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ABSTRACT: Model Predictive Control (MPC) has attracted wide attention recently, especially in 
electrical power converters. MPC advantages include straightforward implementation, fast dynamic 
response, simple system design, and easy handling of multiple objectives. In conventional MPC, the 
optimal value of the cost function is obtained after calculating all switching states, which makes this 
method impossible to implement. In this paper, a Simplified Model Predictive Control (S-MPC) is 
presented to control the circulating and output currents in a Modular Multilevel Converter (MMC). 
Using a discrete mathematical model of MMC and the neighboring index values with respect to their 
previously applied values, the calculation burden can be reduced rapidly, and even the number of 
Sub-Modules (SMs) increases. The conventional MPC is expressed for comparison with the proposed 
method. In addition, a bilinear mathematical model of the MMC is derived and discretized to predict 
the states of the MMC for one step ahead. A sorting algorithm is used to retain the balancing capacitor 
voltage in each SM, while the cost function guarantees the regulation of the output current, and MMC 
circulating current. In the simulation section, the proposed method is implemented in a three-phase 
MMC with four SMs in each arm. The accuracy and performance of the proposed method are evaluated 
with simulation and experimental results.
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1- Introduction
Power Electronic converters are used in a variety of 

applications; these include in various industries such 
as HVDC systems, renewable energy, machine drives, 
aerospace, and spacecraft power systems [1-5]. In general, 
power electronic converters are divided into two categories: 
conventional converters and Multilevel Converters (MLCs). 
Due to requiring large capacitive-inductive filters in the 
AC side to remove the output current ripple, conventional 
converters may not have the appropriate performance [6]. 
On the other hand, to improve power quality, it is needed 
to use complex switching algorithms, such as Space Vector 
Modulation (SVM), which complicate the control system [7]. 
MLCs are suitable substitutes for conventional converters, 
especially in high-power applications, without the need 
for the capacitive-inductive filter [8]. Due to using a large 
number of switches in these converters, the ripples of the 
current and voltage are very low. Moreover, by increasing the 
number of switches in MLCs, there is no need to increase 
the switching frequency to reduce the voltage ripple, hence 
the system performance is improved as well as the efficiency 
is increased. These structures have different disadvantages, 
for instance in Cascade H-bridge structure (CHB), a large 
number of DC voltage sources is needed. Additionally, the 
diode clamp and Fly Capacitor (FC) structures suffer from 

practical implementation problems and the high cost of 
equipment [9].

Therefore, another type of Multilevel Converters,  called 
Modular Multilevel Converters (MMCs), have been entered 
into the electric industry. These converters exhibit several at-
tractive features for the medium and high-power applications, 
such as straightforward scalability, voltage and current wave-
forms with very low harmonic content and high availability 
as well as fault tolerance [6]. There is a voltage unbalance in 
the capacitors in MMC, which is necessary to use linear or 
non-linear control methods to control them [6]. To balance 
the capacitor voltage, a mathematical method is used in [10]. 
In this method, the individual capacitor voltage regulation is 
implemented based on Phase-Shifted-Carrier Pulse-Width 
Modulation (PSC-PWM). In addition, based on the consensus 
theory, the influence of different communication structures on 
the MMC voltage regulation performance is discussed.

In [11]. , the finite control set MPC (FCS-MPC) is used to 
control the parameter of MMC. In FCS-MPC, due to the con-
sideration of all switching states, with increasing the number 
of SMs, the computational burden is increased. For compu-
tational volume reduction, the indirect finite control set MPC 
(IFCS-MPC) is applied in [12]. In IFCS-MPC, the sorting 
algorithm balances capacitors voltages; hence, the number of 
switching states has been reduced to (N+1)2, where N is the 
number of SMs. In [13], optimal predictive control is present-
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ed to reduce the volume of calculations. In this method, by 
cost function optimization in each step and combining with 
the sorting algorithm, the output current and the voltages of 
the capacitors are controlled. In this method, the switching 
states are reduced, but are dependent on the number of SMs. 
By combining the predictive control method with Phase-Shift 
Pulse Width Modulation (PS-PWM) in [14], the number of 
switching states is significantly reduced, and the output cur-
rent ripples are limited. By minimizing the switching states 
and optimizing the duty cycle in each step, the circulating 
current and output current errors are minimized, and the dy-
namic response is increased despite the constant frequency. 
However, by increasing the number of SMs, the switching 
states are increased. In [15], an improved prediction control 
algorithm is presented for the application on MMC. In this 
method, first a mathematical model of MMC is presented. 
Afterwards, the stability analysis of the current control loop 
is obtained, and the control boundary gain of the controller 
is determined. This algorithm can reduce the high computa-
tional volume of the predictive control method. In addition, 
to limit the prediction error, a repetitive controller is provided 
to control the capacitor’s voltages of the SMs. By increasing 
the number of SMs, the computational volume is reduced, but 
the complexity of this method is increased. 

From the mentioned methods, it can be concluded that by 
increasing the number of SMs, the complexity of the control 
system and the computational burden are increased, and the 
implementation of these methods had some challenges. 

In this paper, a bilinear mathematical model of the MMC 
is developed, and the simplified model predictive control is 
applied to control the output current and circulating current.  
In fact, in the proposed method, due to the significant 
reduction in the number of switching modes compared to 
the mentioned methods, the computational burden of MPC is 
separated from the switching modes number. In other words, 
switching modes do not change with the number of SMs. This 
simplifies the control system and can be used in medium and 
high-power industrial converters. 

In addition, using the proposed method reduces the 
disturbances of the output and the circulating currents. 
Therefore, the performance of the closed-loop control system 
increases. Additionally, to control the voltages of capacitors, 
the sorting algorithm is used. 

The rest of the paper is organized as follows: 
Section 2 presents the topology, basic operation,  
and a bilinear mathematical model of MMC. In Section 3, the 
details of the proposed S-MPC, and the conventional MPC 
are explained. Section 4 and 5 show the simulation and ex-
perimental results of the proposed method on the MMC, re-
spectively. Finally, in Section 6, conclusions are presented.

2- Mathematical Model of MMC 
The topology of the three-phase MMC is shown in Fig. 1. 

This structure consists of three legs, where each leg has two 
arms: upper and lower arms are represented by the subscript 
“up” and “low”, respectively. There are N SMs in each arm 
which represent the number of SMs. The structure of the SMs 
in the arm is considered half-bridge, due to efficiency and low 
cost [13]. The inductance (Larm) in the arm is used to limit the 
di/dt of circulating current, and the resistance of the arm also 
indicates the losses of the arm. On the AC side, it is assumed 
that the converter is connected to the AC grid with voltage 
(Vt,j), impedance Lt,j, and Rt,j where j represents each of the 
phases (a, b, c). It is assumed that the capacitor’s voltages of 
the SMs are balanced. 

The switching states of the SMs are generally on-state and 
off-state. In on-state mode, the output voltage of the SM is 
Vcmi,j (m=1, 2... N, i = up, low), when S1 is turned on, and S2 
is off. Additionally, in off-state, the output voltage of the SM 
is zero when S1 is turned off, and S2 is on. Table 1 shows the 
switching states of SMs.

The capacitor voltage dynamic equation for each SM of 
the MMC is expressed as follows:
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where CSM is the capacitance of the SM, and ici,j is the ca-
pacitor current, which can be obtained from the switching 
state Smi,j and the arm current ii,j as follows:
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Table 1. The SMs Mode of MMC

 

Table 1. The SMs Mode of MMC 

 

SM mode S1 S2 VSM 

On-mode ON OFF 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐,𝑗𝑗 

Off-mode OFF ON 0 
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The state-space equations describing the MMC can be ex-
pressed by [13]:
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In (3) and (4), it,j is the current of the grid. Due to the sym-
metry between the upper and lower arm, the AC side current 
is divided equally between the upper and lower arm. The DC 
side current is divided into three parts due to the symmetry 
for the three phases. Hence, by using KCL, the upper and 

lower arm currents are as follow [13]:
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As shown in (5a) and (5b), the upper and lower arm cur-
rents depend on the output current, the circulating current, 
and the DC side current. By combining (5a) and (5b), the 
circulating current and the AC side current are calculated as 
follows [13]:
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Based on (6), the circulating current is contained of cur-
rent DC component. Based on (3)(7), the state space equa-
tions are as follows:
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where Vup and Vlow are generated based on inserting and 
bypassing the special number of SMs. Assuming that the SMs 
capacitors voltages are well balanced at their reference val-
ues, the modulation indices determine the number of inserted 
SMs in each arm. Therefore, the arm voltages are expressed 
by:
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where nup,j and nlow,j are the modulation indices. By substi-
tuting (10) and (11) in (8) and (9), the state space equations 
are as follows:
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Therefore, the standard form of a continuous bilinear sys-
tem is represented: 

 ( ) ( )

2 0 0 0
2

0 0 0

0 0 0 0
0 0 0 0

arm t

arm t

arm

arm

A

R R
L L

R
x t x t

L

+ − + 
 

−= + 
 
 
 
 

 

 

( )

1

,

1

10 0 0
2

10 0 0
2

1 1 0 0
2
0 0 0 0

arm t j

arm

B

L L N

uNL

C C

 
 + 
 

−  + 
 
 −
 
  

 

( )

2

,
,

,

2

1 20 0 0
2

2
10 0 0

2 2
0 0 0 0 0
1 1 00 0

2

t j
arm t j

arm t j

dc
arm

arm

d
B

v
L L N

L L
VuNL L

C C

 −   +    +    −  +                 

, 

(14) 

 

 

 (14)

where x = 

𝑥̇𝑥(𝑡𝑡) =

[
 
 
 
 −

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎+2𝑅𝑅𝑡𝑡
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎+2𝐿𝐿𝑡𝑡

0 0 0

0 −𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎

0 0
0 0 0 0
0 0 0 0]

 
 
 
 

⏟                  
𝐴𝐴

𝑥𝑥(𝑡𝑡) +

[
 
 
 
 
 0 0 1

(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎+2𝐿𝐿𝑡𝑡,𝑗𝑗)𝑁𝑁
0

0 0 − 1
2𝑁𝑁𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎

0

− 1
2𝐶𝐶

1
𝐶𝐶 0 0

0 0 0 0]
 
 
 
 
 

⏟                  
𝐵𝐵1

𝑢𝑢1 +

[
 
 
 
 
 0 0 0 − 1

(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎+2𝐿𝐿𝑡𝑡,𝑗𝑗)𝑁𝑁

0 0 0 − 1
2𝑁𝑁𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎

0 0 0 0
1
2𝐶𝐶

1
𝐶𝐶 0 0 ]

 
 
 
 
 

⏟                  
𝐵𝐵2

𝑢𝑢2 +

[
 
 
 
 

2𝑣𝑣𝑡𝑡,𝑗𝑗
𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎+2𝐿𝐿𝑡𝑡,𝑗𝑗

𝑉𝑉𝑑𝑑𝑑𝑑
2𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎
0
0 ]

 
 
 
 

⏟      
𝑑𝑑

, 

(14) 
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 Where it,j (k) and icir,j (k) are the measured values of the
 output current and the circulating current at the k instant. it,j
(k+1) and icir,j (k+1) are the predicted values of output and cir-
.culating currents at k+1 instant. Also, Ts is the sampling time
After evaluating all the correct switching states, the predicted 
values of output and circulating currents are placed in the cost 
function J, as follows: 
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Where λcir, λtare the weighting coefficients of the circulating 
current and output current, respectively. Using the method 
in [17], the weighting coefficients for circulating current, 
and output current can be considered equal to (1) and (0.5), 
respectively. To operate the proposed method, for optimizing 
the cost function, the control modes Mx,j (x = up, low) are 
selected and the optimal modulation indices (nup,j and nlow,j ) 
are obtained for applying to the switches. In this method, the 
number of switching states is independent of the number of 
SMs and is equal to a maximum of three states (k-1, k, k + 1). 
Furthermore, the modulation indices at the end of each period 
are optimized. Fig. 2 and Fig. 3, show the block diagram and 
the flowchart of the proposed method, respectively. 

Modulation indices (nup.j, nlow,j) determine the output volt-
age levels. In this paper, voltage levels are generated by the 
cost function of the predictive control. In this method, along 
the generated modulation indices by the cost function, anoth-
er part is applied to update these modulation indices, which 
is the preselection block. As shown in Fig. 2, the feedback is 
taken from the modulation indices at any instant in the prese-
lection block, and the following step modulation indices are 
determined based on the previous step indices. The next state 
is effected by the previous state. When a new modulation in-
dex generates, a comparison is made between the new modu-
lation index and the feedback index taken from the previous 
step. At any time, the generated modulation index has one of 

Model predictive 
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Cost Function 
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Fig. 2. Block diagram of the proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Block diagram of the proposed method.
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Fig. 3. Flowchart of the proposed method 
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Fig. 3. Flowchart of the proposed method

the following three modes:
1.	 Suppose the new modulation index is at the N level 

(N is the number of SMs), and this value is the same as the 
previous modulation index. In that case, the prediction equa-
tions are calculated only for the N and N-1 states.

2.	 Suppose the new modulation index is at level 0, and 
this value is the same as the previous modulation index. In 
that case, the prediction equations are calculated only for two 
states, 0 and 1.

3.	 However, if the new modulation index has a value 
other than 0 and N, in this case, the new modulation index is 
not the same as the taken feedback modulation index, and the 
predictive equations are calculated for three different states. 

These three states depend on the taken feedback modulation 
index and are as follows:

Mx, j-1, Mx,j, Mx,j+1
The prediction equations are calculated for the above 

three values. The best state that optimizes the cost function is 
applied as the optimal modulation index to the voltages of the 
sorting section of the capacitor.

3- 2- Operation of Sorting Algorithm of Capacitor Voltages
In this paper, the voltage sorting algorithm in [12] is im-

plemented to balance the capacitor’s voltages of the MMC. 
According to Fig. 2, after generating the modulation indi-
ces from the cost function section, by a specify the number 
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of capacitors and based on the direction of current flowing 
through, the capacitor voltages are changed and should be 
updated for the next step. Hence, if the current arm is positive 
(iup,j /ilow,j>0), the SMs with the lowest voltages in the respec-
tive arm and other SMs are bypassed, which is the ascending 
mode. On the other hand, if the current arm is opposing (iup,j /
ilow,j < 0), the SMs with the highest voltages in the respective 
arm and other SMs are bypassed, which is the descending 
mode. Hence, the switching signals (Smx,j) are obtained to be 
applied in the sampling time k. Fig. 4 shows the operation of 
the voltage sorting algorithm.

3- 3- Conventional MPC for Modular Multilevel Converter
In this subsection, conventional MPC is explained. For 

MMCs with conventional MPC, all the possible switching 
states are evaluated using a single cost function to obtain the 
optimal control of the output and circulating currents, and 
capacitors voltages [11]. The output and circulating currents 
equations for one step ahead is the same as (15) and (16). In 
this case, the voltage equation of the capacitor is rewritten as 
follows:
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where S indicates the switching state of each SM that if 
S = 1, the desired SM is in the circuit, and if S = 0, the SM is 
bypassed. Therefore, the equation of capacitor voltage with 

discretization by Euler first-order expansion are as follows:
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By rewriting the cost function and adding the capacitor 
voltage term, the cost function is as follows [11]:
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In (20), all parameters are error absolute between the 
actual value and the reference value. The block diagram of 
the conventional MPC is shown in Fig. 5. According to this 
figure, the amount of the output and circulating currents and 
voltages of the capacitors are calculated for each switching 
state. Afterwards, by optimizing the cost function, the switch-
ing states are optimized and applied to MMC.

According to [11], in the conventional MPC and the over-
all valid switching states are considered, and the cost function 
is evaluated for each states. In conventional MPC, the vol-
ume calculations are significantly increased, hence to control 
a three-phase MMC with six SMs in each arm, the number of 
switching states is 924.
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Fig. 4. Flowchart of the voltage sorting algorithm
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Comparison between the proposed method and different 
control methods in terms of the number of switching states 
are illustrated in Table 2. In all control methods, as the num-
ber of switching states increases, the computational volume 
and the complexity of the control system are increased, but 
by the proposed method, the switching states are significantly 
reduced, as shown in Table 2.

4- Simulation Results 
In this section, a three-phase MMC is established in 

MATLAB/Simulink by the proposed method and conven-
tional MPC to verify the proposed controller. The parameters 
are listed in Table 3. Some of the simulation parameters are 
determined based on the parameters [19], but the SM capaci-
tor and arm inductance are calculated in next subsection. The 
active and reactive power references are set to 450kW and 
120 kVar, respectively. The DC side voltage is 3.5kV, and 
voltage maximum of the AC side is 3.15kV. The number of 
SMs is 4 per arm. The capacitance in each SM is 10mF. The 
line inductance is 3.17mH, and the arm inductance is 5mH. 

In the simulations, three scenarios are considered as, scenario 
1 steady-state operation, scenario 2 changing active and reac-
tive power, and scenario 3 changing the output reference cur-
rent. Fig. 6 shows the block diagram of the proposed system

.
4- 1- . Selection of SM Capacitor and Arm Inductance 

In this subsection, the parameters calculations of SM ca-
pacitor and arm inductance are explained.

The capacity of SM capacitor is obtained from the maxi-
mum energy stored in the capacitor and the apparent power of 
the converter. Therefore: 
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where Ec,max, Sn and EP are the stored maximum energy 
in SM capacitor, apparent power, and energy-power rate of 
the converter, respectively. Typically, EP is between 10 J/kVA 
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Table 2. Comparison between the proposed method and three control methods in terms of the number of 
switching states: conventional MPC, indirect MPC, improved indirect MPC, and the proposed method.

Table 2. Comparison between the proposed method and three control methods in terms of the number of switching states: 

conventional MPC, indirect MPC, improved indirect MPC, and the proposed method. 

Number of SMs (N) 4 10 50 100 

Number of control states 

FCS-MPC [11] 70 1.8×105 1029 9.1×1058 

Indirect FCS-MPC [12] 25 121 2601 104 

Improved indirect FCS-MPC 

[18] 
5 11 51 101 

Proposed method 3 3 3 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A. Sheybanifar et al., AUT J. Elec. Eng., 54(1) (2022) 121-136, DOI: 10.22060/eej.2021.20393.5429

129

 

Fig. 6. The proposed control diagram 
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Fig. 6. The proposed control diagram

Table 3.  Parameters of MMC Table 3.  Parameters of MMC  

Experimental Simulation Symbol Parameters 

60 (V) 3.5 (kV) Vdc/2 Nominal DC voltage 

60 (V)  3.15 (kV) Vt,j line to line AC voltage  

81.9 (W) 450 (kW) P Active power 

27.75 (Var) 120 (kVar) Q Reactive power 

6 4 N Number of SMs 

20 1750 Vc SM Capacitor voltage (V) 

2.2 10 C SM capacitance (𝑚𝑚𝑚𝑚) 

- 0.062 Rt line resistance (Ω) 

- 3.17 Lt line inductance(mH) 

0.2 0.1 Rarm resistance Arm (Ω)   

4.07 5 Larm Arm inductance (mH) 

200 100 Ts Sampling period (𝜇𝜇𝜇𝜇) 

50 50 f Output frequency (Hz) 
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and 50 J/kVA. When EP is decreased, the capacitor costs are 
reduced but the fluctuations of the capacitor voltage are in-
creased. Hence, a tradeoff between the capacitor costs and the 
capacitor voltage fluctuations is needed. 

The arm capacitance based on EP is calculated as follows 
[20]: 
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Then, the SM capacitance is as follow:
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where N is the number of SMs in each arm.
Therefore, the SMs capacitor is determined to equal 0.01 F. 
The arm inductance is the main parameter to reduce the 

circulating current. Based on the resonant frequencies be-
tween the capacitors and the inductors, the appropriate con-
straint for determining the arms inductance size is obtained 

as follow:
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where ω1 and Ls are the main frequency of the system, 
and the arm inductance in each phase (sum of the inductance 
of two arms). This equation determines the minimum induc-
tance. Therefore, to prevent resonance in the converter arms, 
the arm inductance of each phase must be larger than the cal-
culated value. Hence, the inductance for each arm is deter-
mined to equal 5 MH.

4- 2- Steady-state Operation
An MMC consisting of 4 SMs (N =4) is simulated in this 
subsection. The steady-state performance of the MMC 
regulated by the proposed method is illustrated in Fig. 7 (a). 
The output current and circulating current are well regulated 
with the proposed MPC, and the MMC operates stably with 
balanced SMs capacitors voltages. The voltage and current 
waveforms of the MMC with conventional MPC are shown 
in Fig. 7 (b) to compare.

  

   

    

 
           Time(s) 

         (a) 

    

              Time(s) 

             (b) 

Fig. 7. Steady performance of MPC, (a) MMC is regulated by the proposed method (b) MMC with conventional MPC. From top to bottom, waveforms 

are output voltages, output currents, circulating currents and, SMs capacitors voltages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Steady performance of MPC, (a) MMC is regulated by the proposed method (b) MMC with conventional MPC. 
From top to bottom, waveforms are output voltages, output currents, circulating currents and, SMs capacitors voltages. 
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According to Fig. 7, the proposed method presents fewer 
ripples in the output, circulating currents, and the output volt-
age. The converter generates five output voltage waveforms 
with 3.3 kV amplitude. The maximum amplitude of the out-
put current is equal to 100 A by both control strategies, but the 
output current THD is 5.2% by the proposed method, while in 
the conventional MPC, the output current THD is 6.86%. Ad-
ditionally, by applying the proposed method, the capacitors 
voltages fluctuations are lower than 1%. However, the fluctu-

ations of the voltages of the capacitors are 1.57 %. Therefore, 
the proposed method gives better performance compared to 
the conventional MPC.

4- 3- Changing active and Reactive Power
To show the dynamic behaviors of the system, the active 

and reactive power are changed from 450 kW to 200kW at 
t=2.7s, and from 120 kVar to 50 kVar at t=3.2s, respective-
ly as shown in Fig. 8. The dynamic operation of the system 
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        (b) 

Fig. 8. Dynamic performance of MMC at the mode of changing active and reactive power, (a) MMC is regulated by the proposed method (b) MMC 

with conventional MPC. From top to bottom, waveforms are active and reactive power, output voltages, output currents, circulating currents and, SMs 

capacitors voltages. 

 

 

 

 

 

 

 

Fig. 8. Dynamic performance of MMC at the mode of changing active and reactive power, (a) MMC is regu-
lated by the proposed method (b) MMC with conventional MPC. From top to bottom, waveforms are active 

and reactive power, output voltages, output currents, circulating currents and, SMs capacitors voltages.
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regulated by the proposed method is illustrated in Fig. 8(a). 
Comparison with the conventional MPC, the voltage and cur-
rent waveforms of the MMC are shown in Fig. 8(b).

According to Fig. 8(a), the three-phase output voltages 
remain constant at 3.3 kV before and after the change of ac-
tive and reactive power. When the active power is changed, 
the output current quickly adapts to its reference. Addition-
ally, by reducing the reactive power at t=3.2s to 50 kVar, the 
output current amplitudes by two control methods decrease, 
but the output current THD and oscillations by the proposed 
method are lower than compared to conventional MPC.  In 
Fig. 8, the circulating currents are also shown, where they 
fluctuate around the DC value with limited amplitude before 
the power change. After reducing the active and reactive pow-
er, the DC component of the circulating current is reduced, 
but the system response with the proposed control method 
reaches the steady state faster compared to the conventional 
MPC. In addition, by applying the proposed method after the 
step changes, the voltage fluctuations of the capacitors are 
balanced around their nominal value, as shown in Fig. 8(a). 
However, since the active and reactive power decrease, the 
fluctuations amplitude of capacitors voltages with the pro-
posed method and conventional MPC reduce to 0.79% and 
1.33 %, respectively, which shows the proposed method com-
pared to the conventional MPC gives the better performance.

4- 4- Changing the Output Current Reference
In this subsection, the dynamic behavior of the converter 

with the output reference current changing is shown. Primar-
ily, the system is in steady-state operation, then the output 
current reference increases from 100A to 200A at t=2s. As 
shown in Fig. 9(a), after changing the output current refer-

ence, the number of output voltage levels does not change 
since the MMC output is connected to the grid and its voltage 
is constant. As shown in this figure, there are a few notches 
at this moment of changing reference. In addition, Fig. 9(b) 
shows the dynamic behavior of the output current with the 
output reference current changing. After changing the current 
reference, the measured output current properly follows its 
reference. 

Fig. 9 (c) illustrates the circulating current with changing 
the reference current, where the circulating current fluctuates 
around its reference value with limited amplitude. The SMs 
capacitors voltages continue to be balanced at their reference 
value, as shown in Fig. 9(d). The reason behind the increasing 
voltage oscillation is the increasing in the arms power.

As a result, Fig. 9 verifies the dynamic behavior of the 
proposed method.

5- Experimental Results 
To validate the proposed method, a single-phase MMC 

is built and tested. The power rating of the scaled prototype 
model is 81 W, which is restricted by the rating of the power 
supply used in the laboratory. The number of cells per arm 
is six. IGBTs with custom-designed gate drives are used as 
power semiconductor switches in the MMC. The converter 
feeds an inductance-resistive load. To implement the control 
strategy, Texas Instruments Microcontroller (TMS320F2812) 
is used. The parameters of the experimental setup are listed in 
Table 3. Due to microcontroller hardware limitation, Ts in the 
experimental setup is set to 200
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    (d)   
Fig. 9. Dynamic performance of MMC by the proposed method at the mode of changing the output current reference, (a) output voltages, (b) output 

currents, (c) circulating currents, (d) capacitors voltages. 

Fig. 9 (c) illustrates the circulating current with changing the reference current, where the 

circulating current fluctuates around its reference value with limited amplitude. The SMs 

capacitors voltages continue to be balanced at their reference value, as shown in Fig. 9(d). The 

reason behind the increasing voltage oscillation is the increasing in the arms power. 

As a result, Fig. 9 verifies the dynamic behavior of the proposed method. 
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5- 1- Practical Results in Steady-state Operation 
Fig. 11(a) shows the 7-level output voltage waveforms. 

The proposed method produces the desired output with an 
amplitude of half the DC voltage and frequency of 50 Hz 
periodically. Fig 11. (b) shows the laboratory result of the 
converter AC output current. The amplitude of the output cur-
rent is 2A. Additionally, the dominant waveform of the output 
current is sinusoidal and has low harmonic components. To 
present the accuracy of the proposed method, the harmonic 
spectrums of the output current are shown in Fig. 10(c). In 
this figure, Ithd is calculated as:
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where, Iho1 and Irms are the amplitude of the fundamen-
tal frequency component and RMS of the output current, re-
spectively. As shown in Fig. 10(c), the output current THD 
of the MMC controlled by the proposed method is 9.17 %. 
Additionally, the output voltage THD is equal to 18.29% as 
illustrated in Fig. 10(d). Using the proposed method correctly, 
the upper arm capacitors voltages (Vc1, Vc2, and Vc3) follow 
the measured voltage at a nominal value of 20 V, as shown 
in Fig. 11(c). Finally, Fig. 11(d) shows the circulating cur-
rent of the converter. One can observe that the current ripple 

resulting from the second-order harmonic that causes internal 
losses in the converter is effectively mitigated. The above-
mentioned results verify the proposed method’s performance 
in the steady state.

5- 2- Comparison of the Proposed Method and Indirect FCS-
MPC in terms of Real-time Duration 

With the proposed method, due to the calculation volume 
independence from the number of switching states, the real 
time duration (TDSP) is significantly reduced. To calculate 
TDSP by microcontrollers, several factors are affected such as 
the type of processor and its CPU, language, and method of 
coding, as well as code optimization. In the same conditions, 
the proposed methods and indirect FCS-MPC [12] are imple-
mented on the MMC with four SMs in each arm by the Texas 
Instruments microcontroller (TMS320F2812), and TDSP is 
measured for each method.

Due to microcontroller hardware limitations, the sampling 
period (Ts) is set to 200 
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 respectively, which repre-
sent about 2.5 times faster for the proposed method. In ad-
dition, as the number of SMs increases in the indirect FCS-
MPC, the computational burden and TDSP increase; while in 
the proposed method, with reducing TDSP the microcontroller 
speed increases.
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6- Conclusion
In this paper, a simplified model predictive control is pre-

sented to reduce the computational burden of the predictive 
control for Modular Multilevel Converter compared to con-
ventional MPC. In the proposed method, the optimal switch-
ing states can be achieved using the MMC state-space model 
and adjusting the switching states. Therefore, by a cost func-
tion, the most suitable number of inserted SMs for each arm 
suppresses the output current tracking error and the circulat-
ing current as well as retains the arms energy balancing.  In 
addition, the proposed method improves the converter per-
formance and reduces the settling time of the control system. 
The accuracy and precision of simplified model predictive 
control have been shown in different performance modes 
with simulation and experimental results. 
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