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ABSTRACT: The automatic modulation recognition of the received signal is very attractive in both 
military and civilian applications. In the recent years, deep learning techniques have received much 
attention due to their excellent performance in signal, audio, image and video processing. This paper 
examines the feasibility of using deep learning algorithms on automatic recognition of the received radio 
signals’ modulation schemes. Modulation recognition has been performed on eight digital modulation 
types with a Signal-to-Noise Ratio (SNR) from -20dB to 20dB. Primarily, a Vanilla Neural Network is 
used to classify the type of modulation. Afterwards, convolutional Neural Network (CNN) and Recurrent 
Neural Network are applied for modulation recognition. These neural networks are widely used in image 
and signal processing applications. This is followed by designing the other architectures, including 
Densely Connected Neural Network (DenseNet), inception network, Recurrent Neural Network (RNN), 
Long-Short Term Memory network (LSTM), and Convolutional Long-Short Term Memory Deep Neural 
Network (CLDNN) for modulation recognition problem, and their results are presented. During this 
investigation, a basic model is initially considered for each architecture, and the network performance is 
studied afterwards by adjusting its parameters. The simulation results show that the proposed modified 
CLDNN model can provide an accuracy of 98% in high SNRs.
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1- Introduction
Wireless communication plays an essential role in modern 

telecommunications, and modulation is an inseparable part 
of this process. There are generally many unknown radio 
signals in the environment and due to various reasons, the 
specifications of these signals are required. The purpose of 
automatic modulation recognition is to identify the type of 
received signal modulation with the slightest prior knowledge 
of signal parameters [1, 2].

Automatic modulation recognition has many applications 
and has become significant with the expansion of modulation, 
especially digital modulation. Modulation recognition plays 
a significant role in many intelligence systems. With the 
increasing demand for telecommunications, monitoring and 
controlling the transmission of electromagnetic signals in 
the radio spectrum became important [3]. The Applications 
of automatic modulation recognition are both military and 
civilian applications. The technique is applied in frequency 
spectrum monitoring, detection of unauthorized transmitters, 
user identification, interference identification [4, 5], network 
traffic management [2], electronic surveillance, electronic 
warfare, and threat analysis [6]. Another application used 
both in military and in civilian is making intelligent receivers. 

According to the received signal and channel conditions, 
intelligent receivers select the most appropriate modulation 
scheme to send the message, and the receiver can instantly 
recognize modulation [7]. Automatic modulation recognition 
has first emerged in the military field, where it was necessary 
to detect the modulation of enemy signals to generate jamming 
signals or recover the information contained in them [2].

In recent years, machine learning has improved 
significantly for various reasons. The algorithms have 
improved in many ways, and computational power has 
increased. Additionally, high-level programming models 
that can run simultaneously on multiple processors are 
available. Deep learning algorithms have shown excellent 
capabilities in image, video, and signal processing, especially 
in supervised learning. Therefore, deep learning can be 
considered a candidate for multiclass classification problems 
(e.g. modulation recognition). There are several advantages 
to using deep learning methods in communications systems. 
Primarily, due to many communication devices and high 
amount of data, the data required for deep learning are 
available in communication systems. Secondly, deep learning 
can extract features independently, and there is no longer 
a need to extract features manually. Thirdly, since deep 
learning is advancing rapidly, it can be used in other wireless 
communications fields [8].

Modulation recognition methods can be divided into *Corresponding author’s email: abm125@aut.ac.ir
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three general categories, Maximum Likelihood (ML) [9, 10], 
feature-based [11], and blind [12]. The ML-based method 
achieves the optimal solution but has a high computational 
cost. The feature-based method consists of two parts, feature 
extraction and classifier. In the third method, there is no need 
for prior knowledge. Early articles on modulation recognition 
were published in the 1990s by Azzouz and Nandi [1, 2, 4, 
11, 13]. In these papers, different features are derived from 
the intercepted signal’s instantaneous amplitude, phase, and 
frequency. Afterwards, the decision tree or artificial network 
has been used as a classifier. In [14, 15], two traditional 
machine learning algorithms, which are the Support Vector 
Machine (SVM) and the K Nearest Neighbor (KNN), are 
also used as a classifier. Additionally, deep learning-based 
modulation recognition has been investigated. In [16-18], the 
Convolutional Neural Network has been used. A classifier 
using convolutional autoencoders is proposed in [12]. It has 
been shown with little preprocessing in [19, 20] that LSTM 
model can achieve good accuracy. Various deep neural 
networks such as Residual Neural Network (ResNet) and 
DenseNet were studied in [21-23].

This paper examines the possibility of using deep learning 
algorithms for automatic modulation recognition of radio 
signals. Primarily, a traditional model used in the previous 
papers is considered for each different architecture, then 
modified models are introduced by changing its various 
parameters. Afterwards, these modified models are trained 
with dataset, and their performance is improved to obtain 
better results.

The rest of this paper is organized as follows. Section 2 
defines the problem, section 3 describes the types of neural 
networks architectures and introduces the modified models. 
In Section 4, the dataset and the hardware are discussed. 
Moreover, the training details and the numerical results are 
presented. Finally, the paper has been concluded in Section 5.

2- Problem Definition
The modulation recognition problem can generally be 

considered as a multi-class classification problem. The 
system model is shown in Fig. 1. The received signal is in 
the form of:

( ) ( ) ( ) ( ),r t s t h t n t    (1) 

 

 (1)

	
where ( )s t  is the transmitted signal, ( )h t  is the 

channel impulse response, ( )n t  is additive noise and ∗  
denotes convolution. The main goal in any modulation 
recognition method is to find the value of i in relation 
Pr{ ( ) | ( )}is t M r t∈ , so that this probability is maximized. 
In this phrase, iM represents different modulation classes. 
Due to the simplification of mathematical operations, ( )r t  
is usually shown as in-phase and quadrature components 
[2]. The modulation recognition models presented in this 
paper receive ( )r t  signal as input, and later determine the 
probability of belonging to each modulation classes. All 
models trained in the following sections are based on DL-
based recognition block that is illustrated in Fig. 1.

3- Models Description
Deep learning is a branch of machine learning that can 

solve classification problems. In recent years, deep learning 
has been used in many different fields. It refers to a set of 
machine learning algorithms that are usually based on artificial 
neural networks. Deep neural networks are divided into three 
general parts: feed-forward, feed-back and bi-directional. The 
most popular deep networks are the vanilla neural network 
(also called multilayer perceptron and is usually used for 
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classification and regression), the convolutional network 
(usually used for machine vision), and the Recurrent Neural 
Network (usually used for time series analysis). This article 
focuses on these three networks [24, 25].

3- 1- Vanilla Neural Network
Primarily, we consider a vanilla neural network with 

256 input and 8 output neurons that connect all the neurons 
in successive layers (fully connected). We changed the 
network’s various parameters, such as the number of hidden 
layers, the number of neurons in each hidden layer, and the 
dropout value. It is demonstrated that if more neurons are in 
the hidden layers, the network is more accurate. On the other 
hand, as the number of layers increases and stops at seven 
hidden layers, the accuracy also increases. However, more 
increase in hidden layers result in degradation in accuracy 
of the network.  It should be noted that with increasing the 
number of layers and neurons, the training time also increases. 
The proposed neural network has four hidden layers, each 
with 264 neurons, and a dropout value of 0.1.

3- 2- Convolutional Neural Network
First, the Convolutional Neural Network proposed in 

paper [17] was considered. This network’s architecture 
is shown in Fig. 2, containing 64 and 16 filters in layers 1 
and 2 and 128 neurons in layer 3. Afterwards, its various 
parameters such as the number and the size of filters in each 
layer, the number of layers, and the dropout value for higher 
accuracy were changed. It was observed that the network 
accuracy, which has a higher number of filters near the input 
and a smaller number of filters at the output, is higher than in 
other cases. Furthermore, the large filter size near the input 
and the small filter size near the output give better accuracy. 
Similar to the vanilla neural network, as the number of layers 
increases until it reaches five hidden layers, the accuracy also 
increases. However, more increase in hidden layers results in 
degradation in accuracy of the network. Additionally, as the 
number of layers increases, the convergence time increases 
as well. The proposed Convolutional Neural Network has 
five convolutional layers, which are shown in Fig. 3. In this 
figure, the first number indicates the number of filters under 

 
Fig. 2. The proposed convolutional network in [17]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The proposed convolutional network in [17]. 
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Fig. 3. Five-layer convolutional network. The first number under each layer indicates the number of filters, and the second and third 

numbers indicate the filter's size. 
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each layer, and the second and third numbers demonstrate the 
size of the filter.

In addition to the Convolution Neural Network, two other 
architectures have been proposed based on the convolution 
layers. The first architecture is the Densely Connected 
Network (DenseNet). This architecture was presented in 
2017 [26]. In this architecture, shortcut connections are used 
to make layers more accessible, hence each layer has access 
to all its previous layers. In the Convolution Neural Network, 
the layers close to the input extract low-level features (such as 
image edges), and the final layers extract high-level features 
(such as an object in the image). Recently, low-level features 
may be more important in classification operations and 
improve network accuracy. In DenseNet architecture, due to 
the initial layers’ connection to the end layers, the network 
can also use low-level features directly. Therefore, one of the 

essential advantages of this architecture is improving the flow 
of information and gradient throughout the network (each 
layer has direct access to both network input and gradient of 
error function), which can make network training easier. The 
proposed network of DenseNet architecture is the same as 
Fig. 3, which all shortcuts are added and shown in Fig. 4. 

The second architecture is the inception network and was 
introduced in 2015 [27]. In general, the inception network 
is a combination of inception modules and concatenation 
layers. Each inception module has four parallel paths, the 
output of which is the concatenation of all four paths outputs. 
This module is shown in Fig. 5. The advantages of using this 
module include the ability to increase network depth and the 
availability of various scale features. The proposed module is 
shown in Fig. 6 after adjusting its parameters. The proposed 
inception network is made by these modules.
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Fig. 4. Five-layer densely network. 
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Fig. 5. Inception module [27]. 
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3- 3- Recurrent Neural Network
Many of the available data is time series. The most 

popular data of this type are audio, speech, video, text and 
financial data. Recurrent Neural Networks are a type of neural 
network designed to process this type of series data and allow 
previous outputs to be used as current inputs. In a simple 
neural network, the inputs are considered independent, and no 
information about the previous state remains in the network. 
In Recurrent Neural Networks, this problem is solved by 
adding a loop that allows information to remain within the 
network. This type of neural network has been used in sound 
recognition, language modeling, and image captioning.

Most of these success has been achieved with Long-
Short Term Memory (LSTM), which is a type of recurrent 
network. The advantages of this network include processing 
the input with any length, not increasing the size of the 
model by increasing the size of the input, considering the 
past information in the current calculation, and the same 
weights over time. However, recurrent networks do not have 
long-term dependence in practice due to the vanishing and 

exploding gradients. To solve this problem, certain types of 
gates are used in some types of recurrent neural networks. 
LSTM is a type of recurrent network that uses these gates to 
solve vanishing and exploding gradient problems.

In the next step, Convolutional Long Short-term Memory 
Deep Neural Network (CLDNN) architecture was used. 
This architecture was introduced in 2015 [28]. The network 
consists of a sequential combination of a convolutional 
network, an LSTM network, and a fully connected network. 
This architecture extracts both local and temporal features; 
thus it is expected that the results obtained through this 
architecture be better than networks that use only one feature. 
After adjusting the parameters, the proposed model for this 
architecture is a network with four convolutional layers, 
one LSTM layer, and one fully connected layer, which is 
shown in Fig. 7. In the last step, instead of connecting the 
convolutional layers and the LSTM layers being connected 
one after the other, they are parallelized and their outputs are 
concatenated.
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Fig. 6. The proposed module which is inspired by the inception module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The proposed module which is inspired by the inception module.
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4- Simulation and Discussion
This section describes the dataset that have been used for 

simulation. Afterwards, the simulation settings and training 
presumptions are declared. Finally, numerical results and 
discussion are given. 

4- 1- Dataset
This paper uses the dataset presented in [29], which has 

been used in several articles such as [8, 17, 19, 30-35]. This 
dataset includes modulated signals generated by GNU Radio. 
In this dataset, the sample length is 128, and each sample 
contains eight symbols. These data have several effects, such 
as central frequency deviation, sample rate deviation, fading, 
and Additive White Gaussian Noise (AWGN).

Each time signal generated using rectangular windows 
is slice to a length of 128. Additionally, the energy of each 
sample is normalized to one. Each sample is stored in two 
dimensions corresponding to I/Q components as a matrix 
of 2 × 128. Furthermore, the SNR is varied between -20dB 
to +20dB with step 2. This paper considers eight types of 
digital modulation, including BPSK, QPSK, 8PSK, 16QAM, 
64QAM, 4PAM, GFSK, and CPFSK. In this dataset, there 
are 1000 samples for each modulation in each SNR. The total 
amount of data is 160,000 two-row matrix, which 80% of it 
is training set, and the rest is test set. The dataset is stored 
as a python pickle file with complex 32-bit floating-point 
samples. The summary of the parameters of the dataset is 
shown in Table 1.

4- 2- Hardware and Training Presumption
All simulations were performed in the Google Colab 

environment, using the Tesla K60 GPU. Codes, including 
preprocessing and neural network models are written in 
Python 3 using the Keras 2.2.4 library.  All codes in Colab 
Notebook format are available at github.com/MohsenJadidi. 
Adam optimizer categorical cross-entropy error function, 
softmax activation function in the last layer, and Rectified 
Linear Unit (ReLU) function for other layers have been 
used for training the models. The networks input data are 
matrices with dimensions of 2 × 128, and since eight types 

of modulation classes are assumed, the output layer has eight 
neurons.

4- 3- Numerical Results
The highest accuracy obtained for the vanilla neural 

network in the high SNRs is 70%. The network was trained 
in 15 minutes. In general, when the signal power is less than 
the noise power, the neural network cannot recognize the 
type of modulation. Whenever signal power increases, the 
accuracy of the network increases as well. One instance of a 
network confusion matrix is shown in Fig. 8. In the confusion 
matrix, each matrix row represents the true class while each 
column represents a predicted class.  For instance, consider 
the 4PAM modulation. This modulation has been correctly 
identified in 83% of the cases, but in 17% of the cases it 
has been recognized as a BPSK modulation. Note that the 
test time is fast and does not depend very much on the used 
model. In general, the training time is the main issue in neural 
networks, and the test time is trivial. In training phase, all 
training data is given to the network several times (in our 
work, 12,800 data are given to the network 100 times), and 
calculations are needed to update the weights. In comparison 
to the test phase, only one data is given to the network, and 
the network output is determined. 

The convolutional neural network proposed in [17], 
shown in Fig. 2, was trained and 82% accuracy was obtained. 
Various network parameters are evaluated to find the best 
Convolutional Neural Network. Fig. 9 shows the accuracy 
of convolutional networks with a different number of 
convolutional layers versus SNR. In low SNRs, all models 
have low accuracy and cannot recognize the modulation type. 
By adding a convolutional layer, the accuracy is increased 
to reach a maximum in five layers, and later the accuracy 
is reduced by adding a convolutional layer due to vanishing 
gradients. Additionally, with the increase of layers, the 
training time and convergence of network accuracy will be 
longer. The proposed convolutional network model in Fig. 3 
has a 92% accuracy, which is an improved 10%. The network 
was trained in 110 minutes. The accuracy of this network is 
20% better than the vanilla neural network. One instance of 

Table 1. Summary of dataset parametersTable 1. Summary of dataset parameters 

BPSK, QPSK, 8PSK, 16QAM, 

64QAM, 4PAM, GFSK, CPFSK 
Modulation 

8 Sample per symbol 

128 Length of sample 

-20dB to +20dB SNR 

12800 Number of training data 

3200 Number of testing data 
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Fig. 8. Confusion matrix of proposed neural network at SNR= +10dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Confusion matrix of proposed neural network at SNR= +10dB.

 

 
Fig. 9. Accuracy versus SNR for the convolutional network with changing the number of layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Accuracy versus SNR for the convolutional network with changing the number of layers.
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the confusion matrix of this model is shown in Fig. 10. The 
most significant classification error occurs in distinguishing 
between QPSK and 8PSK, and between 16QAM and 64QAM. 
This inaccuracy is due to the similarity of these modulations 
constellations and the closeness of the symbols to another, 
making the network unable to learn the difference between 
them properly.

The proposed densely neural network model was trained 
and the accuracy reached 92.4%. The network was trained 
in 150 minutes. Due to shortcuts, computing has increased 
and Densely networks have more training time than their 
corresponding convolutional networks. One instance of a 
network confusion matrix is shown in Fig. 11. The simulations 
showed that the densely networks are more accurate in the 
same number of layers than the convolutional networks, and 
have less convergence time. 

The inception network model, which has several modules 
in the form of Fig. 6, was trained and 79% accuracy was 
achieved. The network was trained in 45 minutes. The 
inception network is more accurate than the vanilla neural 
network, but less accurate than the convolutional network. 

Simple recurrent neural networks and networks composed 
only of LSTM layers did not achieve acceptable accuracy. 
For a simple recurrent neural network, 62% accuracy was 
achieved, and for an LSTM neural network, it was 69%. 

As mentioned, simple recurrent networks are not long-term 
dependent; therefore, their low accuracy was expected. LSTM 
networks are more accurate than recurrent neural networks, 
but both have low accuracy in general. LSTM networks 
extract the time features input. Therefore, it can be concluded 
that acceptable accuracy cannot be achieved by using time 
features alone. It should be noted that both networks have 
much less training time than the previous networks.

With the training of CLDNN parallel type model, the 
accuracy reached 92%. This network was trained in 60 
minutes. Additionally, the proposed CLDNN network, which 
is shown in Fig. 7, has 98% accuracy. The training time for 
this network was 105 minutes. This architecture extracts the 
temporal features of the data (something that did not exist 
in previous architectures), hence an increase in accuracy 
was expected compared to previous architectures. It should 
be noted that this model extracts the temporal features of 
the features that were extracted by the convolutional neural 
network. In fact, the input of the LSTM layer in the CLDNN 
model is the spatial features of input that were obtained by the 
convolutional neural network. Two instances of this model’s 
confusion matrix are shown in Fig. 12. Fig. 13 shows the 
accuracy of the best models examined as a function of SNR. 
As can be illustrated, the CLDNN model is the most accurate 
of the studied models. The accuracy is drawn according to 

 
Fig. 10. Confusion matrix of proposed convolutional network in Fig. 3 at SNR = +10dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Confusion matrix of proposed convolutional network in Fig. 3 at SNR = +10dB.



M. M. Jadidi and A. Mohammadi, AUT J. Elec. Eng., 54(1) (2022) 67-78, DOI: 10.22060/eej.2021.19826.5409

75

 

 
Fig. 11. Confusion matrix of proposed denesly network in Fig. 4 at SNR = +10dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Confusion matrix of proposed denesly network in Fig. 4 at SNR = +10dB.

      
 

Fig. 12. Confusion matrix of proposed CLDNN in Fig. 7 at SNR=+18dB and 0dB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Confusion matrix of proposed CLDNN in Fig. 7 at SNR=+18dB and 0dB.
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the period in Fig. 14 for the three models with an accuracy 
of over 90%. CLDNN model has a higher convergence rate.

5- Conclusion
We studied seven deep learning neural network 

architectures for automatic modulation recognition in this 
paper. Eight types of digital modulation were considered as 
a dataset in the form of in-phase and quadrature components. 

More than 150 models were trained and tested. The trained 
models have high accuracy and gain some advantages 
compared to the traditional methods due to less complexity 
of their preprocessing. The simulation results show that the 
accuracy of the vanilla neural network did not exceed over 
70%. The best accuracy among convolutional networks 
was about 90%. As the depth of the convolutional network 
increased, the accuracy decreased, and convergence time 

 

 
 

Fig. 13. Accuracy versus SNR for all architectures that studied. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Accuracy versus SNR for all architectures that studied.

 
Fig. 14. Accuracy versus epoch for architectures that have high accuracy. 

 
Fig. 14. Accuracy versus epoch for architectures that have high accuracy
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increased; hence, DenseNet was used. Moreover, it is 
observed that the inception network achieves an accuracy of 
about 80%. On the other hand, the recurrent network and the 
LSTM network did not have acceptable accuracy. Eventually, 
the CLDNN network has been investigated. It is shown that 
this network provides 98% accuracy, which was the best 
accuracy among the models.
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