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ABSTRACT:  Considering the air/earth interface to compute the electromagnetic field at the desired 
point is the most important problem in transient analysis of grounding system buried to lossy media like 
earth. In order to consider this issue in the available proposed method and to obtain a solution for the 
problem, one needs to account an integral solution of the so-called Semmerfeld integral in the cylindrical 
coordinate system. Analytical solution for such integral is almost impossible which is due to the presence 
of the oscillating the zeroth-order Bessel function of the first kind, and singularities and branch-cuts in 
its integrand function.  In this paper, we investigate the behavior of the vertical grounding electrode 
in a high-frequency electromagnetic transient state based on the near field theory using the method 
of moments (MoM). To compute the electromagnetic field at the desired point, the main problem is 
calculating the well-known Sommerfeld integral in the cylindrical coordinate system, which its integral 
kernel includes the zeroth-order Bessel function of the first kind along with some singularities and 
branch-cuts. Since the analytical solution of this integral is not available in literature, we propose a 
numerical method, as well as a strategy based on the exact solution for far and near filed calculations. 
A detailed analysis of the obtained results compared with other techniques are provided to confirm the 
accuracy and validity of the proposed method.
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1- INTRODUCTION
The most important problem in transient analysis of a 

grounding system buried to lossy media like the earth is 
the computation of the electromagnetic field at the desired 
point. In the last few decades, one of the most important 
issues in electromagnetic transient state of power systems 
is investigating the transient behavior grounding systems 
against transient currents caused by lightning discharge, 
switching and faults. Due to renewed interest in near field 
precision calculation, there recently has been a growing 
number of publications focusing on this topic, see [1-18] for 
example and references therein.

Predicting  the proper performance of a HV substation 
grounding system in electromagnetic transient states can 
play a significant role to improve the safety of personnel 
and correct functioning of protective devices. In addition, 
the study of minimizing flashover during transients, the 
insulation coordination of power systems and electromagnetic 
compatibility in sensitive electronic equipment also provides 
important insights of the power system [1]. Yet, several 
methods have been proposed to evaluate the high frequency 
behavior of a grounding systems. In general, evaluating the 
electromagnetic transient behavior of a grounding system can 
be arranged in four main categories. Including:

· Approximate circuit model: In this approach, all 

conductors of the grounding system are replaced by an 
equivalent circuit including resistance, capacitance and 
inductance, and later evaluated by the nodal analysis method. 
In Ref. [2], an equivalent electric circuit model is proposed 
to simulate the nonlinear soil ionization phenomenon in 
the frequency domain for the high-frequency analysis of 
the grounding system. Ref. [3] presents an efficient solution 
to obtain transient characteristics of grounding systems 
by a mathematical approach based on a circuit model. This 
method is able to evaluate the performance of the grounding 
system considering the soil ionization effect. In Ref. [4], the 
issue of computing transient ground potential rise of the 
grounding grid has been evaluated. The proposed method 
uses finite element analysis to model the main components 
of the grounding system containing distributed inductance, 
capacitance, and leakage resistance to earth. In [5], a 
generalized nominal-pi circuit model has been addressed 
to study the grounding system under transient conditions. 
The proposed method in [6] is able to model a grounding 
electrode by circuit elements such as resistors, inductors, and 
capacitors in parallel and/or series (RLC) in the time domain.

It should be noted that the approximate circuit model 
contains some approximations which produce some 
limitations.

· Transmission Line Model (TLM): In this procedure, all 
conductors of the grounding system are replaced by TLM 
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which is based on the travelling wave calculations. Ref. [7] 
states a simple analytical expression based on TLM to compute 
the impulse impedance of a buried grounding electrode 
into the earth. In Ref. [8], equations of electromagnetic 
waves propagation along a grounding electrode have 
been presented by applying Kirchoff ’s laws for each small 
segment as it was well-known in transmission line model 
theory. The proposed TLM in Ref. [9] is in the time domain 
and includes electromagnetic coupling effects between 
the segments of an electrode. Ref. [10] presents a transient 
model for ground conductors based on the transmission line 
approach and states its integration in the EMTP software. 
The proposed method in Ref. [11] investigates the transient 
behavior of a grounding electrode by state space based on the 
transmission line approach. In this study, the soil ionization 
and mutual coupling between the electrode segments have 
been considered. According to surveys, the mutual coupling 
between segments of conductors and the correct impact of 
the air-earth interface are not considered in most of these 
applications. Consequently, its accuracy and precision will 
not be desirable.

· Electromagnetic field (EMF) theory model: In Ref. [12], 
a method based on the EMF theory to assess the transient 
performance of the grounding systems is presented. In this 
approach, quasi-static image theory has been applied to 
calculate the green function which is an approximate solution 
for considering the air-earth interface. Refs. [13-14] present 
the half-space Pocklington integral equation to determine the 
current distribution along the grounding electrode buried 
in the lossy medium in the frequency domain. In these 
methods, the impact of the air-earth interface in the green 
function is considered by the reflection coefficient method 
which is a computationally more efficient solution for far-field 
calculation. In Ref. [15], a simple EMF-based method has 
been proposed to assess the high-frequency behavior of the 
grounding electrode. This approach uses a modified reflection 
coefficient for the influence of the air-earth interface which 
leads to a computation approximation in obtained results. Ref. 
[16] presents an antenna model of the grounding electrode 
to calculate transient impedance calculation. The numerical 
analytical solution is carried out by the boundary element 
method. Additionally, the impact of the air-earth interface is 
considered by the simplified reflection coefficient.

The basis of this approach is based on solving the 
Maxwell’s equations with a minimum of assumptions that can 
solve related problems in time and frequency domains despite 
the complexity. This approach provides great accuracy on this 
matter.

· Hybrid method: This method is a combination of circuit 
methods and electromagnetic field theory which is easier to 
solve problems than the field theory method but it has a lower 
accuracy [17-21]. 

Ref. [17] proposes an approach to present the frequency-
dependent impedance of the grounding system in the EMTP. 
In Ref. [18], a computational procedure has been proposed 
to determine the frequency performance of grounding 
systems considering a soil electrical model and the current 

propagation and attenuation in dissipative media. Ref. [19] 
introduces a hybrid approach based on a combination of 
circuit parameters and electromagnetic field theory for 
transient analysis of grounding systems. In Ref. [20], a 
numerical approach is presented to analyze transient behavior 
of the grounding grid which combines the method of the 
moment with circuit theory and Fourier transform. Ref. [21] 
uses the simplified image theory formulations to calculate the 
Sommerfeld integral in the Green function. Therefore, the 
obtained results have considerable approximation. 

Electromagnetic field theory methods are the most 
accurate procedures in electromagnetic field calculations, but 
with more complexity in the computations due to existing 
Sommerfeld integral in the correction term of the Green 
function to solve the problem of earth/air interface. Several 
methods have been proposed to solve the Sommerfeld integral 
in the Green’s function. Some researchers have proposed a 
mathematical methodology, and used the image theory with an 
approximate reflection coefficient to calculate these integrals, 
which is valid for remote fields [13,22,23,24]. In order to 
simplify the electromagnetic field calculation caused by the 
buried grounding electrode in lossy media, some procedures 
used the quasi-static equations without considering the effect 
of the earth/air interface and Sommerfeld integral [25-27]. 
Based on the electromagnetic field theory model, osther 
methods have been proposed to compute electromagnetic 
fields accurately with considering the effect of the earth/air 
interface which applied to solve the Sommerfeld half-space 
problem from more complicated methods [25] and [28-30].

The main issue addressed in this paper is the presentation 
of a simple and accurate numerical method based on the 
electromagnetic field theory to investigate the high frequency 
behavior of the vertical grounding electrodes to calculate 
far and near fields in any frequency. In this mathematical 
methodology, the electromagnetic fields at any point of the 
grounding electrode can be calculated by direct solution of 
Maxwell’s equations, and then the voltage and current values 
can be computed to each point on the grounding electrode 
with the least approximation. This approach has a number of 
attractive features:

· Presenting closed-form relations instead of Sommerfeld 
integral.

· Providing a simple and detailed numerical method to 
calculate the near and far field.

· Accessing to results with higher accuracy than the 
existing methods in the literature.

· Possibility to use the proposed method in a wide range 
of frequencies. 

This article has been organized as follows: In section 2, the 
mathematical framework of this analysis is presented which 
includes the calculation of the current distribution on the 
grounding electrode and calculation of the Green function. 
Section 3 is concerned with the mathematical methodology 
employed for this study. Section 4 represents the computation 
flowchart of the proposed method. In Section 5, we present 
two strategies related to the validity of our approach and the 
numerical simulations are illustrated. Finally, in section 6, we 
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give some concluding remarks.

2- THE MATHEMATICAL MODEL GOVERNING 
THE ISSUE

This section presents our mathematical framework for 
the analysis. First, we present the calculation of the current 
distribution on the grounding electrode. Later, we discuss the 
calculation of the Green function.

2.1. Calculation of Current Distribution on the Grounding 
Electrode

Fig. 1 shows a vertical grounding electrode with length of 
L and radius , at depth  from the lossy media like the earth 
medium that is fed by a high frequency wave (Ig).

The basic relation for calculating the distribution of the 
longitudinal currents in different segments of the vertical 
earth electrode is written as Eq. (1):

two strategies related to the validity of our approach and the numerical simulations are illustrated. Finally, 

in section 6, we give some concluding remarks. 
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Fig. 1.  The vertical grounding electrode buried to the lossy earth 

The basic relation for calculating the distribution of the longitudinal currents in different segments of the 

vertical earth electrode is written as Eq. (1): 

[
𝑍𝑍11    𝑍𝑍12 …  𝑍𝑍1𝑁𝑁

 𝑍𝑍21    𝑍𝑍22 …  𝑍𝑍2𝑁𝑁 
⋮        ⋮    …      ⋮

𝑍𝑍𝑁𝑁1    𝑍𝑍𝑁𝑁2 … 𝑍𝑍𝑁𝑁𝑁𝑁

] [
𝐼𝐼1
𝐼𝐼2
⋮

𝐼𝐼𝑁𝑁

] = − [
𝑍𝑍𝑠𝑠1
𝑍𝑍𝑍𝑍2

⋮
𝑍𝑍𝑍𝑍𝑁𝑁

] 𝐼𝐼𝑔𝑔.                                                                                               (1) 

The matrix [𝑍𝑍] contains the self and mutual impedances between the segments of the grounding electrode 

and also the column vector [𝐼𝐼] including the longitudinal currents of the segments of the grounding 

electrode. In Eq. (1), the mutual impedance 𝑍𝑍𝑖𝑖𝑖𝑖 equals the ratio of 𝑉𝑉𝑖𝑖𝑖𝑖 to 𝐼𝐼𝑗𝑗 which is calculated by the 

following equation [1]: 

𝑍𝑍𝑖𝑖𝑖𝑖 = 𝑉𝑉𝐿𝐿𝐿𝐿
𝐼𝐼𝐿𝐿𝐿𝐿

= 1
4𝜋𝜋 × ( 1

𝜎𝜎2+𝑗𝑗𝑗𝑗𝜀𝜀2
+ jωμ2) × ∫ 𝑓𝑓𝑖𝑖(𝑙𝑙𝑖𝑖)𝑙𝑙𝑖𝑖

[∫ 𝑓𝑓𝑗𝑗(𝑙𝑙𝑗𝑗)𝐺𝐺(𝑟𝑟𝑖𝑖𝑖𝑖)𝑑𝑑𝑙𝑙𝑗𝑗𝑙𝑙𝑗𝑗
] 𝑑𝑑𝑙𝑙𝑖𝑖 ,                    (2) 

                                                                                        
�        (1)

The matrix  contains the self and mutual impedances 
between the segments of the grounding electrode and also the 
column vector  including the longitudinal currents of the 
segments of the grounding electrode. In Eq. (1), the mutual 
impedance  equals the ratio of  to  which is calculated 
by the following equation [1]:
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Fig. 1.  The vertical grounding electrode buried to the lossy earth 
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Fig. 2.  Image theory for vertical grounding electrode buried to the earth. 
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Eq. (8) is the Sommerfeld integral while the analytical 
solution of this type of integrals is very difficult and time 
consuming due to the existence of singularity and branch 
points at  and  as well as the oscillatory 
behavior of the Bessel function. Due to the existence of 
decreasing exponential function depending on  in , the 
contribution of the point  in the integrand function 
is less than point of . By substituting  and 
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This integral will be solved by the proposed method described in section (3). 

 

3. The Numerical Technique of the Proposed Approach 
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calculated directly by integrating the linear combinations of the Jacobi polynomials as the 

approximations of 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡). After transforming the domain of the approximation into the 

interval (0,1], the functions 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡), become highly oscillatory. Hence, finding the stable 

approximations for such functions are quite difficult. 

Thus we have:

First, by applying the Euler’s formula, Eq. (13) is divided into the real and imaginary parts, namely, 𝐼𝐼2 =

𝑅𝑅𝑅𝑅(𝐼𝐼(𝜌𝜌, 𝑅𝑅2)), 𝐼𝐼3 = 𝐼𝐼𝐼𝐼(𝐼𝐼(𝜌𝜌, 𝑅𝑅2)). Thus we have: 

𝐼𝐼(𝜌𝜌, 𝑅𝑅2) = ∫
𝑒𝑒(−𝑗𝑗𝑗𝑗2𝑅𝑅2 𝑡𝑡)

√𝑡𝑡2−(𝜌𝜌 𝑅𝑅2⁄ )
2 𝑑𝑑𝑑𝑑 =

∞
1  ∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑘𝑘2𝑅𝑅2𝑡𝑡)

√𝑡𝑡2−(𝜌𝜌 𝑅𝑅2⁄ )
2 𝑑𝑑𝑑𝑑

∞
1
⏟          

𝐼𝐼2

+ 𝑖𝑖 ∫ −𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘2𝑅𝑅2𝑡𝑡)

√𝑡𝑡2−(𝜌𝜌 𝑅𝑅2⁄ )
2 𝑑𝑑𝑑𝑑.

∞
1

⏟            
𝐼𝐼3

            (14) 

Now, we approximate each part 𝐼𝐼2  and 𝐼𝐼3 separately. Assume that: 

𝑄𝑄2(𝑡𝑡) =
cos(k1R2t)

√t2 − (𝜌𝜌 R2⁄ )
2
,        𝑄𝑄3(𝑡𝑡) =

−sin(k1R2t)

√t2 − (𝜌𝜌 R2⁄ )
2
. 

It is worthy to mention that the numerical approaches for approximating the integral terms 𝐼𝐼2, 𝐼𝐼3 are 

generally threefold: 

• Approximation based on the Laguerre polynomials: Since the Laguerre polynomials [32-36] form 

the basis functions of 𝐿𝐿2[0,∞), one approximates the functions 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡), using the elements 

of the Laguerre polynomials, and later the approximations of 𝐼𝐼2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼3will be calculated directly 

by integrating the linear combinations of  the Laguerre polynomials as the approximations of  

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡)), respectively. This procedure takes a large amount of computations. In addition. 

approximations over the unbounded domains often do not result in high accuracies. 

• Approximation based on transforming the unbounded interval [1,∞) into a bounded interval: By 

applying some transformations such as 𝑡𝑡 = 1
𝑥𝑥  the approximation domain 𝑡𝑡 > 1 is transferred into 

the bounded domain (0,1] and then by using the Jacobi polynomials as the basic functions, one can 

construct the approximations of 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡). Thus, the approximations of 𝐼𝐼2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼3will be 

calculated directly by integrating the linear combinations of the Jacobi polynomials as the 

approximations of 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡). After transforming the domain of the approximation into the 

interval (0,1], the functions 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡), become highly oscillatory. Hence, finding the stable 

approximations for such functions are quite difficult. 
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Now, we approximate each part 𝐼𝐼2  and 𝐼𝐼3 separately. Assume that: 

𝑄𝑄2(𝑡𝑡) =
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√t2 − (𝜌𝜌 R2⁄ )
2
,        𝑄𝑄3(𝑡𝑡) =

−sin(k1R2t)

√t2 − (𝜌𝜌 R2⁄ )
2
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It is worthy to mention that the numerical approaches for approximating the integral terms 𝐼𝐼2, 𝐼𝐼3 are 

generally threefold: 

• Approximation based on the Laguerre polynomials: Since the Laguerre polynomials [32-36] form 

the basis functions of 𝐿𝐿2[0,∞), one approximates the functions 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡), using the elements 

of the Laguerre polynomials, and later the approximations of 𝐼𝐼2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼3will be calculated directly 
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𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡)), respectively. This procedure takes a large amount of computations. In addition. 

approximations over the unbounded domains often do not result in high accuracies. 
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interval (0,1], the functions 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡), become highly oscillatory. Hence, finding the stable 

approximations for such functions are quite difficult. 
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2
,        𝑄𝑄3(𝑡𝑡) =

−sin(k1R2t)

√t2 − (𝜌𝜌 R2⁄ )
2
. 

It is worthy to mention that the numerical approaches for approximating the integral terms 𝐼𝐼2, 𝐼𝐼3 are 

generally threefold: 

• Approximation based on the Laguerre polynomials: Since the Laguerre polynomials [32-36] form 

the basis functions of 𝐿𝐿2[0,∞), one approximates the functions 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡), using the elements 

of the Laguerre polynomials, and later the approximations of 𝐼𝐼2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼3will be calculated directly 

by integrating the linear combinations of  the Laguerre polynomials as the approximations of  

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡)), respectively. This procedure takes a large amount of computations. In addition. 

approximations over the unbounded domains often do not result in high accuracies. 

• Approximation based on transforming the unbounded interval [1,∞) into a bounded interval: By 

applying some transformations such as 𝑡𝑡 = 1
𝑥𝑥  the approximation domain 𝑡𝑡 > 1 is transferred into 

the bounded domain (0,1] and then by using the Jacobi polynomials as the basic functions, one can 

construct the approximations of 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡). Thus, the approximations of 𝐼𝐼2 𝑎𝑎𝑎𝑎𝑎𝑎 𝐼𝐼3will be 

calculated directly by integrating the linear combinations of the Jacobi polynomials as the 

approximations of 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡). After transforming the domain of the approximation into the 

interval (0,1], the functions 𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡), become highly oscillatory. Hence, finding the stable 

approximations for such functions are quite difficult. 

It is worthy to mention that the numerical approaches for 
approximating the integral terms  are generally threefold:
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· Approximation based on the Laguerre polynomials: 
Since the Laguerre polynomials [32-36] form the basis 
functions of , one approximates the functions  
and , using the elements of the Laguerre polynomials, 
and later the approximations of will be calculated 
directly by integrating the linear combinations of  the 
Laguerre polynomials as the approximations of  and 

), respectively. This procedure takes a large amount 
of computations. In addition. approximations over the 
unbounded domains often do not result in high accuracies.

· Approximation based on transforming the unbounded 
interval  into a bounded interval  By applying some 
transformations such as   the approximation domain 

 is transferred into the bounded domain  and 
then by using the Jacobi polynomials as the basic functions, 
one can construct the approximations of and 
. Thus, the approximations of will be calculated 
directly by integrating the linear combinations of the Jacobi 
polynomials as the approximations of and . 
After transforming the domain of the approximation into the 
interval , the functions and , become highly 
oscillatory. Hence, finding the stable approximations for such 
functions are quite difficult.

· Approximation based on cutting the domain of the 
problem [37-38]: Assume that the functions and  
are not increasing and tend to zero as . Hence for a given 

   such that 

• Approximation based on cutting the domain of the problem [37-38]: Assume that the functions 

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡) are not increasing and tend to zero as 𝑡𝑡 → +∞. Hence for a given 𝜀𝜀 > 0,  ∃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 >

0 such that ∀𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, max
𝑡𝑡>𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

{|𝑄𝑄2(𝑡𝑡)|, |𝑄𝑄3(𝑡𝑡)|} <Γ. 

By neglecting the value ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑∞
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑠𝑠 ∈ {1,2}, it is obvious that: 

 𝐼𝐼𝑠𝑠 ≈ ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
1 , 𝑠𝑠 ∈ {1,2}. (15)

 
To approximate the integral terms ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑,    𝑠𝑠 ∈ {1,2}𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

1 , consider the nodes 𝑡𝑡𝑖𝑖
∗ as the roots of the 

Legendre polynomial of degree 𝑚𝑚 + 1 and define. 

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1
2 𝑡𝑡𝑖𝑖

∗ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+1
2   , 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ , (16)

then, the Lagrange polynomials corresponding to nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are defined as: 

𝐿𝐿i(t) = (t−t0)(t−t1)…(t−ti−1)(t−ti+1)…(t−t𝑚𝑚)
(ti−t0)(ti−t1)…  ..  ….(ti−tm) ,     𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ .                                                     (17) 

 
We consider the approximations for 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) named by 𝑦𝑦2(𝑡𝑡) and 𝑦𝑦3(𝑡𝑡) as the following: 

𝑦𝑦2(𝑡𝑡) = ∑ 𝑦𝑦2𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=0  ,   𝑦𝑦3(𝑡𝑡) = ∑ 𝑦𝑦3𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡),𝑚𝑚

𝑖𝑖=0 (18) 
where 𝑦𝑦2𝑖𝑖, 𝑦𝑦3𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are the unknown coefficients. Since the function 𝐿𝐿𝑖𝑖(𝑡𝑡) satisfies the Kronecker 

property, it is straightforward to obtain: 

𝑦𝑦2i = Q2(ti)  , 𝑦𝑦3i = Q3(ti) ,       i = 0, m̅̅ ̅̅ ̅. (19)

Now, the approximations of 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) are obtained without solving any system of equations. Finally, 

for calculating 𝐼𝐼2, 𝐼𝐼3 we use the Gauss-Legendre integration technique as following [38]: 

𝐼𝐼2 ≃ ∫ Q2(t)dt ≃tmax
1 ∫ y2(t)dttmax

1 = ∫ ∑ y2iLi(t)dtm
i=0

tmax
1 =

∑ y2i ∫ Li(t)dttmax
1

𝑚𝑚
i=0 , = ∑ 𝑦𝑦2𝑖𝑖 {(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑗𝑗𝐿𝐿𝑖𝑖(𝑡𝑡𝑗𝑗)𝑚𝑚
𝑗𝑗=0 }𝑚𝑚

𝑖𝑖=0 =
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑖𝑖𝑦𝑦2𝑖𝑖 𝑚𝑚
𝑖𝑖=0  ,                                    (20)

where 𝑊𝑊𝑖𝑖’s are the weights of the Gauss-Legendre integration technique defined by: 

.
By neglecting the value
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where 𝑦𝑦2𝑖𝑖, 𝑦𝑦3𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are the unknown coefficients. Since the function 𝐿𝐿𝑖𝑖(𝑡𝑡) satisfies the Kronecker 

property, it is straightforward to obtain: 

𝑦𝑦2i = Q2(ti)  , 𝑦𝑦3i = Q3(ti) ,       i = 0, m̅̅ ̅̅ ̅. (19)

Now, the approximations of 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) are obtained without solving any system of equations. Finally, 

for calculating 𝐼𝐼2, 𝐼𝐼3 we use the Gauss-Legendre integration technique as following [38]: 

𝐼𝐼2 ≃ ∫ Q2(t)dt ≃tmax
1 ∫ y2(t)dttmax

1 = ∫ ∑ y2iLi(t)dtm
i=0

tmax
1 =

∑ y2i ∫ Li(t)dttmax
1

𝑚𝑚
i=0 , = ∑ 𝑦𝑦2𝑖𝑖 {(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑗𝑗𝐿𝐿𝑖𝑖(𝑡𝑡𝑗𝑗)𝑚𝑚
𝑗𝑗=0 }𝑚𝑚

𝑖𝑖=0 =
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑖𝑖𝑦𝑦2𝑖𝑖 𝑚𝑚
𝑖𝑖=0  ,                                    (20)

where 𝑊𝑊𝑖𝑖’s are the weights of the Gauss-Legendre integration technique defined by: 

 it is obvious 
that:

• Approximation based on cutting the domain of the problem [37-38]: Assume that the functions 

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡) are not increasing and tend to zero as 𝑡𝑡 → +∞. Hence for a given 𝜀𝜀 > 0,  ∃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 >

0 such that ∀𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, max
𝑡𝑡>𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

{|𝑄𝑄2(𝑡𝑡)|, |𝑄𝑄3(𝑡𝑡)|} <Γ. 

By neglecting the value ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑∞
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑠𝑠 ∈ {1,2}, it is obvious that: 

 𝐼𝐼𝑠𝑠 ≈ ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
1 , 𝑠𝑠 ∈ {1,2}. (15)

 
To approximate the integral terms ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑,    𝑠𝑠 ∈ {1,2}𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

1 , consider the nodes 𝑡𝑡𝑖𝑖
∗ as the roots of the 

Legendre polynomial of degree 𝑚𝑚 + 1 and define. 

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1
2 𝑡𝑡𝑖𝑖

∗ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+1
2   , 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ , (16)

then, the Lagrange polynomials corresponding to nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are defined as: 

𝐿𝐿i(t) = (t−t0)(t−t1)…(t−ti−1)(t−ti+1)…(t−t𝑚𝑚)
(ti−t0)(ti−t1)…  ..  ….(ti−tm) ,     𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ .                                                     (17) 

 
We consider the approximations for 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) named by 𝑦𝑦2(𝑡𝑡) and 𝑦𝑦3(𝑡𝑡) as the following: 

𝑦𝑦2(𝑡𝑡) = ∑ 𝑦𝑦2𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=0  ,   𝑦𝑦3(𝑡𝑡) = ∑ 𝑦𝑦3𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡),𝑚𝑚

𝑖𝑖=0 (18) 
where 𝑦𝑦2𝑖𝑖, 𝑦𝑦3𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are the unknown coefficients. Since the function 𝐿𝐿𝑖𝑖(𝑡𝑡) satisfies the Kronecker 

property, it is straightforward to obtain: 

𝑦𝑦2i = Q2(ti)  , 𝑦𝑦3i = Q3(ti) ,       i = 0, m̅̅ ̅̅ ̅. (19)

Now, the approximations of 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) are obtained without solving any system of equations. Finally, 

for calculating 𝐼𝐼2, 𝐼𝐼3 we use the Gauss-Legendre integration technique as following [38]: 

𝐼𝐼2 ≃ ∫ Q2(t)dt ≃tmax
1 ∫ y2(t)dttmax

1 = ∫ ∑ y2iLi(t)dtm
i=0

tmax
1 =

∑ y2i ∫ Li(t)dttmax
1

𝑚𝑚
i=0 , = ∑ 𝑦𝑦2𝑖𝑖 {(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑗𝑗𝐿𝐿𝑖𝑖(𝑡𝑡𝑗𝑗)𝑚𝑚
𝑗𝑗=0 }𝑚𝑚

𝑖𝑖=0 =
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑖𝑖𝑦𝑦2𝑖𝑖 𝑚𝑚
𝑖𝑖=0  ,                                    (20)

where 𝑊𝑊𝑖𝑖’s are the weights of the Gauss-Legendre integration technique defined by: 

                                           (15)

To approximate the integral terms , 
consider the nodes  as the roots of the Legendre polynomial 
of degree  and define.

• Approximation based on cutting the domain of the problem [37-38]: Assume that the functions 

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡) are not increasing and tend to zero as 𝑡𝑡 → +∞. Hence for a given 𝜀𝜀 > 0,  ∃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 >

0 such that ∀𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, max
𝑡𝑡>𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

{|𝑄𝑄2(𝑡𝑡)|, |𝑄𝑄3(𝑡𝑡)|} <Γ. 

By neglecting the value ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑∞
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑠𝑠 ∈ {1,2}, it is obvious that: 

 𝐼𝐼𝑠𝑠 ≈ ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
1 , 𝑠𝑠 ∈ {1,2}. (15)

 
To approximate the integral terms ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑,    𝑠𝑠 ∈ {1,2}𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

1 , consider the nodes 𝑡𝑡𝑖𝑖
∗ as the roots of the 

Legendre polynomial of degree 𝑚𝑚 + 1 and define. 

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1
2 𝑡𝑡𝑖𝑖

∗ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+1
2   , 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ , (16)

then, the Lagrange polynomials corresponding to nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are defined as: 

𝐿𝐿i(t) = (t−t0)(t−t1)…(t−ti−1)(t−ti+1)…(t−t𝑚𝑚)
(ti−t0)(ti−t1)…  ..  ….(ti−tm) ,     𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ .                                                     (17) 

 
We consider the approximations for 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) named by 𝑦𝑦2(𝑡𝑡) and 𝑦𝑦3(𝑡𝑡) as the following: 

𝑦𝑦2(𝑡𝑡) = ∑ 𝑦𝑦2𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=0  ,   𝑦𝑦3(𝑡𝑡) = ∑ 𝑦𝑦3𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡),𝑚𝑚

𝑖𝑖=0 (18) 
where 𝑦𝑦2𝑖𝑖, 𝑦𝑦3𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are the unknown coefficients. Since the function 𝐿𝐿𝑖𝑖(𝑡𝑡) satisfies the Kronecker 

property, it is straightforward to obtain: 

𝑦𝑦2i = Q2(ti)  , 𝑦𝑦3i = Q3(ti) ,       i = 0, m̅̅ ̅̅ ̅. (19)

Now, the approximations of 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) are obtained without solving any system of equations. Finally, 

for calculating 𝐼𝐼2, 𝐼𝐼3 we use the Gauss-Legendre integration technique as following [38]: 

𝐼𝐼2 ≃ ∫ Q2(t)dt ≃tmax
1 ∫ y2(t)dttmax

1 = ∫ ∑ y2iLi(t)dtm
i=0

tmax
1 =

∑ y2i ∫ Li(t)dttmax
1

𝑚𝑚
i=0 , = ∑ 𝑦𝑦2𝑖𝑖 {(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑗𝑗𝐿𝐿𝑖𝑖(𝑡𝑡𝑗𝑗)𝑚𝑚
𝑗𝑗=0 }𝑚𝑚

𝑖𝑖=0 =
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑖𝑖𝑦𝑦2𝑖𝑖 𝑚𝑚
𝑖𝑖=0  ,                                    (20)

where 𝑊𝑊𝑖𝑖’s are the weights of the Gauss-Legendre integration technique defined by: 

                                                                      (16)

then, the Lagrange polynomials corresponding to nodes 
 are defined as:

• Approximation based on cutting the domain of the problem [37-38]: Assume that the functions 

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡) are not increasing and tend to zero as 𝑡𝑡 → +∞. Hence for a given 𝜀𝜀 > 0,  ∃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 >

0 such that ∀𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, max
𝑡𝑡>𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

{|𝑄𝑄2(𝑡𝑡)|, |𝑄𝑄3(𝑡𝑡)|} <Γ. 

By neglecting the value ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑∞
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑠𝑠 ∈ {1,2}, it is obvious that: 

 𝐼𝐼𝑠𝑠 ≈ ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
1 , 𝑠𝑠 ∈ {1,2}. (15)

 
To approximate the integral terms ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑,    𝑠𝑠 ∈ {1,2}𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

1 , consider the nodes 𝑡𝑡𝑖𝑖
∗ as the roots of the 

Legendre polynomial of degree 𝑚𝑚 + 1 and define. 

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1
2 𝑡𝑡𝑖𝑖

∗ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+1
2   , 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ , (16)

then, the Lagrange polynomials corresponding to nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are defined as: 

𝐿𝐿i(t) = (t−t0)(t−t1)…(t−ti−1)(t−ti+1)…(t−t𝑚𝑚)
(ti−t0)(ti−t1)…  ..  ….(ti−tm) ,     𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ .                                                     (17) 

 
We consider the approximations for 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) named by 𝑦𝑦2(𝑡𝑡) and 𝑦𝑦3(𝑡𝑡) as the following: 

𝑦𝑦2(𝑡𝑡) = ∑ 𝑦𝑦2𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=0  ,   𝑦𝑦3(𝑡𝑡) = ∑ 𝑦𝑦3𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡),𝑚𝑚

𝑖𝑖=0 (18) 
where 𝑦𝑦2𝑖𝑖, 𝑦𝑦3𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are the unknown coefficients. Since the function 𝐿𝐿𝑖𝑖(𝑡𝑡) satisfies the Kronecker 

property, it is straightforward to obtain: 

𝑦𝑦2i = Q2(ti)  , 𝑦𝑦3i = Q3(ti) ,       i = 0, m̅̅ ̅̅ ̅. (19)

Now, the approximations of 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) are obtained without solving any system of equations. Finally, 

for calculating 𝐼𝐼2, 𝐼𝐼3 we use the Gauss-Legendre integration technique as following [38]: 

𝐼𝐼2 ≃ ∫ Q2(t)dt ≃tmax
1 ∫ y2(t)dttmax

1 = ∫ ∑ y2iLi(t)dtm
i=0

tmax
1 =

∑ y2i ∫ Li(t)dttmax
1

𝑚𝑚
i=0 , = ∑ 𝑦𝑦2𝑖𝑖 {(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑗𝑗𝐿𝐿𝑖𝑖(𝑡𝑡𝑗𝑗)𝑚𝑚
𝑗𝑗=0 }𝑚𝑚

𝑖𝑖=0 =
(𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1)

2 ∑ 𝑊𝑊𝑖𝑖𝑦𝑦2𝑖𝑖 𝑚𝑚
𝑖𝑖=0  ,                                    (20)

where 𝑊𝑊𝑖𝑖’s are the weights of the Gauss-Legendre integration technique defined by: 

                                                 
�     (17)
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• Approximation based on cutting the domain of the problem [37-38]: Assume that the functions 

𝑄𝑄2(𝑡𝑡) and  𝑄𝑄3(𝑡𝑡) are not increasing and tend to zero as 𝑡𝑡 → +∞. Hence for a given 𝜀𝜀 > 0,  ∃𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 >
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{|𝑄𝑄2(𝑡𝑡)|, |𝑄𝑄3(𝑡𝑡)|} <Γ. 
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𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

, 𝑠𝑠 ∈ {1,2}, it is obvious that: 

 𝐼𝐼𝑠𝑠 ≈ ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
1 , 𝑠𝑠 ∈ {1,2}. (15)

 
To approximate the integral terms ∫ 𝑄𝑄𝑠𝑠(𝑡𝑡)𝑑𝑑𝑑𝑑,    𝑠𝑠 ∈ {1,2}𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

1 , consider the nodes 𝑡𝑡𝑖𝑖
∗ as the roots of the 

Legendre polynomial of degree 𝑚𝑚 + 1 and define. 

𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1
2 𝑡𝑡𝑖𝑖

∗ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+1
2   , 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ , (16)

then, the Lagrange polynomials corresponding to nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅  are defined as: 

𝐿𝐿i(t) = (t−t0)(t−t1)…(t−ti−1)(t−ti+1)…(t−t𝑚𝑚)
(ti−t0)(ti−t1)…  ..  ….(ti−tm) ,     𝑖𝑖 = 0, 𝑚𝑚̅̅ ̅̅ ̅̅ .                                                     (17) 

 
We consider the approximations for 𝑄𝑄2(𝑡𝑡) and 𝑄𝑄3(𝑡𝑡) named by 𝑦𝑦2(𝑡𝑡) and 𝑦𝑦3(𝑡𝑡) as the following: 

𝑦𝑦2(𝑡𝑡) = ∑ 𝑦𝑦2𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡)𝑚𝑚
𝑖𝑖=0  ,   𝑦𝑦3(𝑡𝑡) = ∑ 𝑦𝑦3𝑖𝑖𝐿𝐿𝑖𝑖(𝑡𝑡),𝑚𝑚

𝑖𝑖=0 (18) 
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3.2. Computational Algorithm

Computational algorithm to implement the proposed 

method is developed step by step as follows:

Step1: Choose the value 

𝑊𝑊𝑖𝑖 = −2
(𝑚𝑚+2)𝑃𝑃𝑚𝑚+2(𝑡𝑡𝑖𝑖)𝑃𝑃𝑚𝑚+1

′ (𝑡𝑡𝑖𝑖)   , 𝑖𝑖 = 0,1, … 𝑚𝑚,                                                                                              (21) 

and 𝑃𝑃𝑚𝑚(𝑡𝑡) is the Legendre polynomial of degree 𝑚𝑚. Also, by employing the same procedure we get  

 𝐼𝐼3 ≈ (tmax−1)
2 ∑ Wiy3i

m
i=0 . 

3.2. Computational Algorithm 

Computational algorithm to implement the proposed method is developed step by step as follows: 

Step1: Choose the value Γ = 10−4 and select the value 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 for which max
𝑡𝑡>𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

{|𝑄𝑄2(𝑡𝑡)|, |𝑄𝑄3(𝑡𝑡)|} <
Γ. 
Step2: Choose the positive integer 𝑚𝑚 > 0 and calculate the roots of the Legendre polynomial of 
degree 𝑚𝑚 + 1, denoted by 𝑃𝑃𝑚𝑚+1(𝑡𝑡) and name those roots by 𝑡𝑡𝑖𝑖

∗, 𝑖𝑖 = 0,1 … , 𝑚𝑚.  
Step3: Use the transformation 𝑡𝑡𝑖𝑖 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−1

2 𝑡𝑡𝑖𝑖
∗ + 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚+1

2   , 𝑖𝑖 = 0,1, … , 𝑚𝑚. 
Step4: Calculate 𝑦𝑦2i = Q2(ti)  , 𝑦𝑦3i = Q3(ti) ,       i = 0,1, … , 𝑚𝑚. 
Step5: Compute 𝑃𝑃′𝑚𝑚+1(𝑡𝑡𝑖𝑖) = 𝑑𝑑𝑃𝑃𝑚𝑚+1(𝑡𝑡)

𝑑𝑑𝑑𝑑 |𝑡𝑡=𝑡𝑡𝑖𝑖,  𝑃𝑃𝑚𝑚+2(𝑡𝑡): = (2𝑚𝑚+3)
𝑚𝑚+2 𝑡𝑡𝑃𝑃𝑚𝑚+1(𝑡𝑡) − (𝑚𝑚+1)

(𝑚𝑚+2) 𝑃𝑃𝑚𝑚(𝑡𝑡),  
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(𝑚𝑚) ≔ (tmax−1)

2 ∑ Wiy2i
𝑚𝑚
i=0              ,                𝐼𝐼3

(𝑚𝑚) ≔ (tmax−1)
2 ∑ Wiy3i

𝑚𝑚
i=0 . 

Step6: Go to Step2, set 𝑚𝑚 ≔ 𝑚𝑚 + 1, repeat Steps 2-5 and compute 𝐼𝐼2
(𝑚𝑚+1) and 𝐼𝐼3

(𝑚𝑚+1). 

Step7: If |𝐼𝐼2
(𝑚𝑚) − 𝐼𝐼2

(𝑚𝑚+1)| < 10−2  and |𝐼𝐼3
(𝑚𝑚) − 𝐼𝐼3

(𝑚𝑚+1)| < 10−2, Stop computing. Otherwise go to 

Step6 and repeat the computations until for some integer 𝑀𝑀 > 0 we get |𝐼𝐼2
(𝑀𝑀) − 𝐼𝐼2

(𝑀𝑀+1)| < 10−2  and 

|𝐼𝐼3
(𝑀𝑀) − 𝐼𝐼3

(𝑀𝑀+1)| < 10−2. 
 

4. Computation Flowchart of the Proposed Method 

Fig 3 shows the process of evaluating the high frequency behavior of a grounding electrode by the proposed 

method. In this flowchart, LBoundF and UBoundF parameters return the smallest and upset values of 

frequency in injected current to the grounding electrode.  
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until for some integer 0M >  we get ( ) ( )1 2
2 2 10M MI I + −− <   and 

( ) ( )1 2
3 3 10M MI I + −− < .

4-  COMPUTATION FLOWCHART OF THE 
PROPOSED METHOD

Fig 3 shows the process of evaluating the high frequency 
behavior of a grounding electrode by the proposed method. 
In this flowchart, LBoundF and UBoundF parameters return 
the smallest and upset values of frequency in injected current 
to the grounding electrode. 
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literature for the same vertical grounding electrode.
I) Scenario #1

  This subsection discusses the specific methods by which 
the research and analysis were conducted for the numerical 
solution for the calculation of the Green function. Among 
the presented methods to solve this problem by researchers, 
approximate methods have a very high application due 
to their simplicity. The methods of the high-contrast 
approximation (HCA) and the reflection coefficient (RCM) 
are convenient to apply in high frequency analysis of the 
grounding electrode but have not a high accuracy [23-24]. In 
addition, the exact Sommerfeld integration formula based on 
antenna theory is presented to obtain rather high accuracy 
in these references. Therefore, the methods addressed in two 
references are used to compare and evaluate the proposed 
mathematical method. The calculations were carried out 
for 1 0ε ε=  and 2 1/ 10ε ε = , 7

2 1 0 4 10µ µ µ π −
== = ×

, ( ) 1
2 0.01 .mσ −= Ω , 2 10R m= , 2 10oθ =  and 0ϕ = .
Table 1 and Figs. (4) and (5) show and compare the 

obtained results of the proposed method and several other 
analyses presented in different references for the calculation 
of the correction term of the Green function. The numerical 
values of the variables are the same as reported data in [23-
24]. The obtained results have been presented for a vertical 
dipole on the lossy earth. By comparing the results, it can be 
illustrated that for a wide range of frequency f (MHz), our 
results for the real and imaginary part of the Green functions 
are in good agreements with the results by the exact solution 
[23-24]. For the case of imaginary part of the Green function, 
our results also agree with the findings of HCA [23-24] for 
the smaller values of frequency f (MHz). For the real part, 
our results confirm the previous findings by [23-24] for all 
frequency ranges. Comparison of these results show that the 
proposed method has higher accuracy compared to the other 
methods.

According to the results presented in Figs. (4) and (5), 
one can conclude that the proposed method is much more 
accurate in the calculation of the correction term of the Green 

TABLE 1. COMPUTING OF ∆𝑮𝑮𝒆𝒆 BY SEVERAL OTHER METHODS IN DIFFERENT FREQUENCIES 
 

F 

(MHz) 

RCM [26] 

×104 

HCA [23-24] 

×104 

Refs. [23-24] 

×104 

The proposed method 

×104 

Exact result [23-24] 

×104 

1.0 -10.0- j 5.45 -0.76- j 4.12 -0.90- j3.88 -0.89- j 3.93 -1.00- j 4.16 

2.0 -15.2- j 3.81 -4.46- j 7.16 -4.55-j6.39 -4.59- j 6.50 -4.93- j 6.87 

3.0 -18.8+ j 0.05 -9.48- j 7.77 -9.15- j6.46 -9.26- j 6.64 -9.95- j 6.92 

6.0 -18.7+ j 16.6 -21.16+j 3.86 -18.20+j4.97 -18.74+ j 4.97 -19.56+j 5.82 

9.0 -4.08+j 28.5 -15.93+ j 23.30 -11.75+ j20.97 -12.43+ j 21.63 -11.80+ j 22.90 

12.0 16.3+j 26.7 5.00+ j 32.76 6.52+j 26.83 6.39+ j 28.16 8.09+  j 28.14 
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function in comparison with the approximate methods used 
to far fields, and it’s also very close to the results in [23-24], 
which are presented for the near field.

II) Scenario #2
Fig. 6 shows the calculated frequency response of the 

input impedance using the proposed method compared 
with [14] for a vertical grounding electrode buried at depth 
of 0.5 m with different lengths 1m and 2 m. and also its 
radii of electrode is 5 mm. The earth media is characterized 
with  
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 . Additionally, 
earth resistivity is 5400 Ω.m. The current generator 

( )6 60.07924 10 t 4.0011 10 t
f 1.1043 e   eI − × − ×= × +   is excited to the top 

of the electrode. As depicted in Fig. 5, the obtained results by 
two procedure show a good agreement. 

Furthermore, the input impedance of an electrode excited 
by high frequency current source is reduced with increasing 
the length of the electrode.

5.2. Influence of Soil Resistivity ( sñ ) on Input Impedance
In transient states, a power system involves higher 

frequencies up to kiloHertz and megahertz (for example, the 

frequency spectrum in lightning impulse is 10kHz to 3MHz), 
and restrikes on disconnectors and faults in GIS 100kHz-
50 MHz. The grounding electrode impedance exhibited a 
constant value approximately equal to the DC resistance for 
a much higher frequency ( e.g. antenna frequency), while it 
exhibits a decrease in its value for frequencies between 10 
KHz to 10 MHz as shown in Fig. 7. The presented results in 
this Figure show the input impedance spectrum of the vertical 
grounding versus the different the soil resistivity for the three 
considered cases of 600, 3400 and 5400 Ω.m. Obtained results 
show that the input impedance of the vertical grounding 
electrode is significantly influenced by the variation of soil 
resistivity in frequencies less than 10 MHz

As shown in the obtained results, input impedance 
increases by increasing the soil resistivity and the input 
impedance tends to zero by increasing the frequency which 
is quite reasonable.

5.3. Influence of Soil Dielectric Permittivity ( rε ) on Input 
Impedance

To quantify the impact of the soil dielectric permittivity 
on the performance of the grounding electrode, the frequency 

 

 

Fig. 7.  Variation of input impedance with frequency and soil resistivity (𝝆𝝆𝒔𝒔) 
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response of a vertical grounding electrode was studied under 
two values of soil relative permittivity, 5rε =  and 10rε = , 
over frequencies DC to 30 MHz. The input impedance shows a 
considerable reduction by increasing soil permittivity at high 
frequency less than 1 MHz, while this variation is negligible in 
much higher frequency (e.g. higher than 1 MHz).  As shown 
in Fig. 8, the input impedance reduces by increasing the soil 
dielectric permittivity. As is depicted in the results, this is 
more evident at frequencies below 10 MHz.

6- CONCLUSION
This study provides a novel approach to analyze the high-

frequency behavior of the vertical grounding electrode. In this 
approach, for evaluating the impact of the earth/air interface, 
one needs to solve the rigorous Sommerfeld integral that 
appears in the Green function. We presented a simple and 
accurate mathematical method to investigate the behavior 
of the vertical grounding electrode in a high-frequency 
electromagnetic transient state based on the near field theory 
using the method of moments (MoM). The achievements 
in the calculation of the electromagnetic field that should 
be highlighted are as follows. As the first improvement, we 
use a simple closed-form relation instead of the Sommerfeld 
integral which is valid for a wide range of frequencies. Second, 
we show that the approach used in the paper is able to calculate 
the far and near electromagnetic fields. Third, by employing 
the appropriate numerical approach, more accurate results are 
obtained in comparison with other methods in the literature. 
The findings presented in this study are in good agreement 
with the previous findings.
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