[1] NREL, Best Research-Cell Efficiencies, in, NREL, 2021.
[2] X. Du, J. Li, G. Niu, J.-H. Yuan, K.-H. Xue, M. Xia, W. Pan, X. Yang, B. Zhu, J. Tang, Lead halide perovskite for efficient optoacoustic conversion and application toward high-resolution ultrasound imaging, Nature communications, 12(1) (2021) 1-9.
[3] M. Alidaei, M. Izadifard, M.E. Ghazi, V. Ahmadi, Efficiency enhancement of Perovskite Solar Cells using structural and morphological improvement of CH3NH3PbI3 absorber layers, Materials Research Express, 5(1) (2018) 016412.
[4] D. Giovanni, M. Righetto, Q. Zhang, J.W.M. Lim, S. Ramesh, T.C. Sum, Origins of the long-range exciton diffusion in perovskite nanocrystal films: photon recycling vs exciton hopping, Light: Science & Applications, 10(1) (2021) 2.
[5] N. Mansour Rezaei Fumani, F. Arabpour Roghabadi, M. Alidaei, S.M. Sadrameli, V. Ahmadi, F. Najafi, Prolonged Lifetime of Perovskite Solar Cells Using a Moisture-Blocked and Temperature-Controlled Encapsulation System Comprising a Phase Change Material as a Cooling Agent, ACS Omega, 5(13) (2020) 7106-7114.
[6] J. Torres, J. Sanchez-Diaz, J.M. Rivas, J. de la Torre, I. Zarazua, D. Esparza, Electrical properties and J-V modeling of perovskite (CH3NH3PbI3) solar cells after external thermal exposure, Solar Energy, 222 (2021) 95-102.
[7] M. Alidaei, m. Izadifard, m.E. Ghazi, Increasing of solar cell stability using Br-doped CH3NH3PbI3 perovskite absorber layers, Iranian Journal of Crystallography and Mineralogy, 27(1) (2019) 231-244.
[8] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide Perovskite Solar Cells, Nature communications, 4(1) (2013) 1-8.
[9] S.-W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.-S. Lee, D. Kim, UV Degradation and Recovery of Perovskite Solar Cells, Scientific Reports, 6 (2016) 38150.
[10] Q.Q. Ye, M. Li, X.B. Shi, M.P. Zhuo, K.L. Wang, F. Igbari, Z.K. Wang, L.S. Liao, UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO(3) as an Electron-Transporting Layer, ACS Appl Mater Interfaces, 12(19) (2020) 21772-21778.
[11] M. Alidaei, V. Ahmadi, S.M. Mousavi, F.A. Roghabadi, Stability improvement of Perovskite Solar Cell using photoswitchable and moisture resistant dual-function interfacial layer, Journal of Alloys and Compounds, 903 (2022) 163891.
[12] C.-H. Tsai, N. Li, C.-C. Lee, H.-C. Wu, Z. Zhu, L. Wang, W.-C. Chen, H. Yan, C.-C. Chueh, Efficient and UV-stable Perovskite Solar Cells enabled by side chain-engineered polymeric hole-transporting layers, Journal of Materials Chemistry A, 6(27) (2018) 12999-13004.
[13] F.A. Roghabadi, N.M.R. Fumani, M. Alidaei, V. Ahmadi, S.M. Sadrameli, High power UV-Light Irradiation as a New Method for Defect passivation in Degraded Perovskite Solar Cells to Recover and enhance the performance, Scientific reports, 9(1) (2019) 1-11.
[14] F.A. Roghabadi, N.M.R. Fumani, M. Alidaei, V. Ahmadi, S.M. Sadrameli, M. Izadifard, M.E. Ghazi, Recovering a degraded solar cell, in, Google Patents, 2019.
[15] C.S.G. Butler, J.P. King, L.W. Giles, J.B. Marlow, M.L.P. Vidallon, A. Sokolova, L. de Campo, K.L. Tuck, R.F. Tabor, Design and synthesis of an Azobenzene–betaine surfactant for photo-rheological fluids, Journal of Colloid and Interface Science, 594 (2021) 669-680.
[16] X. Xu, B. Wu, P. Zhang, Y. Xing, K. Shi, W. Fang, H. Yu, G. Wang, Arylazopyrazole-Based Dendrimer Solar Thermal Fuels: Stable Visible Light Storage and Controllable Heat Release, ACS Applied Materials & Interfaces, 13(19) (2021) 22655-22663.
[17] G. Cabré, A. Garrido-Charles, M. Moreno, M. Bosch, M. Porta-de-la-Riva, M. Krieg, M. Gascón-Moya, N. Camarero, R. Gelabert, J.M. Lluch, F. Busqué, J. Hernando, P. Gorostiza, R. Alibés, Rationally designed Azobenzene photoswitches for efficient two-photon neuronal excitation, Nature Communications, 10(1) (2019) 907.
[18] M. Alidaei, M. Izadifard, M.E. Ghazi, Improving the efficiency of Perovskite Solar Cells using modification of CH3NH3PbI3 active layer: the effect of Methylammonium Iodide loading time, Optical and Quantum Electronics, 52(4) (2020).
[19] S. Luo, W.A. Daoud, Crystal structure formation of CH3NH3PbI3-xClx perovskite, Materials, 9(3) (2016) 123.
[20] X.-M. Liu, X.-Y. Jin, Z.-X. Zhang, J. Wang, F.-Q. Bai, Theoretical study on the reaction mechanism of the thermal cis–trans isomerization of fluorine-substituted Azobenzene derivatives, RSC Advances, 8(21) (2018) 11580-11588.
[21] S.M. Mousavi, M. Alidaei, F. Arabpour Roghabadi, V. Ahmadi, S.M. Sadrameli, J. Vapaavuori, Stability improvement of MAPbI3-based Perovskite Solar Cells using a photoactive solid-solid Phase Change Material, Journal of Alloys and Compounds, 897 (2022) 163142.
[22] A. Bou, A. Pockett, D. Raptis, T. Watson, M.J. Carnie, J. Bisquert, Beyond Electrochemical Impedance Spectroscopy of Perovskite Solar Cells: Insights from the Spectral Correlation of the Electrooptical Frequency Techniques, The Journal of Physical Chemistry Letters, 11(20) (2020) 8654-8659.
[23] G. Grancini, C. Roldán-Carmona, I. Zimmermann, E. Mosconi, X. Lee, D. Martineau, S. Narbey, F. Oswald, F. De Angelis, M. Graetzel, M.K. Nazeeruddin, One-Year stable Perovskite Solar Cells by 2D/3D interface engineering, Nature Communications, 8 (2017) 15684.
[24] E. Merino, M. Ribagorda, Control over molecular motion using the cis–trans photoisomerization of the azo group, Beilstein journal of organic chemistry, 8(1) (2012) 1071-1090.