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ABSTRACT: A Compact Ultra-Wideband (UWB) single-layer power divider with the out-of-phase 
feature is proposed. UWB out-of-phase performance is obtained, using wideband microstrip-slot line 
transitions. All three ports are printed on a single dielectric substrate. The simulation and experimental 
results of the enhanced UWB power divider indicate stable phase characteristics, high impedance 
matching responses, and low insertion loss performances at the operating range of 2-12 GHz. 
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1- Introduction
Power dividers are essential passive microwave elements, 

and are employed for splitting an input signal into two or 
more signals as outputs. They are widely used in most mi-
crowave systems, like push-pull power amplifiers, six-port 
networks, phase shifters, balanced mixers and antenna array 
feed networks [1][3]. T-junction is one of the most common 
examples of power dividers with one input and two outputs. 
Based on the phase difference between the outputs, a T-junc-
tion can be classified into out-of-phase and in-phase in pro-
cess of dividing power. Designing of the power divider for 
in-phase operation is straightforward, such as the Wilkinson 
power divider. However, achieving out-of-phase operation is 
often more complicated, particularly when the structure is de-
signed to perform across an UWB frequency range. 

Several design techniques have been proposed in this re-
gard. In [5], a power divider employing microstrip-slot line 
transitions has been presented. It shows acceptable perfor-
mance as seen in simulation results. One of the drawbacks of 
this power divider is the structure that consists of a double-
layer substrate. Apart from this, the microstrip ports are not on 
the same plane, which makes it incompatible to be integrated 
with other microwave circuits in wideband applications. A 
divider with out-of-phase operation utilizing microstrip-slot 
line coupling with 1-4 GHz frequency band and dimensions 
of 1 λg×0.5 λg, has been presented in [6]. In [7], a wideband 
out-of-phase  power divider has been presented based on T-

junction and microstrip-slot line structure to obtain out-of-
phase performance over a large frequency band in which re-
turn loss of input is better than 10 dB across 3.1 GHz to 10.6 
GHz, and approximately 8 dB isolation between outputs is 
seen. Using a resistor and a capacitor, a power divider has 
been introduced in [13], which has a narrow band less than 1 
GHz. Two types of dividers have been proposed in [14] using 
a multi-section Wilkinson power divider and microstrip-slot 
line transition. An out-of-phase power divider with arbitrary 
power division ratio has been presented in [15]. Based on the 
proposed structure, the out-of-phase power divider consists of 
a double layer substrate with frequency range from 0.6 GHz 
to 1.4 GHz. Using microstrip slot line transition, a balanced-
to-unbalanced out-of-phase power divider has been reported 
in [16]. The structure consists of a two-layer substrate, four 
ports, and also a resistor to enhance isolation. 

A novel compact out-of-phase power divider with planar 
configuration is introduced in this paper. One of the positives 
features of the proposed structure is not requiring any resis-
tive elements in contrast to the structures introduced in [11] 
and [6]. The return loss of the part 1 is more than 10 dB from 
2 GHz to 12 GHz. Moreover, the isolation between outputs 
is about 8 dB across the same frequency range. The structure 
is planar and can be easily integrated with conventional mi-
crostrip circuits. Additionally, all three ports of the proposed 
component are printed on one layer. Simulation and measure-
ment results confirm that the performance is well and would 
be appropriate for most RF/microwave applications.
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2- Design Procedure
Fig. 1 indicates the construction of the designed structure. 

The device is formed of a single dielectric layer. The main 
part of the proposed power divider is microstrip–slot transi-
tions. All ports of the proposed structure are on the top layer 
of the substrate. Additionally, the ground plane is embedded 
on the bottom layer. The configuration of the proposed power 
divider is designed so that the signal splits equally between 
two outputs with a 180˚ phase difference. A rectangular slot 
connected to two elliptical stubs is on the ground plane. Fur-
thermore, the end of the lines is compensated with inductive 
elements to reduce the return loss and increasing the power 
coupling from microstrip to slot line and back. In the pro-
posed design, the elliptical patches and circular slots are used 
for this aim. Any resistive elements are not used in the pro-
posed structure. As can be demonstrated from Fig. 1, the final 
configuration is planar and can be integrated with microstrip 
components.

Furthermore, the proposed power divider exhibits UWB 
performance. The slot line impedance usually is chosen to 
be

Furthermore, the proposed power divider exhibits UWB performance. The slot line impedance 

usually is chosen to be 2𝑍𝑍0 ≅ 120 Ω, with the aim of making a compromise between obtaining 50 

Ω impedance and manufacturing limitation. To obtain the proper width of the slot line, the 

procedures described in [9] and [10] can be used. Moreover, the length of the slot line is quarter 

wave length at fc = (f1 + f2) / 2 in which 𝑓𝑓1 = 2.2𝐺𝐺𝐺𝐺𝐺𝐺 , 𝑓𝑓2 = 11.5 𝐺𝐺𝐺𝐺𝐺𝐺 and 𝑓𝑓𝑐𝑐 =  6.85 𝐺𝐺𝐺𝐺𝐺𝐺, (1): 

𝐿𝐿𝐿𝐿 = 𝑐𝑐
4fc√𝜀𝜀𝑒𝑒

                                                                                  (1) 

in which e is the effective dielectric constant and r is the dielectric constant are calculated by (2): 

𝜀𝜀𝑒𝑒 = 𝜀𝜀𝑟𝑟+1
2                                                                                    (2) 
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in (4). Although recently precise microwave software is able 
to calculate various parameters of different structures to de-
crease the need to use basic formulas, an overview to these 
relations can be beneficial to comprehend basic concepts. 
Two small open-ended stubs connected to elliptical patches 
are used to improve the bandwidth and increase isolation of 
the structure. The position and the dimensions of the stubs are 
obtained through optimization, with the aim of increasing the 
isolation between all ports. All the designed structure ports 
are on the same layer. Additionally, all are of microstrip type.

The operation of the proposed structure can be understood 
better by observing the circuit model of the designed structure. 
Fig. 2 illustrates the equivalent circuit of the proposed power 
divider. As shown in this figure, the connection between port 
1, port 2 and port 3 is inductive coupling through the slot on 
the ground plane. Due to the symmetry of the slot line relative 
to port 1, Lr=λ/4 (θsl=90˚) is divided equitably into two parts. 
Therefore, a typical signal from port 1 by coupling to the slot 
is divided into two equal signals. Crossing the slot line, these 
two signals are coupled to the arms connected to ports 2 and 
3 by microstrip-slot line transitions. Since the arms connected 
to ports 2 and 3 are located at a point symmetrical to the slot 
line on the ground and also to the arm of port 1, out-of-phase 
operation between the signals received in the output ports ap-
peared. Zsl 120 ≅ Ω  is the impedance of the slot line. Zml 
is the impedance of the microstrip lines connected to an input 

and two outputs. Furthermore, θ is defined as the electrical 
length of the lines:
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3- Results and Discussion
 Following the stated considerations, design and fabrica-

tion of the final structure is realized. The fabricated structure 
is indicated in Fig. 3. The design of the proposed divider is 
completed and optimized with  Ansoft HFSS v.15. Rogers 
RO4003 as the substrate with dielectric constant of 3.38, tan-
gent loss of 0.0027 and thickness of 0.508 mm is chosen for 
the construction of the microstrip power divider. 

The values of different parts of the proposed structure 
are optimized to reach appropriate operational characteris-
tics over UWB frequency range. The final values are given 
in Table 1. The structure is compact with total dimension of 

27 L mm=  and   20 W mm= . According to the wavelength, the 
final dimensions are around 0.75 λg×0.5 λg, in which  λg is 
aguided wavelength at the frequency of 6.85 GHz  . This com-
pares favorable against the structures in [12] with the length 
of 2.75 λg, in [5] with dimensions 1.25 λg×1λg, and in [6] with 
the length of 1 λg.

Fig. 4(a) exhibits simulated responses of the structure. 
The results show S21≅ S31≅  4 dB from 2 to 11 GHz. More-

over, the return loss of the input port is larger than 10 dB over 
the whole band and the isolation between ports 2 and 3 is 
almost 8 dB over the same band, which is usually sacrificed in 
a power divider. The average of return loss of output ports is 
about 6 dB from 2 to 12 GHz, as S22 ≅  S33, only S33 has been 
illustrated in Fig.4 (a).

 Fig. 4(b) illustrates measured responses of the designed 
divider. The figure indicates a relatively good compromise 
between the results of the simulation and measurement. Re-
flection coefficient of the input and isolation between ports 2 
and 3 are more than 10 dB and about 8 dB, respectively over 
the frequency band.

Fig. 5 exhibits the phase characteristic of the designed 
structure. As indicated in Fig. 5, 180˚ ± 5˚ phase difference is 
seen after excitation from 2 to 12 GHz. Additionally, the mea-
sured phase difference between outputs is 180˚ ± 10˚ from 2 
to 12 GHz. Note that these slight amplitude and phase imbal-
ance between simulation and measured responses is due to 
the loss of coaxial SMA connectors employed in the device. 

                  

Fig. 3. Picture of fabricated prototype of the designed structure. top (left), bottom (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Picture of fabricated prototype of the designed structure. top (left), bottom (right).

Table 1. Optimized Values of the Design ParametersTable 1. Optimized Values of the Design Parameters 

Parameter Values (mm) Parameter Values (mm) 

W 1.11687 L stub 2.16 

L m1 6 W stub 0.5 

D m1 5 R s 2 

L m2 5.2 L r 9.72 

D m2 4 W r 0.2 
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(a) 
 

 

(b) 

Fig. 4. Simulated and measured frequency responses of the structure. 

 

 

 

 
 

Fig. 4. Simulated and measured frequency responses of the structure.

 

Fig. 5. Measured and simulated phase characteristic of the structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Measured and simulated phase characteristic of the structure.
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4- Conclusion
A compact out-of-phase power divider with one layer for 

UWB applications is introduced. All three ports of the pro-
posed structure are formed by microstrip lines. The offered 
structure is planar and designed based on the combination of 
the microstrip and slot lines . The simulated and measured 
responses of the structure exhibit good agreement and show 
insertion loss about 1 dB, return loss more than 10 dB, and 
also good isolation of 8 dB from 2-12 GHz.
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