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ABSTRACT 

This paper introduces a new method for accelerating current sluggish FEM and improving memory 

demand in FEM problems with high node resolution or bulky structures. Like most of the numerical 

methods, FEM results to a matrix equation which normally has huge dimension. Breaking the main matrix 

equation into several smaller size matrices, the solving procedure can be accelerated. For implementing this 

matter, the meshing process should be changed. Here, a multi-step meshing process is proposed which 

consists of both posterior and main levels. The posterior level is used for separating matrix equations from 

each other and the main level for field computation in the problem.  

The proposed approach is compatible with other optimizing method for increasing speed in FEM. 

Therefore, combining this method with other methods creates a powerful asset for solving complex FEM 

problems. The results show that the proposed method speeds up FEM and decreases the memory capacity. In 

addition, it brings the facility of parallel computation which is of great importance in fast computational 

algorithm.  
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1. INTRODUCTION 

Finite element method as one of the most popular 

methods in solving boundary condition problems is 

usually used in electromagnetics. Laplace equation is one 

of the boundary value problems that use finite element 

method to find the distribution of electromagnetic 

quantities. But, one difficulty in using it as well as 

employing other numerical methods in electromagnetic is 

that they basically result in a matrix with great 

dimension. This usually occurs in bulky structures, where 

for example there are a large number of nodes, covering 

the body of structure to form the finite elements. So, the 

need of huge computation makes it necessary to use an 

efficient way to decrease the time of process. 

Common optimizing methods, for example Wavelet 

transform, concentrate just on matrix equation and 

optimizing the solution [1]. Clearly, a deficiency about 

these optimization methods is that their efficiency is 

correlated with the matrix characteristic. For example, 

when the sparseness of matrix decreases, these methods 

fail to increase speed or the error becomes intolerable. 

Adaptive mesh refinement is another popular optimizing 

method which needs error estimators as a complementary 

part. This necessity limits their performance, because 

error estimators implicate additional computing 

complexity which is not desired [2-4].  

In contrast to the above-mentioned methods, the 

proposed multi-step mesh process reduces the memory 

and time complexity by breaking the computing task into 

several parts. It shows great speed and memory 

improving regardless of matrix characteristics and it does 

not need to any kind of error estimators. In addition, it 

can be used with other optimizing methods. This is very 

great advantage over them since they are to some extent 

isolated from each other. 

The paper continues with the optimization method in 

the next section, and then the meshing process and 

proposed method is explained. In section four, the results 

are compared with those of the existing methods to show 

the achievements of the current research. The parallel 

computation is studied in section 5. Finally, the paper 

finishes with a brief conclusion.  

2. METHOD OF OPTIMIZATION 

Mostly, all of the numerical methods result in a matrix 

form as below: 

[K] [V] = [U] (1)  

in which [V] is the unknown vector, [K] is the coefficient 

matrix and [U] is the excitation vector. Now, assume that 

after applying the boundary conditions, [K] be an N×N 

matrix, [V] and [U] be an N×1. In finite element method, 

the dimensions of the matrix equation depend directly to 

the number of nodes which is adapted for problem. So, if 

the number of nodes is increased to cover the whole of 

structure, especially in a huge structure, the complexity of 

matrix equation is increased. In the proposed approach, it 

is intended to break this large dimensional matrix 

equation into a number of low dimensional matrix 

equations. Suppose the matrix equation is broken into M 

matrix equations without changing the number of nodes. 

The matrix equation becomes as below: 
                

                
        

 

 

                 
 

(2)  

After taking care of the boundary values in our 

problem, each of these equations has dimension of 

 ̅                  , with ∑  ̅  
     . Liu and Jiao 

[5] showed that the memory and time complexity of 

solving (1) is respectively in the order of O(N    ) and 

O(N      . Clearly, if the solving process is spitted as 

in (2), a better performance is achieved. This is because 

in this case, the memory needs is in the order of 

 (∑  ̅  
       ̅            )   and the time complexity 

is in the order of   ∑  ̅  
        ̅        ). To break 

(1) into (2), some changes in the sampling process of the 

function should be introduced. As will be seen in the next 

section, these changes prevent us to decrease   as 

required to decrease the complexity unboundedly. 

3. METHOD OF MESHING PROCESS 

A. PRINCIPLES 

In FEM, usually uniform polygons such as equilateral 

or triangle are used to cover whole the structure. In 

modern methods, these polygons are not uniform, and 

their sizes change in the regions where more precision is 

necessary. In this way, the amount of nodes that should 

be used for covering the body of structure decreases 

effectively. Both of these methods are depicted in figure 

1. In our proposed approach, at first the domain Ω is 

spitted into several sub domains Ωi. For simplicity, the 

domain is bisected as shown in figure 2. If the 

nomenclature    is used for the nodes on the splitter, two 

matrix equations is obtained which are dependent to each 

other through the dividing nodes as following: 
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(4)  

If it is desired to attain two separate matrix equations, 

first obtain the    values. This means that the boundary 

values around each of these sub-domains should be 

determined. The key element is using a posterior level 

before our original mesh process as in figure 2.b. 

 

(a) 

  

(b) 

Fig. 1. (a) The traditional mesh distribution, (b) Adaptive 

mesh refinement. 

 

(a) 

  

(b) 

Fig. 2. (a) Dividing the shape into two parts, with splitter 

nodes (hollow bullets), (b) Posterior process. 

In this posterior level, the triangles are built with two 

criteria: 

1. Two nodes should be placed on the divider and another 

should be placed on the shape borders. 

2. The triangles should cover whole the shape like the 

normal mesh process in FEM. 

Assume  ̅  to be the number of nodes on the splitter, 

and similarly,  ̅  and  ̅   be the number of nodes on the 

two interior nodes next to the splitter. Since  ̅   ̅  
 ̅     as a consequence of this posterior level, the 

complexity cannot be reduced monolithically with 

increasing the divisions. 

Critical point here is achieving to nodes values at these 

posterior levels as exact as possible to avoid catastrophic 

error which is distributed through the main stream of 

steps. This issue is reviewed in section 4. After this novel 

sampling, the matrix equation in (4) turns to the three 

matrix equations in (5). 
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It is seen that the matrix equations in (5) are 

independent and in the form of (2) with M=3. 

Consequently, the desired goal in breaking a large 

dimensional matrix equation into several low dimensional 

ones is achieved.  

B DIFFERENT APPROACHES 

In this section two different ways of behaving the 

proposed method is referred. As will be seen, each way 

has its own specification. A shape can be divided in two 

manners: 

1. Sequential separation 

2. Concurrent separation 

The difference between these separation styles is in 

their posterior process. In sequential separation, the 

posterior process breaks itself to several levels. So, in 

each level, some low dimensional matrix equations are 

solved. These equations increase, if the divisions are 

increased, but their dimensions remain under control. In 

contrast, in concurrent separation, there is just one pre-

step level, but the dimension for its matrix equation 

expands by increasing the number of divisions. These 

states are shown in figure 3 for our previous example 

with eight sections.  

Now, suppose there are N nodes, including interior and 

on-splitter nodes. The structure is divided to Q parts. 

Suppose    { ̅ 
   ̅ 

     ̅ 
 }     { ̅ 

   ̅ 
     ̅   

 } 

show groups whose members are the amounts of interior 

and on-splitter nodes in respect. Hence, the number of 

matrix equation and related dimension are shown in table 

(1). 

TABLE 1. NUMBER OF EQUATIONS AND MATRIX 

DIMENSION IN THE POSTERIOR LEVEL AND MESH 

PROCESS 

An important point is that the adaptive mesh 

refinement is a special case of concurrent separation 

when the sub-domains increase. In adaptive mesh 

refinement the domain breaks to very large number of 

sub-domains with using regular finite element as in figure 

1. a. Each mesh is a sub-domain. After this step, each 

sub-domain becomes refiner with using error estimators 

(h-method), if necessary. In contrast, we focus on 

sequential separation and will survey its performance via 

an example in section four. 

 
(a) 

 
(b) 

 

(c) 

 

(d) 

Type 

Method 

 

Sequential 

Separation 

 

 

Concurrent 

Separation 

P
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Number of 

equations 
Q-1 1 

Maximum 

Dimensions 
Max ( ̅ ) ∑  ̅ 

 

   

   

 

M
e
sh

 

p
r
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ss 

 

Number of equations 
Q Q 

Maximum 

Dimensions 
Max ( ̅ ) Max ( ̅ ) 

(2) 

(4) 
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(7)  

(12)  

 

(e) 

 
(f) 

Fig. 3. (a-d) Sequential separation (e-f) Concurrent 

separation. 

C. MATHEMATICAL REVIEW OF THE 

PROCESS 

In this section, the process is surveyed from 

mathematical point of view. Our problem is referred to 

the following general equation [6]: 

                          
         

(6)  

An equivalent form of (5) is the variational or weak 

formulation as following: 

                                    (7)  

in which V is the Sobolev space and is defined as 

following: 

   {                   } (8)  

We also define the following operators: 

        ∫        
 

 

      ∫       
 

 ∫       
  

 

(9)  

In the Ritz-Galerkin approximation [9], V is replaced 

by a subspace        With this approximation, 

variational form turns to the following formula: 

                                      

 

(10)  

Usually, S is a piecewise polynomial space i.e. we can 

find a set { 
 
} that has two conditions: 

1- Spans S (Be a basis for S)  

2- Its members be the linear polynomials 

Therefore, if      , then the potential can be 

expressed as: 

    ∑           

 

   
 

 

(11)  

in which          is the nodal value, defined at each node. 

In regular FEM, at first the domain is partitioned, and 

then each basis is defined on the specific element e,g, the 

basis function { 
 
}
 
 is defined on the e

th
 element. This 

basis is zero outside this element. In normal FEM, these 

partitions are solid. It means that when they are chosen, 

they remain unchanged during the whole process. In 

contrast, adaptive mesh process uses one dynamic 

partition that changes if it is required to give a refiner 

resolution at critical points. In the proposed method, 

several different partitions are used that are different from 

each other through resolution. This brings the facility to 

divide the task of computation of          through several 

steps. So the memory problem is solved which is the 

bottle-neck of this numerical method. In the next section, 

this method is employed through an example. 

4. IMPLEMENTATION AND RESULTS 

In this section the effectiveness of the proposed 

method in comparison with normal FEM is studied. An 

example is solved with analytical solution to follow the 

error analysis of our method. This example is a simple 

electrostatic problem which is depicted in figure 4. It is a 

box with Dirichlet boundary condition at each face. The 

analytical solution for this special problem is as following 

[7-8]: 

           

  
   

 
∑

   
        

 
    

        
 

          
        

 

 

   

 

(12)  

Without loss of generality, V0 is assumed to be 7 

Volts. Using this closed form equation, the potential 

distribution is calculated which is illustrated in figure 5. 

For this specific problem multi step mesh process is 

depicted in figures 6 and 7, distribution of each part is 

depicted. Clearly, total distribution has very little 

difference with the exact potential distribution. Figure 8 

shows the numerical result from normal FEM method for 

the same number of nodes as multi step mesh process. 

Clearly, there is a little difference between two 

distributions. Error for both methods is plotted in figure 

9. The following definition is used for the error 

computation: 

            |           
                   | 

(13)  

(5) 

(9) 

(10) 
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It is seen that the convergence of our method through 

figure 9b-1 and figure 9b-2. Except some ripples on 

splitting region (y=0.5), the error plot is the same for both 

methods. To have a quantitative criterion for overall 

error, the sum of square of errors at all mesh points is 

calculated as: 

        ∑ ∑ |           |       . (14)  

For the posterior level, this value is 1.24 times of the 

normal FEM. However for the final stage, it is reduced to 

about that of the traditional FEM. As mentioned 

previously, for suppressing error in splitting regions, 

higher dimensional polynomial (p-method) can be used 

for posteriori levels to obtain splitter-nodes’ values as 

exact as possible. By using high dimensional polynomial, 

the accuracy in splitting region is increased while 

reducing the speed because we should solve high 

dimensional posterior matrix in (4). Therefore, the error 

minimization depend on how much reduce the speed of 

the method is reduced.  

x

y

0V V

0V 

0
V


0
V


w

h

Fig. 4. Dirichlet boundary condition imposed on a box. 

 

Fig. 5. Exact distribution of Dirichlet boundary condition. 

 
(a) 

 
(b) 

Fig. 6. Sequential multi-step mesh process with one prior 

level for the same problem (a) Posterior level (b) Main level. 

 (a) 

1 

2 

1 
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(b) 

Fig. 7. Distribution of potential after first priority level 

and splitting the shape into two parts. (a) section (2) 

distribution (b) section (3) distribution. 

 

Fig. 8. Distribution of potential with the same number of 

nodes, using normal FEM method. 

 

(a) 

 

(b-1) 

 

(b-2) 

Fig. 9. Error plot, based on absolute difference between 

exact values and numerical values (a) Normal FEM (b-1) 

proposed method’s error in Posterior level [figure 6-a], (b-2) 

Final stage error [Fig. 6-b]. 
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The complexity and memory demand for each method 

in the above example is shown as a variable of number of 

nodes in figure 10. In low density of nodes, two methods 

have the same performance, but when node’s density 

increases, breaking the structure show its efficiency. 

 
(a) 

 
(b) 

Fig. 10. Comparison between two methods in box example 

for one Posterior level (a) Memory complexity (b) Time 

Complexity. 

5. PARALLEL COMPUTATION AND TIME 

SAVING 

Up to this point, the time necessary for creating mesh 

network at each posterior level and creating new matrix 

for each of these levels was ignored. In general, some 

loops in our programming language are needed to do 

these jobs which reduce speed. But the most brilliant 

achievement of the proposed method is the facility of 

parallel computation which brings the speed in rendering 

program and solves the mentioned difficulty. In parallel 

computation, each parts of program can be calculated by 

separate processors, and then recombined to result the 

final solution. In figure 6, a very simple state of this 

situation is shown. Figure 10.a shows our previous 

example that can be computed in the parallel form. This 

parallel computation includes creating mesh network and 

solving independent matrix equations as in (4). In 

general, this situation can be extended as it is shown in 

figure 10-b. Figure 11 shows the speed performance 

comparison, between parallel computing program and 

non-parallel one in the state of using two processors for 

previous example. Clearly, it is seen that a great speed 

advantage will result if the multi-step mesh method is 

combined with multi-processor programming. 

Processor 1 
Section 1 

Processor 1 
Section 2 

Processor 2 
Section 3 

+
FEM

Probelm solution

 

(a) 

+

  

(b) 

Fig. 11. (a) Parallel computation for one posteriori level and 

two processors (b). Extending the situation with m-

processor. 

 

Fig. 12. Efficiency of parallel computation combined with 

multi-step mesh process. 
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6. CONCLUSION  

In this paper, a new method has been proposed to 

accelerate the finite element method, based on the multi-

level mesh process. Clearly, the results show that the 

memory demand can be effectively reduced for computer 

analysis. This method is compatible with adaptive mesh 

process; therefore the both methods can be combined to 

use the advantages of them, simultaneously. This issue 

makes it very strong algorithm for the purpose of fast 

computation. It is anticipated that in the near future, the 

computer program packs adopt this method to use its 

features for fast analysis. 
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