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ABSTRACT: The decentralized control of a multi-agent system with leader-follower consensus is 
investigated. The system is formulated in graph theory, and a general configuration for L-F formation 
is proposed. The goal for the formation is defined to track the predefined trajectory in the presence of 
high-frequency noise. The controller for the system is proposed on the basis of a model predictive-based 
controller. Different scenarios for a multi-agent system are considered, which lead to the linearization 
of the plant. Meanwhile, external structured disturbances are considered in the system. The novelty of 
the present paper addresses the gap between optimal controllers and robust controllers. The robustness 
of optimal controllers is not verified in the optimality of MPC controllers. Thus, a tube MPC theory 
is proposed to increase the robustness of the interacting noise system. Consequently, the optimal 
controller maintains robust throughout the existence of external disturbances and high frequency noises. 
Meanwhile, the closed-loop multi-agent response is investigated in the presence of external bounded 
disturbances. Next, The hybrid controller is designed for the formation. The switches take place between 
MPC and Tube-MPC controllers for each agent. On the other hand, hard constraints on control input 
and its variations and soft constraint on graph structures and topology of the multi-agent system are 
submitted. At length, the stability proof is considered for the closed loop multi-agent system. Finally, the 
simulation results demonstrate the formation results and the proposed controller can also satisfactorily 
deal with the high-frequency noise with hard and soft constraints.
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1- Introduction
 The multi-agent formation control architecture is consid-

ered a well-studied problem throughout the literature [1-3]. In 
this respect, the main formation architectures in pre-studied 
literature are mainly categorized as leader-follower and lead-
erless architectures. The multi-agent system is subject to in-
put saturation hard constraints and task constraints, as well 
as topology constraints [3]. Meanwhile, the satisfaction of 
constraints in the existence of more than one synchronized 
agent in a single formation is investigated as a challenging 
distributed problem. Collision and obstacle avoidance are ex-
amples of the aforementioned physical and task constraints, 
covered successfully in the previous literature [4], which de-
scribes a squared, fully actuated class of dynamic systems 
with model predictive based control architecture in a multi-
agent formation manner. The definition leads to a Distributed 
Model Predictive Controller (DMPC) design. The terminal 
set assumed positively invariant; thus, the constraints are sat-
isfied due to obstacle and collision avoidance. It is discernible 
that the MPC architecture is considered a widely applicable 
optimal control strategy for multi-agent systems. The capabil-
ity of handling constraints in MPC consensus is investigated 
broadly for multi-agent problems [5-7]. Nevertheless, most 

of the described approaches are applicable only for squared 
systems. The underactuated control systems are considered 
to be even more challenging in MPC architecture. Thus, a 
vast domain of modifications and noble combination of dif-
ferent control theories with MPC formulation is studied in 
the previous researches [8-11]. The main challenge in this 
problem with optimal manner is to keep the robustness of 
the system. Therefore, multi-layer MPC architectures are de-
signed to overcome this problem. Generally, this proposed 
control architecture uses a supervisory approach consisting of 
an MPC in the upper layer with a robust controller in the bot-
tom layer, [8]. A quadcopter formation control problem is in-
vestigated in [8]. As it is widely known, practical Unmanned 
Aerial Vehicles (UAV) are considered underactuated systems. 
Hence, feedback linearization is a must for the system. A ro-
bust feedback linearization is designed in the bottom layer 
of the aforementioned supervisory MPC architecture and the 
hybrid theory provides the switching between the robust and 
optimal controller in the flight scenario. The exact identifica-
tion of system parameters is considered a challenge for the 
practical implementation of this control scheme. Therefore, 
an adaptive DMPC is represented [9]. The previous works 
of literature are concerned with the adaptive control for lin-
ear systems with unknown parameters. The identification in 
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this manner is based on the DMPC method. As predicted, the 
adaptive DMPC architecture is affected by high computation-
al costs due to the online manner for both formulations. Ex-
plicit MPC is considered as an offline MPC architecture [10]. 
The noted approach is widely applicable in mobile robots and 
embedded systems. The possibility of implementation of the 
noted approach on limited hardware resources and for quite 
complex and discontinuous control functions is proved [10]. 
Since simultaneous consideration of the actuator faults and 
model uncertainties is considered a challenging aspect in the 
late researches, the previous literature covered the subject ac-
ceptably as in [11], and an underactuated quadcopter dynamic 
model is investigated. An intelligent Fault-Tolerant Control 
architecture (FTC) is proposed, and the method is divided 
into passive FTC and active FTC with an adaptive intelligent 
inference learning engine. Next, the external disturbances are 
added to the previous research [12]. The intelligent trajec-
tory tracking control approach is designed for an aircraft, and 
internal and external disturbances are presented in the model. 
The neural network-based model predictive control scheme 
is presented, and the prediction engine is updated in each it-
eration based on a proposed online sequential structure. The 
robustness of optimal MPC controller is assumed as an im-
portant sequence of controller design. A novel approach in 
the definition of tubes for the noted prediction-based control-
ler is developed in [13], and the proposed tube MPC method 
is designed for a class of discrete linear systems. The noted 
approach is developed in order to design an optimal robust 
controller for a class of nonlinear dynamic systems with un-
modelled dynamics.

The multi-agent system is considered in the present paper. 
The theory of multi-agent system is proposed by graph theory 
in the previous literatures. In [25], the formation of UAV is 
considered, and two types of communications are proposed. 
First, the information sharing strategy between two UAV in 
the time-slot is investigated. Second, adoption of a dynamic 
time slot allocation scenario is considered for the UAV.  Af-
terwards, a formation problem for UAV is considered based 
on a novel back-stepping control theory. In [26], the Lyapu-
nov method is investigated to further verify the effectiveness 
and stability of the multi-agent system. Additionally, a com-
parison between the noted controller and the MPC control-
ler is proposed. The formation technique for the system is 
considered a decentralized controller. The theory of hybrid 
system is combined with formation control problem in the 
previous literatures [27]. The formation topology switching 
is considered in [27]. Consequently, a time-varying formation 
tracking problem is considered.  The novel TVFT protocol is 
proposed for the formation, and the feasibility of the problem 
is investigated. A flying experiment for three air vehicles is 
considered to test the simulation results. A generalized ap-
proach to multi-agent formation control problem is proposed 
in [28]. The distributed sliding mode control is modified for 
the time-varying UAV formation problem. The configuration 
of multi-agent system is considered to be leader-follower, and 
the decentralized controller is proposed for the noted system. 
The described theory utilized the neighboring relative infor-

mation. As an example of advanced formation problems, the 
formation of UAV swarm system with multiple implicit lead-
ers is considered in [29]. In the noted approach, leaders are 
implicitly integrated into the swarm and can be influenced by 
formation and other information from neighboring followers. 
The existence of multiple leaders in formation is considered 
of importance in the previous literature. Decentralized and 
centralized control configurations are considered the basic 
form architecture of the formation controllers. Neverthe-
less, the distributed control architecture is considered a novel 
approach to the problem. In [30], a formation maintenance 
problem is proposed and the distributed controller is investi-
gated. The UAV swarm system operates in the absence and 
existence of obstacles in the literature. The relative change 
of relative positions between the agents is the main error dy-
namics in this research, and the controller is designed in order 
to minimize the relative error between the agents.

In this paper, a class of dynamic models is considered as 
an underactuated, highly coupled, and unstable system. The 
class of systems mentioned above is considered a six degree 
of freedom rigid mass in the three-dimensional space. The 
system has applications in aerial vehicles and underwater 
moving unmanned mobile robots. Meanwhile, it is assumed 
that the desired command of actuation and the actual amount 
of actuations are not equal. The noted assumption leads to a 
fault-tolerant system. The control architecture for the system 
is defined in the definition of Model predictive-based control 
architecture. The controller is considered an optimal control-
ler with a prediction horizon over the model behaviors in the 
following steps in a discrete manner. Meanwhile, the system 
is highly nonlinear and coupled. In order to drive a relatively 
simple dynamic model, a robust controller is needed for the 
system to overcome the unmodeled dynamics in the system. 
The high computational cost of deep online methods and lack 
of robustness in the noted previous researches forces inter-
est in tube-MPC methods. MPC and robust MPC contain 
advantages and disadvantages; thus, a new control approach 
is needed to privilege the advantages and avoid the disadvan-
tages of the control architectures. Consequently, a hybrid con-
troller is proposed in this paper. The noted control approach 
switches between MPC and Tube-MPC knowingly based on 
a guard condition. In the present paper, a switching controller 
is initiated to optimize the efforts of the control system. Ac-
cordingly, the selected control scheme is separated into two 
fragments: MPC and tube-MPC. The MPC controller consists 
of an optimal control structure, and the tube-MPC is consid-
ered a robust optimal controller. In this paper, the results are 
extended to outline a hybrid robust model predictive-based 
controller for a multi-agent system to perform an admissible 
path tracking result in the presence of external disturbances 
or, more precisely, high-frequency noises, unmodelled dy-
namics, and faulty actuators.

The paper proceeds as follows. A dynamic model of a 
single agent system is designed in the next section. The MPC 
controller is implemented in the nominal system. The control 
system is generalized to tube MPC in the presence of unex-
pected noise. A switching signal is defined, and the hybrid 
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controller is introduced in the last part. The simulation results 
illustrate the capability of this controller in the fourth section.

2- Dynamics
The linear dynamic systems in the form of x Ax=  have 

a unique solution. The nonlinear dynamic system covers a 
wide variety of solutions and behaviors[14]. In this paper, a 
class of nonlinear dynamic systems is considered as formu-
lated in (1). 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (1)

Where, ( ) nf x ∈ , ( ), ng x u ∈  and nx ∈   is the state 
vector of the state space notation for a general nonlinear sys-
tem.

In this paper, a general class of nonlinear dynamic sys-
tems of aerial vehicles are considered in formulation (1). 
Generally, the aerial vehicle is six degrees of freedom, and 
the state-space model for these dynamic robotic systems is 
considered in the vector space 12R . The distribution of input 
signals in the autonomous dynamic model above described 
the actuation class of the system. With a physical sight, the 
described model is mainly categorized as under or fully actu-
ated. In this paper, it is assumed that the system solution ex-
ists and it is unique. Thus, the open-loop system is considered 
Lipschitz in definition below:
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𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
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(10) 
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] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 
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𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  
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 (2)

First, a single agent dynamic is considered next, and the 
multi-agent system based on graph theory is proposed after-
wards. As a practical approach, Unmanned Aerial Vehicles 
are precise examples of the noted dynamic systems. The not-
ed vehicles are considered six degrees of freedom rigid body 
in space, and the system is presented as an underactuated sys-
tem [8]. In the quadcopter configuration, the control inputs 
to the system are the sum of thrusts and three aerodynamic 
torques.

2- 1- Single-agent UAV System Dynamics
The position of the air vehicle with respect to the iner-

tial frame is denoted respectively by [ ], ,X x y z= , and atti-
tude dynamic is denoted by 

First, a single agent dynamic is considered next, and the multi-agent system based on graph theory 

is proposed afterwards. As a practical approach, Unmanned Aerial Vehicles are precise examples 

of the noted dynamic systems. The noted vehicles are considered six degrees of freedom rigid body 

in space, and the system is presented as an underactuated system [8]. In the quadcopter 

configuration, the control inputs to the system are the sum of thrusts and three aerodynamic 

torques. 

2.1. Single-agent UAV System Dynamics 

The position of the air vehicle with respect to the inertial frame is denoted respectively by 𝑋𝑋 =
[𝑥𝑥, 𝑦𝑦, 𝑧𝑧], and attitude dynamic is denoted by Θ = [𝜑𝜑, 𝜃𝜃, 𝜓𝜓] which represent the roll, pitch, and yaw 

angles, respectively. The main equations of motion in planar and rotational movement is presented 

as follows: 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑚𝑚𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

 

Furthermore, 𝐹𝐹𝑇𝑇 is considered resultant of the input forces, and 𝜏𝜏𝑖𝑖s are considered input 

aerodynamic torques to the rotational subsystem. 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

 

where, 𝑇𝑇𝑖𝑖 = [𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4]𝑇𝑇 represents the thrust force generated by the rotor at the end of the 

arms. 𝑙𝑙 is the length of the arm, and 𝐶𝐶 is the aerodynamic drag coefficient. 𝜘𝜘 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧] and Ω =
[φ̇, θ̇, ψ̇]. 𝐹𝐹𝑇𝑇 and 𝜏𝜏𝑖𝑖 are the system control inputs. The localization of an aerial vehicle in a single 

coordinate is considered challenging. Thus, the rotational matrix 𝑅𝑅 in (4) represents the conformal 

transportation matrix from initial coordinate to body coordination. Finally, the 𝑅𝑅(. ) represents the 

SO3 transformation in the noted space. 

Matrix 𝑅𝑅 is represented in (10), and the transformation 𝑅𝑅(. ) is represented in (11), respectively. 

 which represent the 
roll, pitch, and yaw angles, respectively. The main equations 
of motion in planar and rotational movement is presented as 
follows:

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (3)

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (4)

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (5)

Furthermore, TF  is considered resultant of the input forc-
es, and iτ s are considered input aerodynamic torques to the 
rotational subsystem.

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (6)

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 
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where, [ ]1 2 3 4, , , T
iT T T T T=  represents the thrust force gener-

ated by the rotor at the end of the arms. l  is the length of the 
arm, and C  is the aerodynamic drag coefficient.

First, a single agent dynamic is considered next, and the multi-agent system based on graph theory 

is proposed afterwards. As a practical approach, Unmanned Aerial Vehicles are precise examples 

of the noted dynamic systems. The noted vehicles are considered six degrees of freedom rigid body 

in space, and the system is presented as an underactuated system [8]. In the quadcopter 

configuration, the control inputs to the system are the sum of thrusts and three aerodynamic 

torques. 

2.1. Single-agent UAV System Dynamics 

The position of the air vehicle with respect to the inertial frame is denoted respectively by 𝑋𝑋 =
[𝑥𝑥, 𝑦𝑦, 𝑧𝑧], and attitude dynamic is denoted by Θ = [𝜑𝜑, 𝜃𝜃, 𝜓𝜓] which represent the roll, pitch, and yaw 

angles, respectively. The main equations of motion in planar and rotational movement is presented 

as follows: 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑚𝑚𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

 

Furthermore, 𝐹𝐹𝑇𝑇 is considered resultant of the input forces, and 𝜏𝜏𝑖𝑖s are considered input 

aerodynamic torques to the rotational subsystem. 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 
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where, 𝑇𝑇𝑖𝑖 = [𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4]𝑇𝑇 represents the thrust force generated by the rotor at the end of the 

arms. 𝑙𝑙 is the length of the arm, and 𝐶𝐶 is the aerodynamic drag coefficient. 𝜘𝜘 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧] and Ω =
[φ̇, θ̇, ψ̇]. 𝐹𝐹𝑇𝑇 and 𝜏𝜏𝑖𝑖 are the system control inputs. The localization of an aerial vehicle in a single 

coordinate is considered challenging. Thus, the rotational matrix 𝑅𝑅 in (4) represents the conformal 

transportation matrix from initial coordinate to body coordination. Finally, the 𝑅𝑅(. ) represents the 

SO3 transformation in the noted space. 

Matrix 𝑅𝑅 is represented in (10), and the transformation 𝑅𝑅(. ) is represented in (11), respectively. 
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aerodynamic torques to the rotational subsystem. 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

 

where, 𝑇𝑇𝑖𝑖 = [𝑇𝑇1, 𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4]𝑇𝑇 represents the thrust force generated by the rotor at the end of the 

arms. 𝑙𝑙 is the length of the arm, and 𝐶𝐶 is the aerodynamic drag coefficient. 𝜘𝜘 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧] and Ω =
[φ̇, θ̇, ψ̇]. 𝐹𝐹𝑇𝑇 and 𝜏𝜏𝑖𝑖 are the system control inputs. The localization of an aerial vehicle in a single 

coordinate is considered challenging. Thus, the rotational matrix 𝑅𝑅 in (4) represents the conformal 

transportation matrix from initial coordinate to body coordination. Finally, the 𝑅𝑅(. ) represents the 

SO3 transformation in the noted space. 

Matrix 𝑅𝑅 is represented in (10), and the transformation 𝑅𝑅(. ) is represented in (11), respectively. 

 . TF  and iτ  are the sys-
tem control inputs. The localization of an aerial vehicle in a 
single coordinate is considered challenging. Thus, the rota-
tional matrix R  in (4) represents the conformal transportation 
matrix from initial coordinate to body coordination. Finally, 
the ( ).S  represents the SO3 transformation in the noted space.

Matrix R  is represented in (10), and the transformation
( ) .S  is represented in (11), respectively.

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 
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1 0 −sin(𝜃𝜃)
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�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (11)

Consequently, the nonlinear equations of motion of the 
noted single agent can be formulated as a six second order 
ordinary differential equations as follows [8]:

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 
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�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 
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�̈�𝑧 + 𝑔𝑔 ) 
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The topology of the aerial vehicle is assumed symmetric; 
thus, the inertial moment matrix is presented by a diagonal 
matrix { } ,   ,   . x y zJ diag I I I= here xI ,  yI , and  zI  represent 
the moments of inertia align the directions x,y,z, respectively. 

,g m  are the gravity acceleration and air vehicle mass.
The noted dynamic system in (12-17) is considered as a 

highly nonlinear, coupled, and underactuated model, as it can 
be observed.

As predicted, this paper aims to control this class of dy-
namic systems to track a predefined path. Meanwhile, the 
stability of the closed-loop system has to be grantees. The as-
sumptions below are considered to partition the general prob-
lem into different scenarios that lead to the linear model of the 
system.

Assumption 1: Hovering and slow maneuvers: the atti-
tude angles in this scenario vary around zero with a variation 
of fewer than 5 degrees.

Assumption 2: Aggressive navigation: the attitude angles 
in the aggressive movements can be greater than the previous 
assumption, but vary less than 30 degrees.

With the assumptions above, the external structured uncer-
tainties and noises to the attitude state variables are denoted 
by [ ]( )1,2,3in i ∈ . The unmodeled dynamics and nonlinear 
terms are denoted structured uncertainties. 

First, the resultant thrust force is designed as follows:
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Second, replacing TF  by (18) in (12-14), and the altitude 
state is decoupled due to feedback linearization. Nevertheless, 
the aforementioned approach is not considered as a robust 
control scheme for the noted system. As it can be seen, the 
system is considered an under-actuated system. Meanwhile, 
the decoupled attitude dynamic is fully actuated by three in-
dependent moments. Consequently, in order to design a posi-
tion tracking controller, a practical approach to the system is 
to design an attitude controller for the system. The attitude 
dynamic is tuned based on the horizontal acceleration of the 
system. Therefore, the desired attitude angles in (19-20) are 
tracked perfectly. In order to track the predefine reference tra-
jectory, the attitude dynamics should be faster than position 
dynamics.
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2- 2- Multi-agent UAV Dynamics
In this paper, the formation problem with the leader-fol-

lower structure is considered. Generally, the noted problem 
can be broken down into flexible or rigid sub-formation struc-
tures. As a result, the general configuration is considered a 
rigid form of known quantities of agents. States of follower 
agents are completely specified once the leader states are in-
vestigated in (L-F) standard configuration. In order to formu-
late the problem, graph theory is introduced to describe the 
formation. The basic definition of formation is presented as 
follows:

Definition 1: The sensing range of an agent is the maxi-
mum sensing distance that an agent cannot obtain the states of 
its neighbors whose inter-distances are more than the sensing 
range.

Definition 2: The agent that can follow the reference for-
mation trajectory directly is considered a leader agent.

Definition 3: If an agent is not a leader, it is a follower 
and cannot reach the reference trajectory directly.

Definition 4: An agent that has no neighbors in its sensing 
range is considered an isolated agent.

Generally, in a multi-agent formation problem, a graph 
with sets of vertices and edges represents the interaction of 
agents. The adjacency, degree, and leader matrices are denot-
ed respectively by AG , DG , LG . Interacting topologies and 
agents are considered in the Adjacency matrix. The degree 
matrix represents the number of interacting agents in a neigh-
bourhood, and the leader matrix obtains the leader agent. The 
Laplacian matrice G  is introduced in (21).
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𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22) 

 (21)

For instance, consider a four-agent formation problem. 
The first agent is assumed as the formation leader. The graph 
contribution is described in (22-24).

 

�̇�𝑥 = 𝑓𝑓(𝑥𝑥) + 𝑔𝑔(𝑥𝑥, 𝑢𝑢) (1) 

|𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)| ≤ 𝐾𝐾|𝑥𝑥 − 𝑦𝑦| (2) 

𝑚𝑚�̈�𝜘 = −𝑚𝑚𝑔𝑔𝑒𝑒3 + 𝑅𝑅𝐹𝐹𝑇𝑇𝑒𝑒3 (3) 

�̇�𝑅 = 𝑅𝑅𝑅𝑅(Ω) (4) 

𝐽𝐽Ω̇ + 𝑅𝑅(Ω)𝐽𝐽Ω = 𝜏𝜏𝑖𝑖 (5) 

𝐹𝐹𝑇𝑇 = 𝑇𝑇1 + 𝑇𝑇2 + 𝑇𝑇3 + 𝑇𝑇4 (6) 

𝜏𝜏1 = −𝑙𝑙𝑇𝑇2 + 𝑙𝑙𝑇𝑇4 (7) 

𝜏𝜏2 = 𝑙𝑙𝑇𝑇1 − 𝑙𝑙𝑇𝑇3 (8) 

𝜏𝜏3 = −𝐶𝐶𝑇𝑇1 + 𝐶𝐶𝑇𝑇2 − 𝐶𝐶𝑇𝑇3 + 𝐶𝐶𝑇𝑇4 (9) 

𝑅𝑅 = [
1 0 −sin(𝜃𝜃)
0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)
0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)

] 
(10) 

𝑅𝑅(Ω) = [
0 −𝑟𝑟 𝑞𝑞
𝑟𝑟 0 −𝑝𝑝
−𝑞𝑞 𝑝𝑝 0

] 
(11) 

�̈�𝑥 = (cos𝜓𝜓 sin 𝜃𝜃 cos𝜑𝜑 + sin𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (12) 

�̈�𝑦 = (sin𝜓𝜓 sin𝜃𝜃 cos𝜑𝜑 − cos 𝜓𝜓 sin𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (13) 

�̈�𝑧 = −𝑔𝑔 + (𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑) 𝐹𝐹𝑇𝑇𝑚𝑚  (14) 

�̈�𝜑 = 1 𝐼𝐼𝑥𝑥⁄ (𝜏𝜏1 + (𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧)�̇�𝜃�̇�𝜓) + 𝑛𝑛1 (15) 

�̈�𝜃 = 1 𝐼𝐼𝑦𝑦⁄ (𝜏𝜏2 + (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥)�̇�𝜑�̇�𝜓) + 𝑛𝑛2 (16) 

�̈�𝜓 = 1 𝐼𝐼𝑧𝑧⁄ (𝜏𝜏3 + (𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦)�̇�𝜃�̇�𝜑)+𝑛𝑛3 (17) 

𝐹𝐹𝑇𝑇 =
𝑚𝑚(�̈�𝑧 + 𝑔𝑔)
𝑐𝑐𝑐𝑐𝑐𝑐𝜑𝜑𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 

(18) 

𝜃𝜃𝑑𝑑 = arctan(�̈�𝑥
𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝜓𝜓 + �̈�𝑦𝑑𝑑𝑐𝑐𝑠𝑠𝑛𝑛𝜓𝜓

�̈�𝑧 + 𝑔𝑔 ) 
(19) 

𝜑𝜑𝑑𝑑 = arctan(tan(𝜃𝜃𝑑𝑑) . cos(𝜃𝜃𝑑𝑑)) (20) 

𝐺𝐺 = 𝐺𝐺𝐷𝐷−𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿 (21) 

𝐺𝐺𝐴𝐴 = [
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑎𝑎  

 

(22)  (22)

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (23)
𝐺𝐺𝐷𝐷 = [

2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (24)

According to (22), the second agent is considered an in-
teracting agent with third and fourth agents. According to 



E. Nejabat and A.H. Nikoofard, AUT J. Elec. Eng., 54(2) (2022) 209-224, DOI: 10.22060/eej.2022.21055.5452

213

(23), the first agent has two neighbors, and the fourth agent 
has three. The configuration above is based on assumptions, 
as follows:

Assumption 3: The connection between two neighboring 
agents is a two-way connection; thus, the adjacency matrix is 
a symmetric squared matrix with zero diagonal components.

Assumption 4: The Laplacian matrix is a positive definite 
matrix, [22].

Eventually, a multi-agent formation error measurement 
relationship of the system is introduced in (25-26). The de-
sired trajectory is assumed to be reachable only for the leader 
agent. Meanwhile, the follower agents are designed to follow 
the leader position states.

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (25)

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (26)

Where 
ijZ  represents the overall error measurement for 

each couple of neighboring agents in formation, and indices 
[ ], 1, 2 ,i j N…ò  represent the number of agents.  dx  represents 

the desired trajectory of the leader, and ioZ  is the error mea-
surement relation for the leader agent. 

In order to represent (25-26), regardless of being a leader 
or a follower, the formation weighted error measurement is 
presented for the multi-agent system, as follows:

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (27)

where fZ  is the weighted error measurement for the for-
mation, a

iε  is the permutation in Leibniz notation, and sgn  
represents the sign operation.

Consider the system in (1). The output for the system is 
represented for each agent in the formation as follows:

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (28)

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
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3- Control
In this paper, a hybrid controller for a multi-agent system 

is considered. A linear decentralized MPC controller is pro-
posed for the primary layer controller. Next, the structured 
disturbances and specific high-frequency noise are injected 
into the system. As mentioned earlier, the noted primary layer 
controller is not considered a robust approach. Therefore, a 
secondary control scheme is considered for the system. Fol-
lowed by representing a Tube-MPC theory. The guard con-
dition is defined for the known switches between MPC and 
Tube-MPC controllers. Afterwards, the hybrid architecture 
is proposed. The secondary controller is activated based on 
switching conditions. The guard conditions are based on er-
ror measurement for the formation. Reference tracking and 
topology stabilization are considered the final aim of the con-
trol theory in the presence of structured uncertainties and ex-
ternal noises.

3- 1- The Primary MPC Controller
MPC is an advanced and generalized approach. The noted 

approach can satisfactorily manage the nonlinear manner of 
the system, and same as other optimal control theories, it can 
deal with constraints as well. Generally, a constraint optimi-
zation problem is considered in the model predictive-based 
controller. In each iteration, an optimal control problem based 
on a cost function is solved. The future control input vector is 
determined in the previous input-output basis for the system.

As mentioned earlier, the system is underactuated. Thus, 
an attitude controller is considered as a practical approach to 
the system. The attitude dynamics in (15-17) are expected to 
follow the desired set point represented in (19-20). The at-
titude error dynamics in closed-loop yields:
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�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (32)

The attitude error dynamic state space for each agent is 
defined as follows:

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (33)

where  if and [ ]  1, 2,3ig i ∈  represent the governing non-
linear state equations of the attitude dynamics system, and 
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vector u  represents the control input vector, respectively. 
Therefore, the path planning problem is now demonstrated 
by a regulation control problem. The error dynamics in (33) 
present the attitude dynamics error for the system. Based on 
the feedback law for under-actuated UAV dynamics system, 
the error in position dynamics is proportional to the error dy-
namics in attitude dynamics. Hence, the minimization of at-
titude error leads to the minimization of position error for the 
under-actuated UAV system.

The optimal cost function of the system is considered an 
error minimizer and control effort minimizer cost for a regu-
lation problem. The main difference of the cost function in 
(34) and a conventional Linear Quadratic Regulator (LQR) 
cost function is the nonlinear manner of the equations in (31-
32). A general form of the cost function is represented in (34).

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (34)

Where 
pN  and uN  represent the prediction horizon and 

control horizon, respectively. In the noted approach, the cost 
function in (34) is reformulated in order to define a regulator 
control problem in the least squared optimization problem, 
as follows:

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

𝐺𝐺𝐷𝐷 = [
2 0 0 0
0 3 0 0
0 0 2 0
0 0 0 3

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑑𝑑  

 

(23) 

𝐺𝐺𝐿𝐿 = [
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

] = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙  

 

(24) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖

]) = [
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑖𝑖
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑖𝑖

]  (25) 

𝑑𝑑
𝑑𝑑𝑑𝑑 (𝑍𝑍𝑖𝑖𝑖𝑖) = 𝑑𝑑

𝑑𝑑𝑑𝑑 ([𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑑𝑑
�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑

]) = [�̇�𝑥𝑖𝑖 − �̇�𝑥𝑑𝑑
�̈�𝑥𝑖𝑖 − �̈�𝑥𝑑𝑑

] (26) 

𝑍𝑍𝑓𝑓 = 𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖  (27) 

𝑦𝑦 = C𝑥𝑥 (28) 

C

=

[
 
 
 
 
 
 
 
 
 
 
 
 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 −sin(𝜃𝜃)
0 0 0 0 0 0 0 0 0 0 cos(𝜑𝜑) cos(𝜃𝜃) sin(𝜑𝜑)

0 0 0 0 0 0 0 0 0 0 −sin(𝜑𝜑) cos(𝜃𝜃) cos(𝜑𝜑)]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

(29) 

𝜀𝜀𝑖𝑖
𝑎𝑎𝜀𝜀𝑖𝑖𝑎𝑎𝑧𝑧𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖

𝑙𝑙)𝑧𝑧𝑖𝑖𝑖𝑖

= [(𝐺𝐺𝐷𝐷 − 𝐺𝐺𝐴𝐴 + 𝐺𝐺𝐿𝐿)⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂𝐶𝐶𝑑𝑑]𝑥𝑥 − [𝐺𝐺𝐿𝐿⨂𝐼𝐼6]. [𝐼𝐼𝑛𝑛⨂[𝑅𝑅�̇�𝑅]] 

(30) 

𝑒𝑒Θ=Θ − Θ𝑑𝑑 

 

  (31) 

�̈�𝑒Θ = Θ̈ − Θ̈𝑑𝑑    (32) 

�̇�𝑒Θ = 𝑓𝑓𝑖𝑖(𝜑𝜑, 𝜃𝜃, 𝜓𝜓) + 𝑠𝑠𝑖𝑖(𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧, 𝜏𝜏𝑖𝑖)𝑢𝑢  (33) 

  𝐽𝐽(𝑘𝑘) = ∑ ∥𝑁𝑁𝑝𝑝
𝑖𝑖=1 𝑒𝑒Θ(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝑞𝑞2+ ∑ ∥𝑁𝑁𝑢𝑢

𝑖𝑖=0 ∆𝑢𝑢(𝑘𝑘 + 𝑖𝑖Ι𝑘𝑘) ∥𝜉𝜉
2  

  (34) 

𝐽𝐽(𝑘𝑘) = (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝))
𝑇𝑇
𝑄𝑄 (𝑒𝑒Θ(𝑘𝑘𝑁𝑁𝑝𝑝)) + (∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))

𝑇𝑇𝜉𝜉(∆𝑢𝑢(𝑘𝑘𝑁𝑁𝑐𝑐))  

 (35) 

 (35)

where Q  and ξ  are diagonal positive definite matrices.
The cost function in (34) is considered as a least-square 

optimization problem, and is reformulated as follows:

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
 

(36) 

∇𝑓𝑓(𝑥𝑥) = ∑𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑖𝑖 

 

(37) 

∇2𝑓𝑓(𝑥𝑥) =∑∇𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑗𝑗𝑇𝑇 +∑𝑟𝑟𝑗𝑗

6

𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (36)

where each ir  is a smooth functional from n  to  . 
Each  ir  is referred to as a residual. The final aim is to mini-
mize the residual in (36) in order to propose a tracking con-
troller for each agent.

To minimize the noted cost function, the functional ( )J k  
derivatives can be expressed in terms of the jacobian matrix, 
an m n×  matrix of the first partial derivatives of the residu-
als. Where m is the number of functionals and n is the number 
of variables. In the described aerial vehicle dynamics system, 

3  6m and n= = .
The first derivative of the residuals is expressed as fol-

lows:

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
 

(36) 

∇𝑓𝑓(𝑥𝑥) = ∑𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑖𝑖 

 

(37) 

∇2𝑓𝑓(𝑥𝑥) =∑∇𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑗𝑗𝑇𝑇 +∑𝑟𝑟𝑗𝑗

6

𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (37)

The second-order optimality sufficient condition is repre-
sented as follows:

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
 

(36) 

∇𝑓𝑓(𝑥𝑥) = ∑𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑖𝑖 

 

(37) 

∇2𝑓𝑓(𝑥𝑥) =∑∇𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑗𝑗𝑇𝑇 +∑𝑟𝑟𝑗𝑗

6

𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (38)

As mentioned earlier, the residuals in (36) are nonlinear. 
Thus, a nonlinear least squared problem is needed in order 
to find the optimal solution for the cost function. A nonlin-
ear least square algorithm is proposed based on the Gauss-
Newton method for the MPC controller. The nonlinear objec-
tive function that exploits the basis in the gradient f∇  and 
Hessian matrix 2f∇  is described, and the Gauss-Newton ap-
proach is presented. The method can be viewed as a general-
ized algorithm of Newton with a line search strategy [23]. In 
each line search method iteration, the algorithm moves along 
a predefined direction, and the iteration is given by:

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
 

(36) 

∇𝑓𝑓(𝑥𝑥) = ∑𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑖𝑖 

 

(37) 

∇2𝑓𝑓(𝑥𝑥) =∑∇𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑗𝑗𝑇𝑇 +∑𝑟𝑟𝑗𝑗

6

𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (39)

In each iteration, the MPC controller performs a line 
search in the direction GN

kP , and the step length kα  is re-
quired to satisfy the strong wolf condition in (40):

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
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(37) 

∇2𝑓𝑓(𝑥𝑥) =∑∇𝑟𝑟𝑖𝑖
6

𝑖𝑖=1
∇r𝑗𝑗𝑇𝑇 +∑𝑟𝑟𝑗𝑗

6

𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (40)

where the constant 1c  is chosen in the interval ( )1 0,1c ∈ .
As mentioned earlier, the desired nonlinear least square 

optimization method is considered the Gauss-Newton meth-
od. Accordingly, the search direction GN

kP  is obtained by 
solving the Newton equation below:

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
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6

𝑖𝑖=1
∇r𝑗𝑗𝑇𝑇 +∑𝑟𝑟𝑗𝑗

6

𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (41)

The noted optimization algorithm in (39-41) has two main 
disadvantages in computation. First, since the Hessian matrix 
may not always be positive definite, GN

kP  may not always 
be a descent direction. Second, the computation of individ-
ual Hessians in (41) is considered a high-cost computation. 
Hence, with the definition of Jacobian matrix in (37) and ap-
proximation bellow, the noted approach is simplified.

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚

𝑖𝑖=1
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∇2𝑓𝑓(𝑥𝑥) =∑∇𝑟𝑟𝑖𝑖
6
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𝑖𝑖=1
∇2𝑟𝑟𝑗𝑗 

 

(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
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Where ( ) ( )k kx f x= ∇J  is the Jacobian matrix for the non-
linear least-square optimization problem.

3- 1- 1- Convergence of the Gauss-Newton Optimization 
Method

The convergence of the Gauss-Newton optimization 
method is considered quadratic. Consequently, the optimal 
solution is evaluated for the system and the extremal points 
of tracking error minimization cost is obtained. Accordingly, 
the tracking of the reference trajectory is considered feasible 
[23].

3- 2- Tube-MPC Controller
In this section, the noise augmented system is proposed 

to be controlled. The nonlinear state in (12-17) is linearized 
due to assumptions (1,2) and extended to a noise augmented 
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Where 12w ∈  represents the vector of external noises 
and structured uncertainties due to unmodelled dynamic and 
simplifications in assumptions (1,2) in (12-17). Accordingly, 
the control authority is separated into two individual systems: 
a portion that steers the nominal, noise-free system to origin 
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compensates for deviation from the system in the presence of 
noise and noted uncertainties. The new control signal for each 
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The nominal multi-agent system output is presented by 
iz  based on the first layer primary MPC controller with con-

trol signal iv , . More precisely, a state feedback controller 
along with a primary MPC controller are augmented to de-
fine the tube-MPC architecture. The second layer of the noted 
controller is modified in order to eliminate the structured un-
certainties and reject the augmented noise in the single-agent 
system on the basis of Proportional-Derivational (PD) con-

trollers, and the noted approach is generalized for the multi-
agent system in the sense of decentralized control architec-
ture as follows:
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Where pK  and dK  are tunable positive definite matri-
ces. The noted matrices are designed to derive the error dy-
namic into the origin. 

3- 3- Hybrid Controller
The hybrid input-output automaton is defined as follows 

[10],[8]:
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Where the ( ), , , ,Q X U Y Init  represents a set of discrete 
variables, a set of continuous states, a set of continuous or 
discrete control inputs, a set of output variables, and a set of 
initial states for the noted hybrid system, respectively. In this 
approach, the hybrid automaton model is a composite actor 
containing the continuous and discrete dynamics. The guard 
condition and reset relation on a transition are defined as a 
function of output error, as illustrated in (47):

The system switches between two predefined subsystems 
in Table 1, if the predefined threshold is trespassed by guard 
condition in (47).
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 (47)

4- Stability Proof
The stability of the closed-loop system is considered in 

two stray parts as follows: First, the stability of the MPC con-
troller is considered, then the stability of multi-agent UAV 
system is considered.

As mentioned earlier, an optimization problem is consid-
ered in each iteration for MPC controller. Therefore, the con-
troller is considered stable, if and only if the optimal solution 
for optimization problem provided in each iteration. Accord-

Table 1. Hybrid Subsystems Table 1. Hybrid Subsystems  

Number Controller Guard 

Condition 

(1) 𝑢𝑢𝑖𝑖 = 𝑣𝑣𝑖𝑖 𝑆𝑆 ≤ 0 

(2) 𝑢𝑢𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑒𝑒𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑒𝑖𝑖) + 𝑣𝑣𝑖𝑖 𝑆𝑆 > 0 
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ingly, based on the description in 3.1.1, the convergence of 
the Guass-Newton optimization method is the key to stability 
proof for the MPC controller [23]. Consequently, the assump-
tions (5,6) are proposed in order to utilize the convergence 
rate for the optimization problem.

Assumption 5: The bounded disturbances and noises are 
assumed to be fully estimated with predefined accuracy.

Assumption 6: The reference trajectory is twice differen-
tiable for time interval without the necessity of an observer 
existence.

After the stability proof for the MPC controller, for sin-
gle UAV system, the stability proof for the multi agent is re-
mained intact. The equivalent linear system for a multi-agent 
system is presented as (48-49):
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𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 
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𝒚𝒚 = 𝒙𝒙 (49) 
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Where [ ] [ ]1 2 1 2 1 2, , , , , , , , , , ,= … … = …   n n nx x x x x x x   u u u u
The state-space form in (48) is represented as follows:
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𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
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𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (50)

Where 

As mentioned earlier, an optimization problem is considered in each iteration for MPC controller. 

Therefore, the controller is considered stable, if and only if the optimal solution for optimization 

problem provided in each iteration. Accordingly, based on the description in 3.1.1, the 

convergence of the Guass-Newton optimization method is the key to stability proof for the MPC 

controller [23]. Consequently, the assumptions (5,6) are proposed in order to utilize the 

convergence rate for the optimization problem. 

Assumption 5: The bounded disturbances and noises are assumed to be fully estimated with 

predefined accuracy. 

Assumption 6: The reference trajectory is twice differentiable for time interval without the 

necessity of an observer existence. 

After the stability proof for the MPC controller, for single UAV system, the stability proof for 

the multi agent is remained intact. The equivalent linear system for a multi-agent system is 

presented as (48-49): 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

Where 𝒙𝒙 = [𝒙𝒙𝟏𝟏, 𝒙𝒙𝟐𝟐, … , 𝒙𝒙𝒏𝒏, �̇�𝒙𝟏𝟏, �̇�𝒙𝟐𝟐, … , �̇�𝒙𝒏𝒏] , 𝒖𝒖 = [𝒖𝒖𝟏𝟏, 𝒖𝒖𝟐𝟐, … , 𝒖𝒖𝒏𝒏] 

The state-space form in (48) is represented as follows: 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛

𝐼𝐼𝑛𝑛
] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛

𝐼𝐼𝑛𝑛
] 𝜹𝜹𝟏𝟏 (50) 

Where 𝜹𝜹𝟏𝟏 presents the nonlinear terms for multi-agent system. 

Error measurement signal in (31-32) is represented as follows for the leader-follower formation: 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖
𝑑𝑑, �̇�𝑅𝑖𝑖

𝑑𝑑]⨂1𝑛𝑛) (51) 

 

Where 𝐺𝐺𝑇𝑇𝑘𝑘 = [𝐺𝐺𝐷𝐷 − 𝐺𝐺 𝐴𝐴 + 𝐺𝐺𝐿𝐿] and 𝑅𝑅 are the reference trajectory. The positive definite interaction 

matrix is presented by 𝐺𝐺𝑇𝑇𝑇𝑇, in each time step 𝑇𝑇𝑇𝑇 = [𝑡𝑡𝑇𝑇, 𝑡𝑡𝑇𝑇+1). Unknown switching signal is defined 

over the control input for the system by 𝜎𝜎𝑐𝑐[𝒖𝒖𝟏𝟏, 𝒖𝒖𝟐𝟐, … , 𝒖𝒖𝒏𝒏] = [𝜎𝜎𝑐𝑐(𝒖𝒖𝟏𝟏), 𝜎𝜎𝑐𝑐(𝒖𝒖𝟐𝟐), … , 𝜎𝜎𝑐𝑐(𝒖𝒖𝒏𝒏)] for n 

sample switches. 

 presents the nonlinear terms for multi-agent 
system.

Error measurement signal in (31-32) is represented as fol-
lows for the leader-follower formation:

𝑓𝑓(𝑥𝑥) =∑𝑟𝑟𝑖𝑖2(𝑥𝑥)
𝑚𝑚
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(38) 

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (39) 

 

𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎

𝑛𝑛

𝑗𝑗=1
([
𝑒𝑒𝑗𝑗
�̇�𝑒𝑗𝑗])+𝑊𝑊𝑖𝑖

𝑙𝑙([𝑒𝑒𝑖𝑖�̇�𝑒𝑖𝑖]))) 
(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (51)

Where 
k

D A L
TG G G G = − +   and R  are the reference 

trajectory. The positive definite interaction matrix is present-
ed by TkG , in each time step [ )1,k k kT t t += . Unknown switch-
ing signal is defined over the control input for the system by 

[ ] ( ) ( ) ( )1 2 1 2, , , , , ,c c c cσ σ σ σ … = … n nu u u u u u  for n sample 
switches.

The iu  is defined as a proportional and derivational gain 
for tube-MPC control signal:
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𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 

�̇�𝒙 = [0 𝐼𝐼𝑛𝑛
0 0 ] 𝒙𝒙 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] �̅�𝒖 + [0𝑛𝑛×𝑛𝑛𝐼𝐼𝑛𝑛 ] 𝜹𝜹𝟏𝟏 (50) 

𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 

𝐵𝐵𝑖𝑖 = −𝜎𝜎𝑐𝑐(𝐾𝐾 (∑𝑊𝑊𝑖𝑖𝑗𝑗
𝑎𝑎
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(52) 

𝒖𝒖𝒔𝒔̅̅ ̅ = −𝜎𝜎𝑐𝑐((𝐾𝐾⨂𝐼𝐼𝑛𝑛). (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑇𝑇). �̅�𝒆) (53) 

 

 

 (52)

Consequently, the switched control input with an un-
known switching signal for the multi-agent system is repre-
sented (53).
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𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺) ≤ 𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝑐𝑐1∇𝑓𝑓𝑇𝑇𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 (40) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘)𝑃𝑃𝑘𝑘𝐺𝐺𝐺𝐺 = −∇𝑓𝑓(𝑥𝑥𝑘𝑘) (41) 

 

∇2𝑓𝑓(𝑥𝑥𝑘𝑘) ≈ 𝔍𝔍𝑇𝑇(𝑥𝑥𝑘𝑘)𝔍𝔍(𝑥𝑥𝑘𝑘) (42) 

𝑥𝑥+ = 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝐵𝐵 + 𝑤𝑤 (43) 

𝐵𝐵𝑖𝑖 = 𝐾𝐾(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (44) 

𝐵𝐵𝑖𝑖 = −𝐾𝐾𝑝𝑝(𝑥𝑥𝑖𝑖 − 𝑧𝑧𝑖𝑖) − 𝐾𝐾𝑑𝑑(�̇�𝑥𝑖𝑖 − �̇�𝑧𝑖𝑖) + 𝑣𝑣𝑖𝑖 (45) 

𝐻𝐻 = (𝑄𝑄,𝑋𝑋, 𝑈𝑈, 𝑌𝑌, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) (46) 

𝑆𝑆 ≜∥ Θ ∥∞− 𝜖𝜖 (47) 

�̇�𝒙 = 𝐴𝐴𝒙𝒙 + 𝐵𝐵�̅�𝒖 (48) 

𝒚𝒚 = 𝒙𝒙 (49) 
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𝒛𝒛𝒎𝒎𝒎𝒎 = (𝐼𝐼2⨂𝐺𝐺𝑇𝑇𝑘𝑘). (𝒙𝒙 − [𝑅𝑅𝑖𝑖𝑑𝑑, �̇�𝑅𝑖𝑖𝑑𝑑]⨂1𝑛𝑛) (51) 
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 (53)

Where [ ]1 2 1 2, , , , , , ,n ne e e e e e= … …  e  is considered as error 
collective vector for the formation.

The definition of the error dynamics system in (33) leads 
to the final result for the error open-loop dynamic model (54).

�̇̅�𝒆 = [0 𝐼𝐼𝒏𝒏
0 0 ] �̅�𝒆 − [0𝐼𝐼𝑛𝑛] 𝜎𝜎𝑐𝑐([𝑘𝑘1𝐺𝐺𝑇𝑇𝑇𝑇 𝑘𝑘2𝐺𝐺𝑇𝑇𝑇𝑇]�̅�𝒆) (54) 

𝐴𝐴𝐻𝐻𝐻𝐻 = [ 0 𝐼𝐼𝑛𝑛
−𝑘𝑘1𝐷𝐷𝑛𝑛𝐺𝐺𝑇𝑇𝑇𝑇 −𝑘𝑘2𝐷𝐷𝑛𝑛𝐺𝐺𝑇𝑇𝑇𝑇] 
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 (57)

The term 1 n TSk D G  is positive definite as the TSG  is 
positive definite. For the noted multi-agent system, the 

HSA  matrix is Hurwitz in the characteristic equation. 
( ) ( )T

HS HSA P P A Q+ = −  is considered as a trivial common 
Lyapunov function for the system.

5- Simulation Results
To examine the performance and stability of the control-

ler, a circular reference trajectory is defined for the class of 
aerial vehicle dynamics system. As a practical example, a for-
mation problem of quadrotors is proposed in the simulation 
scenarios. The mass of quadcopter is equal to 2kgs, and other 
numerical values of the system parameters are taken from [8]. 
The prediction horizon and control horizon are defined 20 
steps and 15 steps, respectively. The time step for the simula-
tion is defined 0.01s during all simulations. The optimization 
engine is defined with step size 0.2α = .

The desired trajectory in the case of nominal flight condi-
tion is satisfactorily tracked in Fig.1. 

As mentioned before, the controller is designed based on 
the attitude regulation for each UAV. Hence, the attitude error 
signal is manifested in Fig.2 in the case of nominal flight con-
dition. It should be noted that the attitude dynamics is faster 
than translational dynamics, thus the convergence of attitude 
states is considered in Fig.2.
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Fig. 1. Nominal position tracking of the system 
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Fig. 1. Nominal position tracking of the system

 
Fig. 2. Attitude Error Signal 
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The control effort signal in the aforementioned scenario, 
is considered for a single agent system as Fig. 3. The control 
signal is bounded by hard constraints as it shows in the fol-
lowing figure.

Fig.4 represent the optimization conclusion in each itera-
tion during the trajectory tracking.

Afterwards, the Fig.5 represents the multi-agent nomi-
nal system. The desired circular trajectory is tracked by each 
UAV as the figure illustrates.  

The desired trajectory in the presence of single white 
noise in each attitude state and external constant disturbances 
in transitional dynamics are considered next. The simulation 
result illustrates that the primary MPC is not able to eliminate 
the attitude error utterly in the interrupted system. As antici-
pated, based on the guard condition, system switches in the 
8th second of the simulation and Fig.6 describes the effective-
ness of tube-MPC in order to reduce the noise effect in an 
acceptable manner.

Robot formation position tracking result is considered in 
Fig.7.

Subsequently, Fig.8 illustrates the phase portrait of 
switching multi-agent systems in the case of noise presence.

Eventually, the comparison between the results of the pri-
mary MPC controller and the modified method mentioned in 
the paper is contemplated in Fig.9. As expected, the capabili-
ties of the linear MPC controller are affected significantly in 
the presence of external disturbances, namely the high-fre-
quency noises.

Fig.10 demonstrates a better comparison between the not-
ed controllers. The attitude error is compared in the figure as 
mentioned earlier.

Finally, the comparison between the proposed hybrid ro-
bust controller and the conventional PID controller is consid-
ered in fig.11. 

Obviously, the PID controller is not able to track the pre-
define trajectory precisely in the presence of external distur-
bances. Meanwhile, the robust proposed controller tracks the 
predefine reference trajectory in an acceptable manner.

 

Fig.3. Constraint control signal 
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Fig.5. Multi-Agent nominal system 
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Fig.4. Optimal position calculation result 
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          Fig. 6. Interrupted system attitude error 
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Fig. 7. Formation position tracking of interrupted system 
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Fig. 8. Multi-UAV interrupted system phase portrait 
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Fig. 8. Multi-UAV interrupted system phase portrait

 

Fig. 9. Comparison between MPC and hybrid controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25 30 35 40 45 50
Time (s)

-12

-10

-8

-6

-4

-2

0

2

4

6

8

X
-Y

 P
os

iti
on

 (m
)

Position Tracking Comparison

X-Hybrid
Y-Hybrid
X-MPC
Y-MPC

Fig. 9. Comparison between MPC and hybrid controller



E. Nejabat and A.H. Nikoofard, AUT J. Elec. Eng., 54(2) (2022) 209-224, DOI: 10.22060/eej.2022.21055.5452

222

 

Fig. 10. Error reduction comparison 
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Fig.11. Comparison of trajectory tracking 
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6- Conclusion
A novel switching controller theory based on the tube-

MPC and conventional MPC theories was proposed in this re-
search. A primary MPC controller was introduced to control 
the nominal system in the absence of external disturbances. 
The simulation results illustrated the acceptable tracking re-
sult of the closed-loop nominal system. Afterwards, the inter-
rupted system in the case of external disturbances presence 
was mentioned and the tube MPC was applied to the noted 
system. The stability of the controller is provided in two 
subsections. The stability of MPC optimization algorithm is 
proposed by the convergence rate and wolf condition crite-
ria. Meanwhile, the stability and safety of the formation is 
considered by a common Lyapunov function for the swarm 
system. The desired trajectory was tracked perfectly after the 
switches took place in the system. The results are verified for 
the multi-agent system. Inner distance between the agents is 
kept satisfactorily uniform during the flight scenario. Hence, 
the noted approach improved the robustness capability of the 
regular MPC controller simultaneously the optimality of the 
solution has remained intact. Finally, the comparison between 
the proposed controller and a conventional PID controller, il-
lustrates the claims above and the advantages of the hybrid 
controller.

References
[1]  J. Kabzan, L. Hewing, A. Liniger and M. Zeilinger. 

“Learning based model predictive control for autonomous 
racing” in Proceedings of the IEEE Trans, Robotic and 
Automation Letters, Vol.04, Issue:4. AIAA-2006-6200, 
2019.

[2] J. Kabzan, L. Hewing, A. Liniger and M. Zeilinger. 
“Learning based model predictive control for autonomous 
racing” in Proceedings of the IEEE Trans, Robotic and 
Automation Letters, Vol.04, Issue:4. AIAA-2006-6200, 
2019.

[3] J. Berberich, M. Koehler and J. Waslander. “Data driven 
model predictive control with stability and robustness 
guarantee” IEEE Transaction On Automatic Control, 
Navigation, and Control Conference, AIAA 2007-
6461,2020.

[4] P. Castillo, R. Lozano and A. Dzul. “Model predictive 
control of three-axis gimbal system mounted on UAV 
for real time target tracking under external disturbances” 
Mechanical system and signal processing journal., Vol. 3, 
No. 6, pp. 45–55, 2020.

[5] L. Dai., Q. Cao, Y. Xia and Y. Gao “Distributed MPC for 
formation of multi-agent system with collision avoidance 
and obstacle avoidance” Engineering and Applied 
Mathematics, Journal of the Franklin Institude,2016.

[6] E. Nejabat,  E. Azadi Yazdi and M. Mahzoon. “Hybrid 
formation control of a UAV multi-agent system ” The 
Annual 28th International Conference of Iranian Society 
of Mechanical Engineering-ISME, 2020.

[7] Z. Sun, L. Dai, Y. Xia and  K, H. Johansson “Robust MPC 
for tracking constrained unicycle robots with additive 
disturbance” Automatica, Vol. 90, 2018.

[8] T. Chevet, C. Stoica Maniu, C. Vlad, Y. Zhang and E. 
Camacho “Chance-Constrained MPC for Voronoi-based 
Multi-agent System Developmet” IFAC- Vol. 53, Issue 2, 
pp. 6969-6974 2020.

[9] E. Nejabat, and A. Nikoofard. “Switched Robust Model 
Predictive Based Controller for UAV Swarm System”, 
IEEE, 29th Iranian Conference on Electrical Engineering 
- (ICEE), 2021.

[10] Y. Song., K. Zhu., G. Guoliang. and J. Wang “Distributed 
MPC-Based adaptive control for linear systems with 
unknown parameters” Engineering and Applied 
Mathematics, Journal of the Franklin Institude, 2019.

[11] A. Oliveri, C, Gianoglio, E, Ragusa. and M., Storace. 
“Low-complexity digital architecture fpr solving the 
point location problem in explicit model predictive 
control” Engineering and Applied Mathematics, Journal 
of the Franklin Institude, 2015.

[12] A. Emami, and A. Banazadeh., “Nonlinear fault-
tolerant trajectory tracking control of a quadrotor UAV” 
International Journal of Modeling and Optimization, Vol. 
9, No.5, 2019.

[13] A. Emami, and A. Banazadeh., “Intelligent trajectory 
tracking of an aircraft in the presence of internal and 
external disturbances” International Journal of Robust 
and Nonlinear Control, Vol. 20, No.6, pp. 2259-2264, 
2019.

[14] Falugi. P and Mayne. D., “Getting robustness against 
unstructured uncertainty: A tube based MPC approach” 
IEEE Transaction On Automatic Control, Vol.59, No.5., 
2014.

[15] Qitian. Y., Wang. M, and Libin. M., “Stabilization of 
a class of nonlinear parametrized systems by a flexible 
switching adaptive backstepping” Journal of The 
Franklin Institute, Vol.356, pp: 1-17, 2019.

[16] Abooee. A. and Arefi. M.M. “Robust finite-time 
stabilizers for five-degree-of-freedom active magnetic 
bearing system” Journal of The Franklin Institute, 
Vol.356, pp:80-102, 2019

[17] Chamseddine, A., Li, T., Zhang, Y., Rabbath, C., and 
Theilliol, D. “Flatness- based trajectory planning/
replanning for a quadrotor unmanned aerial vehicle.” 
IEEE Transaction on Aerospace and Electronic Systems, 
pp. 2832-2848, 2012.

[18] Xu, Y., Yang, H., and Jiang, B. “Fault tolerant time 
optimization of switched systems with application to 
multi-agent flight control” International Journal of 
Control, Automation and Systems, pp. 1-11, 2019.

[19] Ni, W., and Cheng, D. “Leader-following consensus of 
multi-agent system under fixed and switching topologies” 
System and Control Letters, pp.209- 217, 2010.

[20] Yu. Z., Zhang, Y., Qu, Y., Su, C., Ma, Y., and Jiang, 
b. “Decenteralized adaptive fault tracking cooperative 
control of multi uavs under actuator fault and directed 
communicated topology” 12th Asian Control Conference, 
ASCC, pp. 1334-1339, 2019.

[21] Dames, P., and Kumar, V. “ Autonomous localization of 



E. Nejabat and A.H. Nikoofard, AUT J. Elec. Eng., 54(2) (2022) 209-224, DOI: 10.22060/eej.2022.21055.5452

224

an unknown number of targets without data associasion” 
IEEE Transactions on Automation Science, Vol. 3, 2015.

[22] W. Zhao, T. Hiong Go “Quadcopter formation 
flight control combining MPC and Robust feedback 
linearization”  Engineering and Applied Mathematics, 
Journal of the Franklin Institude, 2013.

[23] Norman. Biggs “Algebraic Graph Theory”, Cambridge 
University Press, Second edition, 1996.

[24] Jorge. Nocedal, Stephen. J. Wright, “Numerical 
optimization”, Springer, Mathematics subject 
classification, Second edition, 2000.

[25] Y. Lin., M. Wang., X. Zhou., D. Guoru., S. Mao. 
“Dynamic spectrum interaction of UAV flight formation 
communication with priority: A deep reinforcement 
learning approach” IEEE Transaction on Cognitive 
Communication and Networking, vol. 6, issue. 3, 2020.

[26] J. Zhang., J. Yan., P. Zhang. “Multi-UAV formation 
control based on a novel back-stepping approach”, IEEE 

Transaction on Vehicular Technology, Vol. 69, Issue. 3, 
2020.

[27] X. Dong., Y. Li., C. Lu., G. Hu., Q. Li. “Time-Varying 
formation tracking for UAV swarm system with switching 
directed topologies” IEEE on Neural Networks and 
Learning Systems, Vol.30, Issue. 12, 2019.

[28] J. Wang, L. Han., X. Dong., Q. Li., Z. Ren., “Distributed 
sliding mode control for time-varying formation tracking 
of multi-UAV system with a dynamic leader”, Aerospace 
Science and Technology, Vol. 111, pp. 106-158, 2021.

[29] L. He., P. Bai., X. Liang., J. Zhang., W. Wang. “Feedback 
formation control of UAV swarm with multiple implicit 
leaders” Aerospace Science and Technology, Vol. 72, pp. 
327-334, 2018.

[30] X. Fu., J. Pan., H. Wang., X. Gao., “A formation 
maintenance and reconstruction method of UAV swarm 
based on distributed control”, Aerospace Science and 
Technology, Vol. 104, 2020.

HOW TO CITE THIS ARTICLE
E. Nejabat, A.H. Nikoofard, Hybrid Robust Model Predictive Based Controller for 
a Class of Multi-Agent Aerial dynamic Systems, AUT J. Elec. Eng., 54(2) (2022) 
209-224.
DOI: 10.22060/eej.2022.21055.5452


