[1] G.P. Gupta Anu, Asati Abhijit, Novel low-power and stable SRAM cells for sub-threshold operation at 45 nm, International Journal of Electronics, 105(8) (2018) 1399-1415.
[2] S. Naghizadeh, M. Gholami, Two novel ultra-low-power SRAM cells with separate read and write path, Circuits, Systems, and Signal Processing, 38(1) (2019) 287-303.
[3] S. Ahmad, N. Alam, M. Hasan, Pseudo differential multi-cell upset immune robust SRAM cell for ultra-low power applications, AEU-International Journal of Electronics and Communications, 83 (2018) 366-375.
[4] S. Dasgupta, Compact analytical model to extract write Static Noise Margin (WSNM) for SRAM cell at 45-nm and 65-nm nodes, IEEE Transactions on Semiconductor Manufacturing, 31(1) (2017) 136-143.
[5] J. Rabaey, Low power design essentials, Springer Science & Business Media, 2009.
[6] K. Mehrabi, B. Ebrahimi, A. Afzali-Kusha, A robust and low power 7T SRAM cell design, in: 2015 18th CSI International Symposium on Computer Architecture and Digital Systems (CADS), IEEE, 2015, pp. 1-6.
[7] S. Gupta, K. Gupta, B.H. Calhoun, N. Pandey, Low-power near-threshold 10T SRAM bit cells with enhanced data-independent read port leakage for array augmentation in 32-nm CMOS, IEEE Transactions on Circuits and Systems I: Regular Papers, 66(3) (2018) 978-988.
[8] L. Wen, Y. Zhang, X. Zeng, Column-selection-enabled 10T SRAM utilizing shared diff-VDD write and dropped-VDD read for power reduction, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(6) (2019) 1470-1474.
[9] M. Moghaddam, S. Timarchi, M.H. Moaiyeri, M. Eshghi, An ultra-low-power 9T SRAM cell based on threshold voltage techniques, Circuits, Systems, and Signal Processing, 35(5) (2016) 1437-1455.
[10] S. Gupta, K. Gupta, N. Pandey, A 32-nm subthreshold 7T SRAM bit cell with read assist, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(12) (2017) 3473-3483.
[11] C. Kushwah, S.K. Vishvakarma, A single-ended with dynamic feedback control 8T subthreshold SRAM cell, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(1) (2015) 373-377.
[12] M. Nabavi, M. Sachdev, A 290-mV, 3.34-MHz, 6T SRAM with pMOS access transistors and boosted Wordline in 65-nm CMOS technology, IEEE Journal of Solid-State Circuits, 53(2) (2017) 656-667.
[13] J.P. Kulkarni, K. Kim, K. Roy, A 160 mV robust Schmitt trigger based subthreshold SRAM, IEEE Journal of Solid-State Circuits, 42(10) (2007) 2303-2313.
[14] G. Pasandi, S.M. Fakhraie, An 8T low-voltage and low-leakage half-selection disturb-free SRAM using bulk-CMOS and FinFETs, IEEE Transactions on electron devices, 61(7) (2014) 2357-2363.
[15] S. Ahmad, Gupta, Mohit Kumar, Alam, Naushad, M. Hasan, Low leakage single Bitline 9 t (sb9t) Static Random Access Memory, Microelectronics Journal, 62 (2017) 1-11.
[16] J. Kim, P. Mazumder, A robust 12T SRAM cell with improved write margin for ultra-low power applications in 40 nm CMOS, Integration, 57 (2017) 1-10.
[17] E. Shakouri, B. Ebrahimi, N. Eslami, M. Chahardori, Single-Ended 10T SRAM Cell with High Yield and Low Standby Power, Circuits, Systems, and Signal Processing, (2021) 1-21.
[18] D. Ingerly, A. Agrawal, R. Ascazubi, A. Blattner, M. Buehler, V. Chikarmane, B. Choudhury, F. Cinnor, C. Ege, C. Ganpule, Low-k interconnect stack with metal-insulator-metal capacitors for 22nm high volume manufacturing, in: 2012 IEEE International Interconnect Technology Conference, IEEE, 2012, pp. 1-3.
[19] S. Ahmad, B. Iqbal, N. Alam, M. Hasan, Low leakage fully half-select-free robust SRAM cells with BTI reliability analysis, IEEE Transactions on Device and Materials Reliability, 18(3) (2018) 337-349.
[20] M.R. Kumar, P. Sridevi, Design of an enhanced write stability, high-performance, low power 11T SRAM cell, INTERNATIONAL JOURNAL OF ELECTRONICS, 108(10) (2021) 1652-1675.
[21] D. Nayak, D.P. Acharya, P.K. Rout, U. Nanda, A high stable 8T-SRAM with bit interleaving capability for minimization of soft error rate, Microelectronics Journal, 73 (2018) 43-51.
[22] Y. He, J. Zhang, X. Wu, X. Si, S. Zhen, B. Zhang, A half-select disturb-free 11T SRAM cell with built-in write/read-assist scheme for ultralow-voltage operations, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(10) (2019) 2344-2353.
[23] S. Gupta, K. Gupta, N. Pandey, Pentavariate Vmin Analysis of a Subthreshold 10T SRAM Bit Cell With Variation Tolerant Write and Divided Bit-Line Read, IEEE Transactions on Circuits and Systems I: Regular Papers, 65(10) (2018) 3326-3337.
[24] G. Torrens, B. Alorda, C. Carmona, D. Malagon-Perianez, J. Segura, S. Bota, A 65-nm reliable 6T CMOS SRAM cell with minimum size transistors, IEEE Transactions on Emerging Topics in Computing, 7(3) (2017) 447-455.
[25] A. Yadav, S. Nakhate, Low standby leakage 12T SRAM cell characterisation, International Journal of Electronics, 103(9) (2016) 1446-1459.
[26] J. Guo, L. Zhu, W. Liu, H. Huang, S. Liu, T. Wang, L. Xiao, Z. Mao, Novel radiation-hardened-by-design (RHBD) 12T memory cell for aerospace applications in nanoscale CMOS technology, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(5) (2017) 1593-1600.
[27] C.-C. Wang, D.-S. Wang, C.-H. Liao, S.-Y. Chen, A leakage compensation design for low supply voltage SRAM, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(5) (2015) 1761-1769.
[28] K.C. Chun, P. Jain, J.H. Lee, C.H. Kim, A 3T gain cell embedded DRAM utilizing preferential boosting for high density and low power on-die caches, IEEE Journal of Solid-State Circuits, 46(6) (2011) 1495-1505.
[29] G. Pasandi, M. Pedram, Internal write-back and read-before-write schemes to eliminate the disturbance to the half-selected cells in SRAMs, IET Circuits, Devices & Systems, 12(4) (2018) 460-466.
[30] H. Jiao, Y. Qiu, V. Kursun, Low power and robust memory circuits with asymmetrical ground gating, microelectronics journal, 48 (2016) 109-119.