[1] M.H. Rashid, “Power electronics: Circuits, devices and applications,” Prentice-Hall, Inc., Englewood Cliffs, Book, Second Edition, 1993.
[2] B.W. Williams, “Power Electronics; Devices, Drivers, Applications and Passive Components,” Book, Second Edition, Educational Low-Priced Books Scheme; ELBS, 1992.
[3] N. Mohan, M.U. Tore, and P.R. William, “Power Electronics, Converters Applications and Design,” John Wiley & Sons, Inc., Book, 1995.
[4] G. Zhang, Z. Li, B. Zhang, and W.A. Halang, ‘‘Power electronics converters: Past, present and future,’’ Renew. Sustain. Energy Rev., vol. 81, pp. 2028–2044, Apr. 2018.
[5] Y.W. Li, “Control and Resonance Damping of Voltage-Source and Current-Source Converters With LC Filters,” IEEE Trans. on Ind. Electron., vol. 56, no. 5, pp. 1511-1521, May 2009, doi: 10.1109/TIE.2008.2009562.
[6] L. Zhang, L. Harnefors, and H. Nee, “Power-Synchronization Control of Grid-Connected Voltage-Source Converters,” IEEE Trans. on Power Sys., vol. 25, no. 2, pp. 809-820, May 2010, doi: 10.1109/TPWRS.2009.2032231.
[7] C.K. Sao, and P.W. Lehn, “Autonomous load sharing of voltage source converters,” IEEE Trans. on Power Delivery, vol. 20, no. 2, pp. 1009-1016, April 2005, doi: 10.1109/TPWRD.2004.838638.
[8] Y. Li, L. Ding, and Y.W. Li, “Isomorphic Relationships Between Voltage-Source and Current-Source Converters,” IEEE Trans. on Power Electron., vol. 34, no. 8, pp. 7131-7135, Aug. 2019, doi: 10.1109/TPEL.2019.2895827.
[9] X. Wang, Y.W. Li, F. Blaabjerg, and P. C. Loh, “Virtual-Impedance-Based Control for Voltage-Source and Current-Source Converters,” IEEE Trans. on Power Electron., vol. 30, no. 12, pp. 7019-7037, Dec. 2015, doi: 10.1109/TPEL.2014.2382565.
[10] L. Ding, Y. Lian, and Y. W. Li, “Multilevel current source converters for high power medium voltage applications,” CES Trans. on Electrical Machines and Systems, vol. 1, no. 3, pp. 306-314, September 2017, doi: 10.23919/TEMS.2017.8086110.
[11] P.C. Loh, D.M. Vilathgamuwa, C.J. Gajanayake, L.T. Wong, C.P. Ang, “4 Z-Source Current-Type Inverters: Digital Modulation and Logic Implementation,” IEEE Trans. on Power Electron., Volume: 22, Issue: 1, 2007, Page(s): 169–177
[12] E. Babaei, H. Abu-rub, and H. M. Suryawnashi, “Z-source converters: topologies, modulation techniques, and application–Part I,” IEEE. Trans. Ind. Electron. vol. 65, no. 6, pp. 5092-5095, June 2018.
[13] E. Babaei, H. Abu-rub, and H. M. Suryawnashi, “
Z-Source converters: topologies, modulation techniques, and application–Part II,”
IEEE Trans. Industrial Electrons. vol. 65, no. 10, pp. 8274-8276, Oct. 2018.
[14] F. Z. Peng, “Z-source inverter,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003.
[15] M. Aalami, E. Babaei, S.G. Zadeh, “High-voltage gain magnetically coupled half-bridge Z-source inverter,” Int. J. Circ. Theory Appl., Nov. 2021, Early view, doi.org/10.1002/cta.3177.
[16] J.R. Rahul, “Impedance source-based multilevel inverter: A State-of-the-art review,” J. Circ. Syst. Comp. vol. 29, no. 13, pp. 1-31, March 2020.
[17] M.K. Nguyen, Y. Lim, and Y. Kim, “TZ-Source Inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5686-5695, Dec. 2013.
[18] A. Ravindranath, S.K. Mishra, and A. Joshi, “Analysis and PWM control of switched boost inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5593-5602, Dec. 2013.
[19] X. Zhu, B. Zhang and D. Qiu, “A new half-bridge impedance source inverter with high voltage gain,” IEEE Trans. Power Electron., vol. 34, no. 4, pp. 3001-3008, April 2019.
[20] E. Babaei, A. Bahador, “Half-bridge trans-Z-source inverter with continuous input current,” in Proc. 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021, Tabriz, pp. 1-6.
[21] E. Shokati Asl, E. Babaei, M. Sabahi, M.H. Babayi Nozadian, and C. Cecati, “New half-bridge and full-bridge topologies for switched-boost inverter with continuous input current,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3188-3197, April 2018.
[22] X. Ding, F. Wang, M. Zhou, Y. Cao and Z. Wei, “Soft Switching High Voltage Gain quasi-Z-Source DC-DC Converter with Switched-Capacitor Technique,” IEEE Trans. Ind. Electron., Early view, doi: 10.1109/TIE.2021.3125649.
[23] G. Zhang, Z. Wu, S. S. Yu, H. Trinh and Y. Zhang, “Four Novel Embedded Z-Source DC–DC Converters,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 607-616, Jan. 2022.
[24] M. M. Haji-Esmaeili, E. Babaei and M. Sabahi, “High Step-Up Quasi-Z Source DC–DC Converter,” in IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10563-10571, Dec. 2018.
[25] D. Alizadeh, E. Babaei, and V. Ranjbarizad, “Analysis and simulation of quasi ∆-Source with low voltage stress on capacitors and diods,” in 2019 4th International Conference on Power Electronics and their Applications (ICPEA), IEEE, 1–6 (2019)
[26] A. Chub, D. Vinnikov, F. Blaabjerg, and F.Z. Peng, “A review of galvanically isolated impedance-source DC-DC converters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 2808–2828, Apr. 2016.
[27] H. Torkaman, E. Afjei, A. Keyhani, and M. Poursmaeil, “Control and management of hybrid AC/DC microgrid based on Γ-Z-source converter,” IET Generation, Transmission & Distribution, vol. 14, no. 14, pp. 2847-2856, 2020.
[28] X. Ding, Z. Qian, Y. Xie and F. Z. Peng, “A novel ZVS Z-source rectifier,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06., 2006, pp. 5 pp.-.
[29] X.P. Fang, Z. M. Qian, and F. Z. Peng, “Single-phase Z-source PWM AC-AC converters,”, IEEE Power Electron. Let., vol. 3, no.4, pp. 121-124, Dec. 2005.
[30] H.C. Liu, and F. Li, “A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4974-4983, Jul. 2016.
[31] S. Siouance, S. Jovanovic, and P.Poure, “Open-switch fault-tolerant operation of a two-stage buck/buck-boost converter with redundant synchronous switch for PV systems,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3938-3947, May 2019.
[32] Y. Zhu, J. Wu, R. wang, Z. lin, and X. He, “Embedding power line communication in photovoltaic optimizer by modulating data in power control loop,” IEEE Trans. Ind. Electron, vol. 66, no. 5, pp. 3948-3958, May 2019.
[33] Y. Liu, H. Abu-Rub, B. Ge, F. Blaabjerg, O. Ellabban, and P. Loh, “Impedance Source Power Electronic Converters,” Hoboken, NJ, USA: Wiley, 2016.
[34] R. Rahimi, S. Habibi, P. Shamsi and M. Ferdowsi, “A High Step-Up Z-Source DC-DC Converter for Integration of Photovoltaic Panels into DC Microgrid,”2021 IEEE Applied Power Electronics Conference and Exposition (APEC), 2021, pp. 1416-1420
[35] S. Sonar, and T. Maity, “Wind power conversion based on quasi-z source inverter,” International Conference on Control, Automation, Robotics and Embedded Systems (CARE), 2013, pp. 1-6, doi: 10.1109/CARE.2013.6733733.
[36] B. Jyothi, P. Bhavana, K. Sarada, and M. Srikanth, “Analysis of Z-Source Inverter fed Asynchronous Motor for Electric Vehicle Applications,” in Proc. IOP, 2020.
[37] S.M. Dehghan, M. Mohamadian and A. Yazdian, “Hybrid Electric Vehicle Based on Bidirectional Z-Source Nine-Switch Inverter,” in IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2641-2653, July 2010.
[38] F.Z. Peng, M. Shen, and K. Holland, “Application of Z-Source Inverter for Traction Drive of Fuel Cell—Battery Hybrid Electric Vehicles. Power Electronics,” IEEE Trans. on Power Electron., vol.22, no.3, pp.1054,1061, May 2007
[39] L. Ping, and L. He-ping, “Application of Z-source Inverter for Permanent-magnet Synchronous Motor Drive System for Electric Vehicles,” Procedia Engineering 15(20 11) 309-314.
[40] R. Senthilkumar, R. Bharanikumar, and J. Jerom, “Z-source inverter for UPS application,” International Conference on Intelligent and Advanced Systems, pp. 835-839, 2007, doi: 10.1109/ICIAS.2007.4658504.
[41] M. Shahparasti, A. Yazdian, M. Mohamadian, A.S. Larijani, A. Fatemi, “Parallel uninterruptible power supplies based on Z-source inverters,” IET power electron. Vol. 5, no. 8, pp. 1359-1366, sept 2012.
[42] A. Rajaei, M. Shahparasti, A. Nabinejad, and M. Savaghebi, “A high step-up partial power processing DC/DC T-source converter for UPS application,” Sustainability 2020, 12, 10464.
[43] L. Ping, and L. He-ping, “Application of Z-source Inverter for Permanent-magnet Synchronous Motor Drive System for Electric Vehicles,” Procedia Engineering, Volume 15, 20 2011, Pages 309-314
[44] F.Z. Peng, and A. Joseph, J. Wang, M.S. Shen, L. Chen, and Z.G. Pan, “Z-Source Inverter for motor drives,” IEEE Trans on power electron., 20(4) (2005) 857-863.
[45] F.Z. Peng, X. Yuan, X. Fang, and Z. Qian, “Z-source inverter for adjustable speed drives,” IEEE Power Electron. Lett. vol. 1 no. 2 pp. 33-35 Jun. 2003.
[46] F.Z. Peng, “Z-source inverter for motor drives,” in IEEE 35th Annual Power Electron. Specialists Conference (IEEE Cat. No.04CH37551), 2004, pp. 249-254 Vol.1, doi: 10.1109/PESC.2004.1355750.
[47] Y. Huangfu et al., “A Novel Robust Smooth Control of Input Parallel Output Series Quasi-Z-Source DC–DC Converter for Fuel Cell Electrical Vehicle Applications,” in IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4207-4221, July-Aug. 2021
[48] M. Shen, A. Joseph, J. Wang, F. Z. Peng, and D. J. Adams, “Comparison of Traditional Inverters and Z-Source Inverter for Fuel Cell Vehicles,” IEEE Trans. on Power Electron., vol. 22, no. 4, pp. 1453-1463, July 2007, doi: 10.1109/TPEL.2007.900505.
[49] F. Peng, M. Shen, and K. Holland, “Application of Z-source inverter control for for traction drive of fuel cell—battery hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 22 no. 3 pp. 1054-1061 May 2007.
[50] J.G. Cintron-Rivera, Y. Li, S. Jiang, and F. Z. Peng, “Quasi-Z-Source inverter with energy storage for Photovoltaic power generation systems,” in 2011 Twenty-Sixth Annual IEEE Applied Power Electron. Conference and Exposition (APEC), 2011, pp. 401-406, doi: 10.1109/APEC.2011.5744628.
[51] M. K. Nguyen, Y. G. Jung and Y. C. Lim, “Voltage swell/sag compensation with single-phase Z-source ac-ac converter,” in proc. ECPEA, pp. 1-8, 2009.
[52] M. K. Nguyen, Y. C. Lim and J. H. Choi, “Single-phase Z-source-based voltage sag/swell compensator,” in proc. APEC, pp. 3138-3142, 2013.
[53] S. Torabzad, E. Babaei and M. Kalantari, “Z-Source Inverter based Dynamic Voltage Restorer,” 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), 2010
[54] S.M. J. Mousavi and E. Babaei, “Single-Phase Dynamic Voltage Restorer Based on AC-AC Trans-Z-Source Converter for Voltage Sag and Swell Mitigation,” 2021 12th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC), 2021, pp. 1-6.
[55] A.R. Marami Iranaq, M. Tarafdar Haque and E. Babaei, "A UPFC based on matrix converter," 2010 1st Power Electronic & Drive Systems & Technologies Conference (PEDSTC), 2010, pp. 95-100
[56] E. Babaei, S.H. Hosseini, “Generalized Direct Modulation Control Methods for Matrix Converters under Balanced and Unbalanced Operations,” Arab J. Sci. Eng., vol. 38, pp. 2423-2438, Feb 2013.
[57] T.N. Mir, B. Singh and A.H. Bhat, “FS-MPC-Based Speed Sensorless Control of Matrix Converter Fed Induction Motor Drive with Zero Common Mode Voltage,” IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9185-9195, Oct. 2021.
[58] J. Jongudomkarn, J. Liu, Y. Yanagisawa, H. Bevrani and T. Ise, “Model Predictive Control for Indirect Boost Matrix Converter Based on Virtual Synchronous Generator,” IEEE Access, vol. 8, pp. 60364-60381, 2020.
[59] A.S. Felinto, C.B. Jacobina, E.L.L. Fabricio and R.P. de Lacerda, “Six-Leg Three-Phase AC–DC–AC Converter with Shared Legs,” IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 5227-5238, Sept.-Oct. 2021.
[60] Y. Tang, S. Xie, and C. Zhang, “Z-source ac-ac converters solving commutation problem,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2146-2154, Nov. 2007.
[61] M.K. Nguyen, Y.G. Jung, and Y.C. Lim, “Single-phase ac-ac converter based on quasi-Z-source topology,” IEEE Trans. Power Electron., vol. 25, no. 8, pp. 2200-2210, Aug. 2010.
[62] M.K. Nguyen, Y.C. Lim, and Y.J. Kim, “A modified single-phase quasi-Z-source ac-ac converter,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 201-210, Jan 2012.
[63] M.R. Banaei, R.R Ahrabi, and M. Elmi, “Single-phase safe commutation trans-Z-source ac-ac converter,” IET Power Electron., vol. 8, no. 2, pp. 190-201, Feb. 2015.
[64] M.R. Banaei, R. Alizadeh, N. Jahanyari and E. Seifi Najmi, “An ac Z-source converter based on gamma structure with safe-commutation strategy,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1255-1262, Feb. 2016.
[65] S. Esmaeili, A. Siadatan, A.Z. Jahromi, and P. Shirazi, “A filterless single-phase ac-ac converter based on coupled inductors with safe-commutation strategy and continuous input current,” in proc. ICIT, Toronto, Canada, 2017, pp. 12-17.
[66] L. He, J. Nai and J. Zhang, “Single-phase safe-commutation trans-Z-source ac-ac converter with continuous input current,” IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5135-5145, June 2018.
[67] S. Sharifi, F. Jahani, and M. Monfared, “Direct single-phase ac-ac converters based on series impedance networks,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10380-10389, Dec. 2018.
[68] S.M.J. Mousavi, E. Babaei, D. Alizadeh, and H. Komurcugil, “Single-phase ac-ac Z-source converter based on asymmetrical gamma structure with continuous input current and safe commutation strategy,” IET Power Electronics., vol. 14, no. 4, pp. 1-10, Jan. 2020.
[69] S.M.J. Mousavi, E. Babaei, and M. Sabahi “Modified Single-Phase Z-Source Converter Based on Gamma Structure,” in Proc. PEDSTC, Tehran, Iran, 2020, pp. 1-6.
[70] M.K. Nguyen, Y. Jung, Y. Lim, and Y. Kim, “A single-phase Z-source buck–boost matrix converter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 453-462, Feb. 2010.
[71] K. Rahman, M. Meraj, M.S. Bhaskar, and A. Iqbal, “Single-phase ZAC-source ac-ac converter with high buck and boost voltage conversion capability,” IEEE Trans. Ind. Electron., vol. 67, no. 11, pp. 9251-9259, Nov. 2020.
[72] Z. Aleem, H. Yang, H. F. Ahmed, S. Winberg, and J. Park, “A class of single-phase Z-source ac-ac converters with magnetic coupling and safe-commutation strategy,” IEEE Trans. Ind Electron., vol. 68, no. 9, pp. 8104-8115, Sept. 2021.
[73] H.F. Ahmed, H. Cha, A.A. Khan, and H.G. Kim, “A family of high-frequency isolated single-phase Z-source ac-ac converters with safe-commutation strategy,” IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7522-7533, Nov. 2016.
[74] H.F. Ahmed and H. Cha, “A new class of single-phase high-frequency isolated Z-source ac-ac converters with reduced passive components,” IEEE Trans. Power Electron., vol. 33, pp. 1410-1419, Feb. 2018.
[75] H.F. Ahmed, M.S. El Moursi, T. Irshad, E. El-Saadany, and K. Al Hosani, “Family of single-phase isolated high-frequency transformer integrated improved magnetically coupled Z-source ac–ac converters,” IET Power Electron, vol. 13, no. 9, pp. 1901-1910, July 2020.
[76] X. Fang, “Three-Phase Z-Source AC-AC Converter,” 2006 12th International Power Electronics and Motion Control Conference, 2006, pp. 621-624.
[77] B. Ge, Q. Lei, W. Qian and F. Z. Peng, "A Family of Z-Source Matrix Converters," in IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 35-46, Jan. 2012.
[78] O. Ellabban, H. Abu-Rub and S. Bayhan, "Z-Source Matrix Converter: An Overview," in IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7436-7450, Nov. 2016.
[79] H. F. Ahmed, H. Cha, A. A. Khan, and H.-G. Kim, “A novel buck-boost ac-ac converter with both inverting and non-inverting operations and without commutation problem,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4241-4251, June 2016.
[80] Fang Zheng Peng, Lihua Chen and Fan Zhang, “Simple topologies of PWM AC-AC converters,” in IEEE Power Electronics Letters, vol. 1, no. 1, pp. 10-13, March 2003.