Design and Efficient Analysis of Large Reflectarray Antenna

Document Type : Research Article

Authors

1 PhD. Student, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

2 Professor, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

3 Assistant Professor, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

In recent years reflectarray antennas have received considerable attention due to their unique capabilities. However, due to their large size, analyzing the performance of these antennas using traditional full wave finite-difference and finite-element techniques requires considerable computational resources. In this paper, we present an efficient method to accurately analyze these class of antennas which considerably reduces the computational burden. First, the radiation properties of the unit cells of the antennas are obtained by applying periodic boundary conditions, which corresponds to an infinite array. Then, a phase-only algorithm is used to obtain required phase shift on the antenna surface. Next, different unit cells are used to achieve the required phase on the antenna surface. Lastly, to confirm the validity of our approach, each designed antenna is simulated by full wave method using method of moment and the full wave simulation results of co and cross polarization levels are compared with those obtained using the proposed formula. There is excellent agreement between the co- and cross polarization levels obtained by proposed approach and those obtained using full wave simulation.

Keywords


[1]
Pozar, D. M., and Metzler, T. A., “Analysis of a reflectarray antenna using microstrip patches of variable size”, Electron Lett 29, pp 657–658, 1993.
[2]
Hamzavi-Zarghani, ; Z. Atlasbaf, “A new broadband single-layer dual-band reflectarray antenna in X- and Ku-Bands", Antennas and Wireless Propagation Letters, IEEE Trans. Antennas Propagation, pp 602 – 605, 2015.
[3]
Munson, R. E., Haddad, H. A., and Hanlen, J. W., “Microstrip reflectarray for satellite communications and RCS enhancement or reduction”, U.S. patent 4 684 952, 1987.
[4]
Bialkowski, M. E., and Song, H. J., “Dual linearly polarized reflectarray using aperture coupled microstrip patches”, IEEE Int. Symp. Antennas Propagat, pp 486–489, 2001.
[5]
B. D. Nguyen, K. T. Pham, V.-S. Tran, L. Mai, N. Yonemoto, A. Kohmura, et al., "Electronically tunable reflectarray element based on C-patch coupled to delay line," Electronics Letters, , pp 1114-1116, 2014.
[6]
Hasan Abadi, S.M.A.M. ; Ghaemi, K. ; Behdad, N. , “Ultra-wideband, true time delay reflectarray antennas using ground-plane-backed, miniaturized-element frequency selective surfaces”, IEEE Trans. Antennas Propagation pp 534 – 542 , 2015.
[7]
T. Makdissy, R. Gillard, E. Fourn, E. Girard, and H. Legay, "Phase-Shifting Cell for Dual Linearly Polarized Reflectarrays with Reconfigurable Potentialities," 2013.
[8]
F. Venneri, S. Costanzo, and G. Di Massa, "Design and validation of a reconfigurable single varactor-tuned reflectarray," Antennas and Propagation, IEEE Transactions on, pp 635-645, 2013.
[9]
O. Bayraktar, O. A. Civi, and T. Akin, "Beam switching reflectarray monolithically integrated with RF MEMS switches," Antennas and Propagation, IEEE Transactions on, pp 854-862, 2012.
[10]
M. Riel and J. Laurin, "Design of an electronically beam scanning reflectarray using aperture-coupled elements," Antennas and Propagation, IEEE Transactions on, pp 1260-1266, 2007.
[11]
F. Venneri, S. Costanzo, and G. Di Massa, "Reconfigurable aperture-coupled reflectarray element tuned by single varactor diode," Electronics Letters, 68-69, 2012.
[12]
B. D. Nguyen, K. T. Pham, V.-S. Tran, L. Mai, N. Yonemoto, A. Kohmura, et al., "Electronically tunable reflectarray element based on C-patch coupled to delay line," Electronics Letters, pp 1114-1116, 2014.
[13]
S. Montori, F. Cacciamani, R. Vincenti Gatti, R. Sorrentino, G. Arista, C. Tienda Herrero, et al., "A Transportable Reflectarray Antenna for Satellite Ku-band Emergency Communications."
[14]
E. Carrasco, M. Barba, and J. A. Encinar, "X-band reflectarray antenna with switching-beam using pin diodes and gathered elements," Antennas and Propagation, IEEE Transactions on, pp 5700-5708, 2012.
[15]
A. E. Martynyuk, J. Martinez Lopez, and N. A. Martynyuk, "Spiraphase-type reflectarrays based on loaded ring slot resonators," Antennas and Propagation, IEEE Transactions on, pp 142-153, 2004.
[16]
H. Kamoda, T. Iwasaki, J. Tsumochi, T. Kuki, and O. Hashimoto, "60-GHz electronically reconfigurable large reflectarray using single-bit phase shifters," Antennas and Propagation, IEEE Transactions on, pp 2524-2531, 2011.
[17]
E. Carrasco, J. A. Encinar, and M. Barba, "Dual linear polarized reflectarray element with true-time delay," in Antennas and Propagation, 2009. EuCAP 2009. 3rd European Conference on, 2009, pp. 3733-3737.
[18]
R. Pereira, R. Gillard, R. Sauleau, P. Potier, T. Dousset, and X. Delestre, "Four-state dual polarisation unit-cells for reflectarray applications," Electronics letters, pp 742-743, 2010.
[19]
G. Perez-Palomino, R. Florencio, J. A. Encinar, M. Barba, R. Dickie, R. Cahill, et al., "Accurate and Efficient Modeling to Calculate the Voltage Dependence of Liquid Crystal Based Reflectarray Cells", IEEE Trans. Antennas Propagation, pp 2659 – 2668, 2014.
[20]
Bialkowski, M. E., and Sayidmarie, K. H.,” Investigations into phase characteristics of a single-layer reflectarray employing patch or ring elements of variable size”, IEEE Trans. Antennas Propagation 56, 2008.
[21]
Chaharmir, M. R., and, J. Shaker, “Broadband reflectarray with combination of cross and rectangle loop elements”, Electron Let 44, 658–659, 2008.
[22]
Huang, J., and Encinar, J. A., Reflectarray Antennas, IEEE Press. New York, John Wiley & Sons, 2008.
[23]
Chaharmir, M. R., Shaker J., and Legay, H., “Broadband design of a single layer large reflectarray using multi cross loop elements”, IEEE Trans. Antennas Propagation 57, pp 3363-3366. 2009.
[24]
Encinar, J. A., and Zornoza, J. A., “Broadband design of three-layer printed reflectarrays”, IEEE Trans. Antennas Propagation 51, pp 1662–1664, 2003.
[25]
Hasani, H., Kamyab, M., Mirkamali, A., “Low cross polarization reflectarray antenna”, IEEE Trans. Antennas Propagation 59, pp 1752 – 1756. 2011.
[26]
Malfajani, R. S., Atlasbaf, Z., “Design and implementation of a broadband single layer reflectarray antenna with large range linear phase elements”, IEEE Antennas and Wireless Propagation Letters 11, pp 1442–1445, 2012.
[27]
Rahmat-Samii, Y., “Useful coordinate transformations for antenna applications”, IEEE Trans. Antennas Propagation, pp 571 – 574. 1979.
[28]
Balanis, C. A., “Advanced engineering electromagnetic”, IEEE Press, John Wiley & Sons New York, 2012.