamics, and image and video inpainting”,
Proceedings of IEEE Computer Vision and Pattern
Recognition (CVRP), 2001.

[4] H. Grossauer and O. Scherzer, “Using complex ginzburg-
landau equation for digital inpainting in 2d and 3d,”
Scale Space Method in Computer Vision, Lecture Notes
in Computer Science, 2695, 2003.

[5] P. Chen and Y. Wang, “Fourth-order partial differential
equations for image inpainting”, International Conference
on Audio, Language and Image Processing, Shanghai,
pp. 1713-1717, 2008.

[6] L. li and H. Yu, “Nonlocal curvature-driven diffusion
model for image inpainting,” Fifth International
Conference on Information Assurance and Security,
Xi’an, pp. 513-516, 2009.

[7] X. C. Tai, S. Osher, and R. Holm, “Image inpainting using
a TV-stokes equation,” Mathematics and Visualization,
Springer, Berlin, Heidelberg, pp 3-22, 2007.

[8] A. Telea, “An image inpainting technique based on the
fast marching method,” Journal of Graphics Tools, vol.
9, no. 1, 2004.

[9] P. Li, S. Li, Z. Yao, and Z. Zhang, “Two anisotropic
fourth-order partial differential equations for image
inpainting,” IET Image Processing, vol. 7, no. 3, pp.
260–269, Jun. 2013.

Fig. 6. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Hadhood [28], (e) Anh [30], (f) Ding [20], (g) Li [9], (h) Proposed methodFig. 6. (a) original image (b) degraded image, restored by (c) Bilateral [29], (d) Had-
hood [28], (e) Anh [30], (f) Ding [20], (g) Li [9], (h) Proposed method

H. Noori, AUT J. Electr. Eng., 55(1) (2023) 11-20, DOI: 10.22060/eej.2022.20857.5444

20

[10] M. Ghorai, S. Samanta, S. Mandal and B. Chanda,
“Multiple pyramids-based image inpainting using
local patch statistics and steering kernel feature,” IEEE
Transactions on Image Processing, vol. 28, no. 11, pp.
5495-5509, Nov. 2019.

[11] K. He and J. Sun, “Image completion approaches using
the statistics of similar patches,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 36, no.
12, pp. 2423-2435, 1 Dec. 2014.

[12] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang,
“Generative image inpaining with contextual attention,”
IEEE Computer Vision and Pattern Recognition, pp.
5505–5514, 2018.

[13] H. Liu, X. Bi, G. Lu and W. Wang, “Exemplar-based
image inpainting with multi-resolution information
and the graph cut technique,” IEEE Access, vol. 7, pp.
101641-101657, 2019.

[14] A. Efros and T. Leung, “Texture synthesis by non-
parametric sampling,” Proceedings of the Seventh IEEE
International Conference on Computer Vision, pp. 1033
- 1038, vol. 2, Greece, 1999.

[15] A. Criminisi, P. P´erez, and K. Toyama, “Object removal
by exemplar-based inpainting,” IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
Madison, WI, USA, pp1200-1212, 2003.

[16] D. J. Tuptewar and A. Pinjarkar, “Robust exemplar-
based image and video inpainting for object removal and
region filling,” International Conference on Intelligent
Computing and Control (I2C2), Coimbatore, pp. 1-4,
2017.

[17] A. Wong and J. Orchard, “A nonlocal-means approach
to exemplar-based inpainting,” 15th IEEE International
Conference on Image Processing, San Diego, CA, pp.
2600-2603, 2008.

[18] J. Huang, S. Kang, N. Ahuja, and J. Kopf, “Image
completion using planar structure guidance,” ACM
Transaction on Graphics, vol. 33, no. 4, pp. 129:1–
129:10, Jul. 2014. [Online]. Available: https://github.
com /jbhuang0604/Struct Completion.

[19] L. Deng, T. Huang, and X. Zhao, “Exemplar-based
image inpainting using a modified priority definition,”
Plos One, vol. 10, no. 10, pp. 1–18, Oct. 2015. [Online].
Available: http://www.escience.cn/people/dengliangjian/
codes.html

[20] D. Ding, S. Ram and J. J. Rodr´ıguez, “Image inpainting
using nonlocal texture matching and nonlinear filtering,”
IEEE Transactions on Image Processing, vol. 28, no. 4,

pp. 1705-1719, April 2019.
[21] M. Bertalmio, L. Vese, G. Sapiro and S. Osher,

“Simultaneous Structure and Texture Image Inpainting,”
IEEE Transactions on Image Processing, vol. 12, no. 8,
pp. 882-889, Aug. 2003.

[22] J. Liu, S. Yang, Y. Fang and Z. Guo, “Structure-guided
image inpainting using homography transformation,”
IEEE Transactions on Multimedia, vol. 20, no. 12, pp.
3252-3265, Dec. 2018.

[23] F. Altinel, M. Ozay and T. Okatani, “Deep structured
energy-based image inpainting,” 24th International
Conference on Pattern Recognition (ICPR), Beijing, pp.
423-428, 2018.

[24] D. Kim, S. Woo, J. Lee and I. S. Kweon, “Recurrent
temporal aggregation framework for deep video
inpainting,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 42, no. 5, pp. 1038-1052, 1
May 2020.

[25] H. Xiong, C. Wang, X. Wang and D. Tao, “Deep
representation calibrated bayesian neural network for
semantically explainable face inpainting and editing,”
IEEE Access, vol. 8, pp. 13457-13466, 2020.

[26] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang,
“Free-form image inpainting with gated convolution,”
arXiv preprint arXiv:1806.03589, 2018.

[27] M. Oliveira, B. Bown, R. Mckenna, and Y. S. Chang,
“Fast digital image inpainting,” International Conference
on Visualization, Imaging and Image Processing (VIIP
2001), Marbella, Spain, September 3-5, pp. 261-266,
2001.

[28] M. M. Hadhoud, K. A. Moustafa and S. Z. Shenoda ,
“Digital images inpainting using modified convolution
based method,” Proceedings of SPIE - The International
Society for Optical Engineering, 2008.

[29] H. Noori, S. Saryazdi, and H. Nezamabadipoor, “A
bilateral image inpainting,” Iranian Journal of Science
and Technology (IJST), Transactions of Electrical
Engineering, vol. 35, no. E2, pp 95-108, 2011.

[30] D. N. Anh, “An adaptive bilateral filter for inpainting,”
Fourth International Conference of Emerging
Applications of Information Technology, Kolkata, pp.
237-242, 2014.

[31] C. Saharia, W. Chan, H. Chang, Ch. Lee, J. Ho, T.
Salimans, D. Fleet, M. Norouzi, “Palette: Image-to-
Image Diffusion Models,” arXiv:2111.05826v2 [cs.CV]
,3 May 2022.

HOW TO CITE THIS ARTICLE
H. Noori, Gradient-Controlled Gaussian Kernel for Image Inpainting, AUT J Electr
Eng, 55(1) (2023) 11-20.
DOI: 10.22060/eej.2022.20857.5444

https://dx.doi.org/10.22060/eej.2022.20857.5444

