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ABSTRACT

Rapid expansions of new location-based services signify the need for finding accurate localization
techniques for indoor environments. Among different techniques, RSS-based schemes and in particular one
of its variants which is based on Graph-based Semi-Supervised Learning (G-SSL) are widely-used
approaches The superiority of this scheme is that it has low setup/training cost and at the same time it leads
to low localization error. Analyzing the G-SSL method we can observe that its performance is highly
dependent on its inputs (RSS measurements). The main objective of this work is to further improve the
accuracy of G -SSL based schemes by performing multiple RSS measurements and then passing them
through pre-processing blocks to improve the reliability of the corresponding RSS vector at each Sample
Points (SPs). Experimental results are then followed to show the performance of the proposed method
compared to what we get with the original G-SSL approach.
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I. INTRODUCTION

Smartphones, tablets, and generally new gen-
eration of portable devices are usually equipped
with many sensors to collect more information
regarding the user or the environment that the
device is operating. These extra information can
be used to enhance quality or provide new services
to the users.

Location-based services is an example of such
applications and Global Positioning System (GPS)
sensors are usually the primary source of location
information for outdoor users. The only limitation
of GPS sensors is that they require line-of-sight
visibility of GPS satellites and this requirement is
the main reason that the GPS location estimation
does not have a good performance in indoor
environments.

Several alternative mechanisms have been pro-
posed to present indoor user localization with
good accuracy [1], [2]. For instance, one ap-
proach is to use the current deployment of cellular
networks. In this method the user location is
determined using the cell-ID of the cell that the
user is associated with and also may use enhanced
observed time difference (E-OTD) of the network,
[1], [3]. One advantage of cellular-based position-
ing systems is that this implementation does not
require additional hardware installation and has
low setup cost, but, the accuracy of this method,
especially in rural areas, is not very high. RFID-
based localization is another alternative, which
despite its high accuracy, it has high deployment
cost which is the main drawback of this approach.
RFID-based scheme relies on initial deployment
of some RFID tags over the area. Knowing the
location of RFID tags, a mobile device can esti-
mate its location by finding its closest RFID tag(s)
(4], [5].

Another group of localization techniques are
based on the users’ Received Signal Strength
(RSS) from the environment. One common se-
lection is to use the signal that a user receives
from the WLAN Access Points (APs). These
approaches usually have a training phase in which
the RSS is measured in some known grid points
of the map (environment). These points are usu-
ally referred to as the Reference Points (RPs) or
Finger-Prints (FPs). Having these RPs and their
corresponding RSS, a user can find its location
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by comparing its measured RSS with the RSS of
the known RPs [6], [7], [8], [9].

As Wi-Fi APs are usually available in indoor
environments, RSS-based localization approaches
do not require installation of new devices in the
network and therefore they have a low deployment
cost. One limiting factor of this method is that the
initial training of the system is time consuming
and usually a costly step.

Several ideas have been proposed trying to
reduce the time/cost of the training phase. For
instance, reference [10] suggests a scheme in
which the RFs are collected during the operation
of the system therefore it reduces the training
phase. Some other methods like [11], [12], [13]
propose a localization algorithm which tries to
get to the same localization accuracy by using
fewer number of RFs which consequently sim-
plifies the training phase. This approach is based
on the concept of Graph-based Semi-Supervised
Learning (G-SSL). The details of G-SSL scheme
will be described in Section II but the main idea
is that we have not many RPs but instead we we
have access to a large number of unlabelled RSS
measurements (collected from different locations
but we do not know their location). In other words,
we have many Sample Points (SPs), i.e., RSS
measurements, where only a few of them have
labels (x and y coordinates). Based on G-SSL,
we first estimate a label for SPs without labels
and then use the whole database for localization
of new users.

Several algorithms have been proposed to im-
prove the performance of G-SSL based scheme.
For example, in [14], the authors suggest a mod-
ification in the G-SSL cost function and show
that how this new cost function can reduce the
localization error. In this work, we want to look
at the G-SSL procedure from different perspective
and will try to improve the accuracy of location
estimation by improving the quality of our RSS
measurement. More specifically, we will try to
increase the reliability of the measured RSS vector
by first letting the device to perform multiple RSS
measurements and then we pass the collected data
through pre-processing blocks using which we
try to identify more reliable components which
ultimately improve the quality of the input in-
formation of the G-SSL scheme. We will also
present some experimental results to show the
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performance of the proposed schemes.

This paper is organized as follows. First, we
review the G-SSL approach in Section II and then
in Section III we present G-SSL formulation when
we have access to multiple RSS measurement at
each SP. The proposed pre-processing schemes are
discussed in Section IV and their performance are
then evaluated with some real data in Section V.
Finally, Section VI concludes the paper.

II. REVIEW OF G-SSL APPROACH

Having some labeled and some unlabeled SPs,
in this paper we use G-SSL to first find an estima-
tion of the location of the unlabeled readings and
then use the resulted map to estimate the location
of the newly measured RSSs from different APs.
As we want to improve the accuracy of the esti-
mation through pre-processing of the input data,
we need to have a good understanding of G-SSL
algorithm that we review in this section.

Consider an indoor environment with M APs,
where we have ¢ +u measurements (£ labeled and
u unlabeled). As labeled SPs are costly (should
be collected by an expert user during the train-
ing phase), in practice, ¢ is usually not a large
number. On the other hand, it is possible that
we have large number of unlabeled SPs (it is
cheep to collect and we can even collect them
during the operation of the system, e.g., use some
portable Wi-Fi devices to periodically report their
RSS measurements while their are moving in the
environment). With this explanation, a common
assumption in practical localization techniques is
that that ¢ < u.

For each sample point S; we use (r;,b;) to
denote pair of (RSS measurement, Position). The
RSS measurement r; is an M x 1 vector where its
mth element represents the power level (in dBm)
that S; receives from the mth AP, and S;[m] is
set to -110 if §; does not receive any signal from
the mth AP. The position of measurement S; is

shown by b; = C;* J Note that we only have

2
access to the values o
labeled sample points.

We also use b; to represent our estimation of the
position of the measurement &;. Initially, we do
not have any estimation regarding the location of
unlabeled data; therefore, we can set lA)i =b;ifz €
{1,---,¢}, and b; = 0 otherwise. Furthermore,

b; that correspond to the
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d(S;,S;) and d(S;,S;) denote the actual and the
estimated distance between sample points §; and
§;, respectively.

A weight graph Q@ = (V| FE) associated
with the collected SPs is constructed by adding
a vertix to set V' for each of the labeled
and unlabeled RSS measurements, ie., V =
{ry,r9, -+ ,TL,Te1, -+ ,Toyy}, and set F repre-
sents the set of all edges in this graph. For each
labeled SP, the initial label of its corresponding
vertex is set to bj.

In G-SSL, the label propagate from labeled
vertices to other vertices is based on the similarity
between different vertices. The similarity of two
+ and j vertices is denoted by w;;, the weight
of the edge connecting vertices ¢ and j. Matrix
W (with w;; as its (i,j) entry) will be then an
(¢ +u) x (£ +w) matrix. The way to calculate w;;
is not unique and can be modified for different
applications. One common estimation method is
based on the heat-kernel function:

—prs — 1r:ll?
wz-j—exp{”r’ o } ()

where 7 is a parameter that can be set based on
the application.

The aim of G-SSL is to find a label for all
vertices (labeled and unlabeled) such that they fit
the structure of the graph implied by the similarity
measures. In this process, there is a possibility that
we let G-SLL change the labels of all vertices,
even ones correspond to labeled SPs. This may
help improving the accuracy of the estimation in
scenarios that there is a chance of error in the
labels of the labeled SPs [15].

The output of G-SSL scheme is a set of esti-
mated labels (b, for i € {1,2,--- ¢ + u}) satis-
fying: (i) for all ¢ € {1,2,--- ,/}, the estimated
labels f)i are close to the given labels b;; (ii) the
estimated labels are smooth based on the similarity
measure defined by W [15]. In other words, we
want to determine B* such that:

¢
O % . i 2
B argmén{; |b; — b;||*+
{+u +u

20 wyllb —&-n?}, @)

i=1 j=1

where B is 2 x (¢ + u) matrix, columns of which
represent the estimated labels for different SP.
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The objective function in (2) has two terms: (i)
the first term ensures that the estimated labels of
the labeled data remain close to the co-ordinates
reported during the training phase and (ii) the
second term is used to ensure the smoothness
of the results. Meaning that it increases the cost
function by the value of wy;|/b; — bj||? if the
estimated labels of nodes ¢ and j are not equal.

III. PROBLEM FORMULATION

RSS-based indoor localization schemes can use
G-SSL to make a better localization map (using
unlabeled data) which later improves the accuracy
of location estimation. Furthermore, as discussed
in Section I, in this study, we wanted to see how
we can take advantage of multiple RSS measure-
ment to improve the accuracy of G-SSL approach,
and if any pre-processing scheme can be helpful
in this regards.

Before we go to the details of the proposed
pre-proccessing schemes, this section presents the
mathematical formulation that will be used in
the rest of the paper. For this study, we assume
that we want to perform localization in an indoor
environment with M APs and for each of the /4u
SPs, say S;, we have measured the received signal
strength for K time slots. The received RSS is
denoted by ;:

Ro= [/, tf], (3)
where R; is an M x K matrix and tf for
ke {1,2,---, K} represents the vector of RSS
measurment at .S; during the kth sampling period.
In other words, tf(m,1) (the mth row of t})
represents the RSS of the mth AP at S; during the
kth measurement.? Ideally, if there were no noise
and fading, all the measured RSS vectors should
be the same, i.e., v} =7 = --- = t/*. However,
in practical scenarios, tj" for k € {1,2,--- K}
are not equal due to the existence of noise and
multi-path fading.

In G-SSL approach we have one RSS mea-
surement per SP which is used in calculation of
the weight matrix. As discussed before, in this
paper, we aim to propose some schemes that use
AP measurements in different time slots, 2R;, and

*We set 7 (m, 1) = —110 if we do not receive any signal from
the mth AP during the kth measurement.
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come up with a measurement vector for each SP,
i.e., r;, which is more suitable for G-SSL.

One common approach which is helpful in
canceling out the noise and the fading effect is
to set r; as the average of all RSS measurements:

K
>
k=1
- @)

The resulted r; can then be used in heat-kernel
function to estimate the similarity matrix. There-
fore, the entries of W, i.e., w;; can be evaluated
as:

r =

&)

T

—d(S;, Sj)} 7

’U.Fij = exp {

where 7 is a design parameter and d(S;,.5;) is
a function that should be defined such that it
represents the closeness of the two measurements
at sample points S; and S;. Euclidian distance
between r; and r; is one possible selection of

d(Si, Sj), ie.:

d(S;, 5;) = [|ri — rj|%. (6)

The localization error of this approach can be
considered as a baseline performance when we
want to study the performance of other schemes.
In the next section we propose two pre-processing
methods using which we intend to increase the
localization accuracy.

IV. PRE-PROCESSING OF RSS
MEASUREMENTS

Analyzing RSS readings of APs in different
time-slots, we can identify three areas that we
might be able to improve our estimation by better
handling of: I) Outliers (some RSS readings which
are too far from the correct reading), 1I) large
variation in RSS readings of some APs, 3) low
RSS reading for some APs which are far from the
SP. In the following, we introduce two schemes
which try to reduce the effect of these non-
idealities.

A. Outliers removal using RPCA

Having some noisy observations of a set of
parameters, Principle Component Analysis (PCA)
is probably one of the mains tools to remove the
contribution of the noisy elements and reconstruct
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the original data. However, in some applications
with sparse noises (with probably large magni-
tude), the direct application of PCA leads to
a result which is potentially very far from the
actual data. Robust Principle Component Analysis
(RPCA) is a technique that is proposed for noise
reduction in these scenarios. In RPCA, we have a
matrix M which is a grossly corrupted observation
of low rank matrix L, i.e., M = L+S, where Sis a
sparse matrix. the results of [16] shows that under
some week assumptions, the Principal Component
Pursuit (PCP) estimate solving:

min - |[L[J. + Al[S]y
L+S=M

(7

s.t.

exactly recovers the low-rank L and the sparse S.
In (7), |L||« is the nuclear norm of matrix L.

As defined in Section III, matrix $R; represents
the RSS measurements at S; during K sampling
periods. As we mentioned, in an ideal case ‘R,
should be of rank-1; however, due to the noise
and fading, the eigenvalues of R, has more than
one non-zero values (still one of the eigenvalues
are much larger that the others). Apart from the
variation caused by the environment, we can also
see a number of big jumps in the RSS reading of
one APs. These readings might be due to some
malfunctioning of the sensor device or due to
a deep fading so we can treat them as outliers.
Usually there are only a few outliers in one
reading matrix; however, since their values are
very different from the actual value they have a
significant effect on the statistics of the data, e.g.,
the average of the RSS.

Based on this observation, one idea of improv-
ing the accuracy of RSS readings is to try to
decompose R; into an outlier matrix (&;) and
a low-rank matrix representing the original RSS
reading plus noise (R;), i.e.,:

R, = 9?{,2 + &, (8)

An important property of (8) is that since €
represents outliers, it can be modelled as a sparse
matrix.

With this formulation, we are now able to apply
RPCA techniques by substituting M, L, and S
in (7) with R,, R;, and &, respectively. Having
&, we can identify the rows of 2R; which has
some outliers; therefore, it is possible remove
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the contribution of their corresponding APs in
calculation of d(S;,S;). For each point S; we
define vector t; such that:

K
t'l(ma 1) - HmaX (Sgﬂ (Vth - |€l(m: k)‘),O), (9)
k=1

where 1y, is a threshold value (if the absolute
value of &;(m, k) is larger that vy, that entry is
considered as an outlier) and sgn(.) returns the
sign of its input argument. Intuitively, t;(m, 1) is
one only if there is no large estimated noise on
the mth row of &; (corresponds to the mth AP).

As presented in Section III, the similarity mea-
sure between two sample points is usually eval-
uated based on (5) and (6). However, due to the
existence of the outliers some entries of r; and
r; are not accurate. To remove the contribution of
these readings we first use (9) to compute t; and
t; and define F;; as:

<tijtj>

Fo=Mx MW=
Y | <ti,t;>]1

(10)
where <t;,t;> is the inner product of t; and t;,
and ||.||; returns the /;-norm of its input argument.
Given F ;;, we modify (6) as:

d(S;, ;) = || <ri —rj, F > |, (11)

which in fact cancel out the effect of an AP if
RPCA estimates that there is at least one outlier
between the RSS readings of that AP. In Section
V, we conduct an experiment and study the per-
formance of this outlier removal technique.

B. Weighted Euclidian Distance

Based on its definition, each row of R; repre-
sents the signal strength that the device can receive
from one of the APs at location S;. Furthermore,
the variation of RSS measurements in one row
implies the strength of noise and fading power
that exists on the link between the device and
that particular AP. We define V; as the vector
representing the standard deviation of the RSS
measurements corresponding to each AP, i.e.,:

| X 3
_ Z k=2
o (K k:l(tl v ) ’

K
where t = & > ).
k=1

(12)
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Another property of RSS measurement is that,
due to the structure of the environment and the
location of the APs, it is possible that at some
locations, we receive a very week signal (or even
no signal) from some of the APs. To identify these
far away or not accessible APs at each location,
we define b; as a binary M x 1 vector where:

if T(m, 1) > Py, (13)
then  by(m,1) =1 (14)
otherwise by(m,1) =0, (15)

where P,;, is a threshold value.
Given v; and b;, we can define vector I'; as:

T[ :<b1,V1>, (16)
where < by, v; > is the inner product of b; and
v;. Intuitively T; represents the accuracy of the
RSS readings of the APs which are in range of
location S;. In other words, the larger entries of
T, corresponds to RSS values which experience
larger variation between different RSS readings.
This implies that the signals that we receive from
these APs experience a higher distortion from
noise or fading.

Looking back into (5) and (6), we see that we
have defined d(S;,S;) = ||r; — r;||* to find the
similarity between the two sample points 5; and
S;. With this similarity measure, we give the same
weights to the RSS reading that we receives from
different APs. However, due to the noise/ fading
effect we do not have the same confidence for
all entries of r; and r;, i.e., the RSS reading of
the mth AP is more reliable if its corresponding
value at T;(m, 1) and Y;(m, 1) are smaller. Based
on this observation, we can define d(S;, S;) such
that it relies more on the RSS values which have
lower variations (for S; and S;) and instead give
lower weights to the measurements which are not
very stable. To this end we define I';; such that:

gij
||gij||1’

where ||.|[; returns the [;-norm of its input argu-
ment and:

1
T T ) Y.(m,1) >0 or
Tj (’I’TL, ].) >0

gij(m,1) =

0 Otherwise
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Fig. 1. The Actual Locations of All Sample Points.

The weighted Euclidian distance can then be
computed as:

d(S:, ) = || <ri —r;, Ly > | (19)

We then uses (5) to find the corresponding W
matrix. As will be shown in Section V, the ap-
plication of the modified distance function can
significantly improve the performance of the G-
SSL based localization algorithm.

V. EXPERIMENTAL RESULTS

To study the performance of the propose
schemes in practical environment, we have setup
the following experiment where we collect 128
Sample Points (with an average distance of 1.5m)
on the second floor of the Canadian National Insti-
tute for the Blind (CNIB) an area of approximately
18mx 36m with 23 installed APs (we do not know
the location of the APs). At each SP we have
10 measurements of the RSS from all APs. The
device that we have used for this measurement is
HP iPAQ hx4700. To evaluate the performance of
G-SSL method, we partition the available SPs into

(I8)¢two groups: (i) first, we select ¢ of the SPs (and

their corresponding coordinates and RSS readings)
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Fig. 2. The Localization Result Using the Graph-based Semi-
supervised Method.

and set them as the labeled data; (i1) then, select
the remaining v = 128 — ¢ SPs as unlabeled
data®. As an example, Fig. 1 shows a case with
¢ = 25 where the labeled data are represented by
blue squares and the pink circles show the actual
locations of unlabeled data.

As mentioned, in this experiment, for all SPs
we have measured the RSS for 10 times; however,
to have a more practical model, we assume that
only the first three readings are available if a SP
is selected as an unlabeled SP. This assumption is
due to that generally unlabelled data is collected as
a user walking through the environment so there
is not much time for many measurements of the
RSS. Clearly, when we have less RSS readings, we
loose the accuracy of noise and outliers detection.

To see the performance of the proposed pre-
processing techniques, first we evaluate the lo-
calization error if we apply the G-SSL approach
where we use average of all RSS readings, equa-
tions (4) and (6), and do not perform any outlier
removal and we have used the simple Euclidian
distance to measure the similarity between two

3For these SPs, we assume that we only have access to their
RSS readings and not their corresponding locations.
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SPs. Figure 2 presents an example where ¢ = 25,
u = 103. In this figure, the blue squares represent
the labeled data and the pink circles show what
we have estimated as the locations of unlabeled
data (the G-SSL does not have access to the
coordinates of the unlabelled data it is supposed to
find them). The localization error is computed as
the average of the distance between the estimated
and the actual locations of the unlabelled SPs.
Repeating this process for different number of
labeled SP, we evaluate the corresponding local-
ization error in each case. The solid line in Fig. 3
depicts this localization error.

Having the performance of the baseline G-SSL
method, we use RPCA to first remove outliers
and then apply the G-SSL algorithm. As expected,
we get higher localization accuracy when we
reduce the contribution of the outliers on the RSS
measurements. The dotted line in Fig. 3 shows
the performance of this scheme. Note that in both
schemes (Original baseline G-SLL and the RPCA
method), we give the same weight for the RSS
measurements from all APs.

To see the performance of weighted Euclidian
distance scheme, we have evaluated the localiza-
tion error of the same network when we follow the
procedure described in Section IV-B. The result
is depicted in Fig 3 (the dashed line). As can
seen, considering the weighted Euclidian distance
instead of the simple Euclidian distance signifi-
cantly improve the localization accuracy.

As another example, we repeat the above exper-
iment with another device. In this case we have
used a Samsung Omnia II smartphone to collect
the RSS measurements. We then applied the three
localization algorithms for different number of
labeled SPs. The results are shown in Fig. 4, where
we can observe the performance of the RPCA
and the weighted Euclidian distance methods com-
pared with the original G-SSL approach.

VI. CONCLUSION

Collecting many Reference Points (RPs) during
the training phase is one of the limiting factors
of RSS-based indoor localization schemes. Graph-
based Semi-Supervised Learning (G-SSL) is an
scheme which tries to reduce the number of re-
quired RPs by substituting them with some unla-
beled RSS measurements. In this paper, we first
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Localziation Error for HP iPAQ
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Fig. 3. The G-SSL Based Localization Error for Data Collected
with HP iPAQ .

Localziation Error for Samsung Omnia II
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Fig. 4. The G-SSL Based Localization Error for Data Collected
with Samsung Omnia IL

discuss how the accuracy of the collected RSSs
(at RPs and test points) impact the performance
of the G-SSL, and then, present some schemes
that gets raw RSS measurements as input and pro-
vides RSS vectors with statistics which are more
suitable for G-SSL based localization schemes.
The performance of the proposed scheme have
been evaluated using some data collected in a
real-world scenario. The resutls show a significant
improvement compared to the original G-SSL.
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