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ABSTRACT:  Different surface impedance models are applied to circular nano-wires at terahertz 
and optical frequencies and the accuracy of these surface impedance boundary conditions (SIBCs) is 
studied. The simplest form of SIBC defines a local relation between the tangential electric and magnetic 
equivalent surface currents at each point on the boundary. This definition is very dependent on the 
constituent material of the wire and its radius. The generalized IBC (GIBC) improves the accuracy 
of the local definition by considering the curvature of the surface at each observation point. On the 
other hand, the operator definition of the surface impedance presented in the SIGO method (surface 
impedance generating operator), is an exact field theoretical approach that determines the relation 
between equivalent electric and magnetic surface currents. Moreover, this method is suitable for parallel 
processing. For the special case of circular wires, the SIGO operator is derived. To validate the SIBC 
models, the results are compared with the SIGO. In spite of its extreme simplicity, it is observed that 
the accuracy of SIBC models is limited at optical and terahertz frequencies. It is also shown that some 
forms of SIBCs presented in the literature for nano-wires can be considered as special cases of SIGO 
formulation. 
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1- INTRODUCTION
Metals are good conductors of microwave and millimeter 

wave frequencies. At lower frequencies, these materials can 
be modeled as perfect electric conductors (PECs). On the 
other hand, at terahertz and optical frequencies, the good 
conductor approximation would no longer be valid. Metals 
at these frequencies are penetrated by the fields, and act like 
lossy dielectrics whose index of refractions are imaginary 
with a negative real part. The boundary condition on PECs 
enforces the tangential components of the total electric field 
to be zero. The total electric field is actually defined as the 
sum of the incident and scattered electric fields. On a good 
conductor, the tangential components of the total electric 
field can be related to the equivalent surface electric current:

tot S sE Z J= �   (1)

where ZS is the surface impedance. This equation is 
obviously a local definition.

For an infinitely thick conductor the ZS is obtained as [1]:

1(1 )SZ j
σδ

= + �  (2)

where σ  is the conductivity of the medium andδ  is the 
skin depth:

2δ
ωµσ

=
�  

(3)

Generally, regardless of the direction of incidence, the 
impinging plane wave is transmitted into the conductor 
perpendicular to its surface. Moreover, the surface impedance 
of a good conductor has equal real and imaginary parts. 

Although Eq. (3) is derived for infinitely thick conductor, 
this ZS is widely used for analyzing microstrip circuits. 
However, for high accuracy applications, other models 
of microstrip conductor loss are proposed [2]. It is worth 
mentioning that we cannot use the boundary condition (1), 
if we have no accurate guess about the value of the surface 
impedance ZS.

Applying the boundary condition (1) to the microstrip 
circuits greatly reduces the size of the problem and the 
simulation time by relaxing the field analysis inside the 
conductors. If we can apply the impedance boundary 
condition at the interface of other material types, then we can 
benefit from the same kind of simplification too. 

The surface impedance boundary condition (SIBC) 
toward this goal is defined as [3]:

ˆ ˆ ˆtot S totn E Z n n H× = × × �  (4)
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This equation is a local relation between the tangential 
components of the electric and magnetic fields. This 
boundary condition can considerably reduce the simulation 
time and computational burden, but this definition of 
surface impedance seriously depends on the ZS value at the 
observation point. Unfortunately, the exact value of ZS will 
remain unknown, unless the total electric and magnetic fields 
are determined. Conversely, knowing the fields, we do not 
need ZS anymore. In practice, the use of the SIBC (4) is limited 
to those problems for which we know the ZS with acceptable 
accuracy. A common choice of ZS is the characteristic 
impedance of the illuminated medium or scatterer:

S c
jZ Z

j
ωµ

σ ωε
≈ =

+
� (5)

It is worth mentioning that the good conductors have very 
high σ . Hence, for this type of materials, Eq. (5) is reduced 
to (2). By defining the equivalent surface electric current JS as:

ˆs totJ n H= × �  (6)

  we can also obtain Eq. (1) form Eq. (4).
The validity of Eq. (5), depends on the constitutive 

parameters of the scatterer and its geometry. To improve 
the accuracy, different methods have been proposed in the 
literature. In [4,5], the ZC is computed separately for TM and 
TE polarizations following a two steps procedure. In the first 
step, the field distributions on the boundary of rectangular 
wires are calculated. Then, the surface impedance for TM 
and TE polarizations are derived by dividing the respective 
components of the already found tangential fields. It is 
actually a useful tool for analyzing complex THz and optical 
structures, because after finding the surface impedance of the 
wire as a function of location, one is able to replace this wire 
with its computed surface impedance and hence, considerably 
simplify the problem.

To improve the accuracy, in [3,6] generalized IBC (GIBC) 
for a scalar function U is defined:

0 0 0
0

mM m m l

klm m l k k l
m l k

c U
x y z

−

− −
= = =

∂
=

∂ ∂ ∂∑∑∑ �  (7)

where U(x,y,z) can be the normal component of an 
electromagnetic field or an acoustic velocity potential.

As a matter of fact, due to the presence of derivatives, the 
preceding boundary condition relates the tangential electric 
field at each point not only to the tangential magnetic field at 
the same point, but also to the tangential magnetic fields at the 
vicinity of that point. This definition somehow includes more 
information of the impedance relation, hence, lead to better 
approximation compared with Eq. (4). In [7,8] the global form 
of IBC was introduced. For the specific case of 2D rectangular 
wires, the fields on the wire cross section are discretized using 
the finite difference time domain (FDTD) in order to find the 

relation among the tangential components of the fields on 
the boundary. The resulting matrix representation of surface 
impedance is more accurate than both SIBC and GIBC, 
although its use is limited to the problems with separable TE/
TM solutions.

The surface impedance generating operator (SIGO) is 
the most accurate way of defining impedance boundary 
condition. This operator is defined as [9]:

ˆ( , ) ( , )ej nωµ′ ′Ζ = − ×r r G r r � (8)

where eG  denotes electric dyadic Green’s function of 
second type. This dyadic representation of surface impedance 
is theoretically exact for any finite scatterer with an arbitrary 
shape. However, its practical use would be limited to those 
problems for which the required dyadic Green’s function can 
be obtained analytically. 

The SIBC model can be used to analyze the bodies of 
revolution, though it may encounter some limitations due to 
the curvature of these types of scatterers. In [10] the surface 
impedance is derived and used to study the nano-wire dipoles 
at optical frequencies. In [11, 12] the circular wires take the 
role of terahertz waveguides, which are analyzed using the 
surface impedance model. 

In the current paper, we study the circular wires 
at terahertz and optical frequencies using the surface 
impedance formulations. First, the operator form of the 
surface impedance is derived for these structures. Following 
the results, the validity of other representations of surface 
impedance for circular wires are studied. It is shown that the 
definitions that are presented in the literature [10, 13, 14] can 
be handled as a special case of the SIGO formulation.

The rest of the paper is organized as follows. In section 
2, the SIGO formulation is derived for the 2D circular wires. 
In section 3 the exterior integral equation is introduced and 
is combined with the derived operator surface impedance. 
Later, the final single source integral equation is implemented 
using the method of moments (MoM). Section 4 illustrates 
the numerical results. Concluding remarks are presented in 
section 5.

2- SIGO FORMULATION FOR 2D CIRCULAR WIRE
The cross section of a circular wire with no variation 

with respect to longitudinal direction, which is supposed to 
be aligned along with the z direction, is shown in Figure 1 
together with the applied SIGO boundary conditions. For the 
excitations that do not change in the longitudinal direction, 
we are encountered with a 2D scattering problem. Fig. 1-a 
shows the SIGO boundary condition for TM polarized 
incident wave while Fig. 1-b demonstrates the boundary 
condition of TE case. 

In the following subsections, both cases are considered 
and studied using the SIGO formulation.

2-1-  the TM Case
The field components of TMz modes are Hφ, Hρ and 

Ez , given that . These field components are the 
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functions of ρ and φ and satisfy the Helmholtz equation. 
To be meticulous in our derivations, we define the position 
vector of source (observation) points as:

'G OO gr R r′ ′= +   �  (9)

where gr′  is the position vector described in local 
coordinate system and 'OOR  determines the position vector of 
the origin of the local coordinate system defined in the global 
coordinate system. Generally, in our notations the subscript 
g denotes the local coordinate while subscript G emphasizes 
that the used coordination system is global.

For a circular wire, when the center of the circular cross 
section is located at the origin of the local coordinate system, 
the position vector of each point on the boundary is expressed 
as:

ˆ ˆ ˆ ˆ ˆcos sing g g g g g g g g g gr x x y y a x a yρ ρ ϕ ϕ= = + = +   �  (10)

where a is the radius of the wire under study and ϕ′  
denotes the angle in polar system. 

For the electric field we can write:

2
2

2 2

1 1 0z z
g z

g g g g g

E E k Eρ
ρ ρ ρ ρ ϕ

 ∂ ∂∂
+ + =  ∂ ∂ ∂ 

 � (11)

where k is the complex wave number inside the wire:

( )k j jωµ ωε σ= − + �  (12)

The boundary condition enforced by SIGO method is 
stated as:

1 z
sz

g

E J
jωµ ρ

∂
=

∂
	  � (13)

The required dyadic Green’s function in this case has 
only one component, which is the solution of the following 
boundary value problem: 

2
2

2 2

1 1

1 ( ) ( )

( , ; , )
0

g

zz zz
zz

g
g g g g g

g g g g
g

zz
g g g g

g a

G G k G

G

ρ

ρ
ρ ρ ρ ρ ϕ

δ ρ ρ δ ϕ ϕ
ρ

ρ ϕ ρ ϕ
ρ

=

  ∂ ∂ ∂
+ + =   ∂ ∂ ∂  


 ′ ′− −



 ′ ′∂ =
 ∂

 �  

(14)

Different techniques have been introduced with the aim 
of finding dyadic Green’s functions. These techniques lead 
to different representations for the same dyadic Green’s 
functions. Series expansion is one of the methods. By 
applying this method to the equation (14), we can express Gzz 
as:

( , ; , ) ( ; , ) gjpzz
g g g g p g g g

p
G g e ϕρ ϕ ρ ϕ ρ ρ ϕ

+∞

=−∞

′ ′ ′ ′= ∑ � (15)

For finding ( ; , )p g g gg ρ ρ ϕ′ ′ , the preceding equation is 
substituted in (14):

2 2
2

2 2

1 ( ; , )

1 ( ) ( )

jp
p g g g

p g gg g

g g g g
g

p k g e ϕρ ρ ϕ
ρ ρρ ρ

δ ρ ρ δ ϕ ϕ
ρ

+∞

=−∞

 ∂ ∂ ′ ′+ − + = 
∂∂  

′ ′− −

∑
�  (16)

Using the orthogonality of the set of { }jqe ϕ−  functions 
for integer values of q, we can reduce the equation (16) in 
the form of:

2 2
2

2 2

1 ( ) ( ; , )

1 ( )
2

g

p g g g
g gg

jp

g g
g

pk g

e ϕ

ρ ρ ϕ
ρ ρρ ρ

δ ρ ρ
ρ π

′

 ∂ ∂ ′ ′+ + − = 
∂∂  

′−

  � (17)

(a)  (b) 

Fig. 1. The cross section of the wire and the respective boundary conditions defined in SIGO method, a) TM case, b) TE case. 

  

Fig. 1. The cross section of the wire and the respective boundary conditions defined in SIGO method, a) TM case, b) TE case.
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The general solutions of this ordinary differential 
equation are:

(1) ( )p p p g g gg A J kρ ρ ρ′= <  � (18)

(2) ( )
( ) ( )

( )
p

p p p g p g g g
p

J ka
g B J k Y k

Y ka
ρ ρ ρ ρ

′ 
′= − > ′  

�(19)

The Wronskian of these solutions is:

( ) 2( ) A
( )
p

g p p
p g

J ka
W B

Y ka
ρ

πρ
′−

′ =
′ ′

   � (20)

Finally, pg  is found as:

1 ( ) ( ) ( ) ( )
4

( )
( )

( ; , )
1 ( ) ( ) ( ) ( )

4
( )
( )

g

g

p p p p g

g g
jpp g

p
p g g g

p g p p p g

g g
jpp g

p

J k Y ka J ka Y k

J k
e

J ka
g

J k Y ka J ka Y k

J k
e

J ka

ϕ

ϕ

ρ ρ
ρ ρρ

ρ ρ ϕ
ρ ρ

ρ ρρ

′−

′−

− ′ ′ ′ ′ − 
 ′<

 ′′ ′ = − ′ ′ − 

′> ′
 ′

  � (21)

Consequently, the solution of Gzz is obtained as:

( )

( )

( ) ( ) ( ) ( )
1

( )
4

( )
( ; , )

( ) ( ) ( ) ( )
1

( )
4

( )

g g

g g

p p p p g

g gjpp g
p

pzz
g g g

p g p p p g

g gjpp g
p

p

J k Y ka J ka Y k

J k
e

J ka
G

J k Y ka J ka Y k

J k
e

J ka

ϕ ϕ

ϕ ϕ

ρ ρ
ρ ρρ

ρ ρ ϕ
ρ ρ

ρ ρρ

+∞

′−
=−∞

+∞

′−
=−∞

 ′ ′ ′ ′ −  − ′<
 ′′ ′ = 

′ ′ −  − ′>′
 ′

∑

∑

  � (22)

For both source and observation points located on the 
boundary, we can simplify the preceding expression and write 
it as: 

( )( )1( )
2 ( )

g gjppzz
g g

p p

J ka
G e

ka J ka
ϕ ϕϕ ϕ

π

+∞
′−

=−∞

−′− =
′∑   � (23)

The electric field on the boundary of circular wire can be 
related to the equivalent surface electric current using SIGO 
equation:

( )( )
( )

2 ( )
g gjpp

z sz gC C
p p

J kajE e J dl
ka J ka

ϕ ϕωµ ϕ
π

+∞
′−

′
=−∞

 
′ ′=   ′ 

∑∫  � (24)

Defining the function N(Θ) as:

( )
( )

( )
p jp

p p

J ka
N e

J ka

+∞
Θ

=−∞

Θ =
′∑     �  (25)

We can write:

2

0

( ) ( )
2z sz g g g gC

jE J N d
k

πωµ ϕ ϕ ϕ ϕ
π

′ ′ ′= −∫   � (26)

Fig. 2 shows the |N(Θ)| for different materials with high 
conductivities. It is observed that at Θ=0 the function takes 
the maximum and behaves like an impulse function for highly 
conducting materials. By approximating N(Θ) with Delta 
function in the limit, we can simplify the preceding equation 
as:

0 0

0 1

( ) ( )
2 ( ) 2 ( )z

J ka J kajE H j H
k J ka k J kaϕ ϕ

ωµ ωµ
π π

= −
′

     � (27)

9 
 

0 0

0 1

( ) ( )
2 ( ) 2 ( )z

J ka J kajE H j H
k J ka k J ka 

 
 

= −


    (27)
 

Therefore, the surface impedance can be defined as: 

0

1

( )
( )s

J ka
Z j

k J ka


−     (28) 

The above equation clearly shows that the local surface impedance is obtained as a limiting case of the 

SIGO approach. A similar equation has been found in [10, 13], albeit in completely different contexts. 

  

Fig. 2. The magnitude of function N(Θ) as defined in (25) for materials with different conductivities. 

 

2-2- TE Case 

In this case, the electric field of the incident plane wave has generally both ̂  and ̂  components. 

Hence, the electric dyadic Green’s function generally has four components: 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆe e e e eG G G G G      = + + +    (29) 

We can use the auxiliary Green’s function of zz
mg  and follow the procedure described in [15] to find eG

.  

Fig. 2. The magnitude of function N(Θ) as defined in (25) for materials with different conductivities.
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Therefore, the surface impedance can be defined as:

0

1

( )
( )s

J ka
Z j

k J ka
ωµ

−   �  (28)

The above equation clearly shows that the local surface 
impedance is obtained as a limiting case of the SIGO 
approach. A similar equation has been found in [10, 13], 
albeit in completely different contexts.

 
2-2- TE Case

In this case, the electric field of the incident plane wave has 
generally both ρ̂  and ϕ̂  components. Hence, the electric 
dyadic Green’s function generally has four components:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆe e e e eG G G G Gρρ ρϕ ϕρ ϕϕρρ ρϕ ϕρ ϕϕ= + + +    � (29)

We can use the auxiliary Green’s function of zz
mg  and 

follow the procedure described in [15] to find eG . 
For the problem at hand, zz

mg satisfies the following 
boundary value problem stated in local coordinate system as: 

2 2 1( ) ( ) ( ) ( )

0
g

zz zz
m m g g g g

g

zz
m a

g k g

g
ρ

δ ρ ρ δ ϕ ϕ
ρ

=

 ′′ ′′ ′′ ′′∇ + = − − −


 =


r,r r,r

    
� (30)

The solution of the preceding equation can be expressed 
as:

( )

( )

( ) ( ) ( ) ( )

( )
( )1( , ; , )

4 ( ) ( ) ( ) ( )

( )
( )

g g

g g

p g p p p g

g gjpp g
p

pzz
m g g g g

p g p p p g

g gjpp g
p

p

J k Y ka J ka Y k

J k
e

J ka
g

J k Y ka J ka Y k

J k
e

J ka

ϕ ϕ

ϕ ϕ

ρ ρ
ρ ρρ

ρ ϕ ρ ϕ
ρ ρ

ρ ρρ

+∞

′′−
=−∞

+∞

′′−
=−∞

 ′′ ′′ − 
′′<


′′ ′′ = 

 −  
 ′′>′′



∑

∑

( )( ; ) g gjpzz
p g g

p
g e ϕ ϕ

ρ ρ ρ
+∞

′′−

=−∞

′′= ∑ 		� 

(31)

Consequently, Gm can be computed as:

( , ) ( , ) ( )m m dvδ′ ′′ ′′ ′ ′′ ′′= ⋅∇ × −∫G r r g r r I r r  � (32)

which yields the following dyadic components:

( )( , ) ( ; ) g gjpz zz
m p g g

p g

jpG g e ϕ ϕρ
ρ ρ ρ

ρ

+∞
′−

=−∞

′ ′=
′∑r r    � (33)

( )( ; )
( , ) g g

g g

zz
p g g jpz

m
p g

g
G eρ ϕ ϕϕ

ρ ρ

ρ ρ

ρ

+∞
′−

=−∞
′′ ′=

′′ ∂  ′ = −
′′∂∑r r  � (34)

Finally, we can find Ge from:

02

1( , ) ( , ) ( )e ek
δ′ ′ ′ = − − G r r G r r I r r    � (35)

where I is the unitary dyad and: 

0 ( , ) ( , )e m′ ′= ∇×G r r G r r  �  (36)

By substituting (33) and (34) in (36), the components of 
Ge0 are calculated:

2
( )

0 ( ; ) g gjpzz
e p g g

p g g

pG g e ϕ ϕρρ
ρ ρ ρ

ρ ρ

+∞
′−

=−∞

− ′=
′∑    �  (37)

( )
0

( ; )
g g

zz
jpp g g

e
p g g

gjpG e ϕ ϕρϕρ ρ ρ
ρ ρ

+∞
′−

=−∞

′∂
=

′ ∂∑     �  (38)

( )
0

( ; )
g g

g g

zz
p g g jp

e
p g g

gjpG eρ ϕ ϕρϕ

ρ ρ

ρ ρ

ρ ρ

+∞
′−

=−∞
′′ ′=

′′ ∂  =
′′∂∑     � (39)

( )
0

( ; )
g g

g g

zz
p g g jp

e
p g g

g
G eρ ϕ ϕϕϕ

ρ ρ

ρ ρ

ρ ρ

+∞
′−

=−∞
′′ ′=

′′ ∂∂  =
′′∂ ∂∑     � (40)

Having Ge computed, one can relate the electric field on 
the boundary of wire to the equivalent surface electric current 
using SIGO equation [9]:

( ) ( , ) ( ) 'e sj drωµ ′ ′= ⋅∫E r G r r J r  ; ,n nV S′∈ ∈r r   �  (41)

Using (8), we can represent (41) for the tangential field 
components as:

ˆ ( ) ( , ) ( )sn ′ ′− × = ΖE r r r J r ; , nS′∈r r    �  (42)

 Therefore, unlike the definition of surface impedance in 
[10, 13] that are limited to TM polarization, SIGO is able to 
represent the surface impedance for TE polarization as well.

Please note that in local coordinate system, the 
surface equivalent electric current on circular wire 
has only ˆgϕ  component, and only two components of 

ˆ ˆ ˆ ˆe e g g e g gG G Gρϕ ϕϕρ ϕ ϕ ϕ= +  would be effective in finding 
electric field from (41). It is worth mentioning that equation 
(41), which determines the relation between the electric field 
and the surface equivalent electric current can be transformed 
to a global coordinate system after being first derived in the 
local coordinate system of each scatterer.

For the 2D problem of infinitely long wire with no 
variation with respect to the longitudinal direction, one is 
able to study the TE polarized waves easier using the duality. 
However, we aim to show that the SIGO formulation is general 
and is capable of handling general scattering problems, by the 
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derivations above. 

3- EXTERIOR PROBLEMS:
The integral equations (26) or (41) cannot be solved for 

finding the unknown equivalent electric surface currents 
unless the exterior problem is considered. The electric field 
integral equation of exterior problem for a penetrable obstacle 
enclosed by surface S is stated as [16]:

1 1( ) ( , ) ( ) ( , ) ( )inc E S E SL K′ ′ ′ ′− = +E r r r J r r r M r  ; , S′∈r r 	
�  

(43)

Where JS and MS denote the equivalent electric and 
magnetic surface currents and:

1 1 12
1

( , ) ( ) ( , )EL j I g
k

ωµ ∇∇′ ′= − +r r r r     � (44)

1 1( , ) ( , )EK g I′ ′= −∇ ×r r r r     �  (45)

where I  is the unitary dyadic Green’s function and g1 for 
a 2D problem is expressed as:

2
1 0 1

1( , ) ( )
4

g H k
j

ρ ρ′ ′= −r r    �  (46)

 Considering that ˆS n= − ×M E , one can combine (42) and 
(43) and introduce a kind of single source integral equation. 
For a problem with multiple scatterers, the resulting equation 
is expressed as:

1

1

1

1

( ) ( , ) ( )

( , ) ( , ) ( )

N

N

S

inc E S
S

S

E n S
S

E L J

K J

′ ′− = +

′ ′ ′′ ′′Ζ

∑

∑

r r r r

r r r r r



 

; 

; ,tot nS S′ ′′∈ ∈r r r 	  �  (47)

where N is the number of scatterers with surfaces S1 to SN 
and Stot is defined as 

1

N

tot n
n

S S
=

=
 . For each scatterer, the operator 

form of surface impedance, ( , )n ′ ′′Ζ r r , is calculated separately. 
This single source integral equation can be solved to find the 
surface equivalent electric current. Having the equivalent 
current JS known, using (47), we can find the field everywhere 
outside the scatterers.

We use the method of moment to change the integral 
equations into matrix equations and find the unknown 
coefficients.

For the special case of TM polarization, the equivalent 
current on each circular wire can be described as:

( ) ( )S sz gJ Jρ ϕ′ ′=   �  (48)

 By expanding the equivalent surface electric currents 

with 1D pulse basis functions of Pn we have:

1
( ) ( )

N
i i
sz g n n g

n
J Pϕ α ϕ

=

′ ′= ∑   � (49)

where superscript i denotes the ith scatterer and 
i
nα s are 

its unknown coefficients. The vector of all unknowns put 
together can be written as:

1

2

n

n n

α

α α

    
    =    
 
 


� (50)

By combining the interior and exterior problems, 
we solve the final single source equation to find these 
coefficients.

4- NUMERICAL RESULTS:
As a first example, the fields scattered by a single circular 

wire immersed in free space is studied. Two different material 
types (i.e. dielectric and metal) are considered and the 
equivalent electric current in each case is computed for both 
models of: a) the SIBC defined by (27) and b) the SIGO model 
(26). The radius of the wire is supposed to be a=0.6λ0, where 
λ0 is the wavelength of the incident plane wave in free space. 
In the following simulations, λ0=800nm is considered. Fig. 3 
shows the computed surface equivalent electric currents for 
the dielectric wire. It is clear that the SIBC model completely 
fails to predict the correct distribution of equivalent electric 
current. However, the operator surface impedance model can 
accurately trace the analytical solution. The convergence of the 
SIGO solution is also observed in the Figure. It’s been granted 
that with only 18 segments the result obtained using the SIGO 
method agrees with the analytical solution very well. 

Fig. 4 compares the results obtained using the mentioned 
methods when the wire is made of gold. Material property is 
taken from [17], where the complex permittivity of -24.06-
1.5j is found for gold at λ0=800nm. In this case, the SIBC 
model gives better predictions of the equivalent electric 
current. We expected this result, as the SIBC model becomes 
more accurate when the conductivity of scatterer increases. 
Regardless, the SIGO model shows better performance. It 
converges rapidly, so with N=180 the difference between 
SIGO and analytical results is hardly visible.

For comparing the results obtained by different methods 
quantitatively, the following criteria is defined:

2

2

( ) ( )

( )

Anal Numer
sz szc

Anal
szc

J J d

J d

ϕ ϕ ϕ
ξ

ϕ ϕ

′ ′ ′−
=

′ ′

∫
∫





� (51)

where Anal
szJ is the analytical solution and Numer

szJ is 
the equivalent current computed numerically by applying 
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the SIBC or SIGO boundary conditions. Table 1 shows 
the calculated ξ , which quantifies the error for different 
methods. As it is expected, the SIGO method is more accurate 
for having less ξ .

Fig. 3. The distribution of equivalent electric current on a typical dielectric circular wire with radius a=0.6λ0 , a) the real part, b) the 
imaginary part

After finding the equivalent electric and magnetic surface 
currents accurately, it is a common task to calculate the 
scattered fields following the equivalence principle. Fig.5 
and 6 show that the equivalent magnetic currents for both 

 

 

(a) 

 

(b) 

Fig. 3. The distribution of equivalent electric current on a typical dielectric circular wire with radius a=0.6λ0 , a) the real part, b) the 

imaginary part 
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dielectric and gold wires are found accurately by the SIGO 
formulation. The scattered fields are also plotted in Fig.7 and 
8.

The next example analyzes the current distribution on 
the wires when three wires are configured as shown in Fig. 

9. The rods are placed close to each other. Fig. 10 illustrates 
the current distribution on the right hand side wire. The 
real part of the equivalent current is plotted in Fig. 10-a, 
and the imaginary part is shown in Fig. 10-b. Outstanding 
convergence is observed in the solution of SIGO model. 

Fig. 4. The distribution of equivalent electric current on a typical metal circular wire with radius a=0.6λ0 at optical frequencies, a) the real 
part, b) the imaginary part

 

 

(a) 

 

(b) 

Fig. 4. The distribution of equivalent electric current on a typical metal circular wire with radius a=0.6λ0 at optical frequencies, a) the 

real part, b) the imaginary part 
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Table I. calculated   for different methods 

 Complex permittivity SIBC SIGO- 
18 points 

SIGO- 
180 points 

Dielectric 2.1 1.082 4.0e-3 2.95e-05 
Gold -24.06-j1.5 1.61e-1 2.7e-2 7.43e-04 

 

Table 1. calculated ξ  for different methods

Fig. 5. Total electric field right on the boundary for dielectric circular nano-wire

Fig. 6. Total electric field right on the boundary for gold nano-wire

5- CONCLUSIONS
Different surface impedance models were applied to 

the problem of scattering from circular wires at optical 
frequencies. It was elicited that the local definition has limited 
accuracy and cannot be used for studying the problems in 
which the scatterer is penetrated by the fields.  On the other 
hand, the operator definition is theoretically exact and is able 
to handle both dielectric and metal optic problems accurately. 
The SIGO formulation that actually defines the operator 

expression of the surface impedance was used to find the 
distribution of equivalent currents. Two examples were 
considered. In the first example, a single wire was analyzed, 
for which the analytical solution exists. It was shown that 
the SIGO method is accurate even for coarse meshing. The 
convergence of SIGO solution was also investigated in a three 
wires configuration. Very good convergence was achieved. 
Probing the operator expression of surface impedance gives 
an evidence for the expected accuracy of the local definitions.

 

Fig. 5. Total electric field right on the boundary for dielectric circular nano-wire 

  

 

 

 

Fig. 6. Total electric field right on the boundary for gold nano-wire 
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Fig. 7. Scattered field by dielectric nano-wire 

  

 

 

 

Fig. 8. Scattered field by gold nano-wire 

  

Fig. 7. Scattered field by dielectric nano-wire

Fig. 8. Scattered field by gold nano-wire

 

Fig. 9. The geometry of three gold wires with radius a=0.6λ0 studied as the second example 

  

Fig. 9. The geometry of three gold wires with radius a=0.6λ0 studied as the second example
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(a) 

 

(b) 

Fig. 10. The distribution of equivalent electric current on the right hand side wire of Fig. 5, a) the real part, b) the imaginary part 

 

Fig. 10. The distribution of equivalent electric current on the right hand side wire of Fig. 5, a) the real part, b) the imaginary part



A. Gholipour., AUT J. Elec. Eng., 53(1) (2021) 99-110, DOI: 10.22060/eej.2021.19196.5383

110

REFERENCES:
 [1] Simon Ramo, John R. Whinnery and Theodore Van Duzer, Fields and 

Waves in Communication Electronics, Wiley, 1994.
[2] Rautio, James C., and Veysel Demir. “Microstrip conductor loss models 

for electromagnetic analysis.” IEEE transactions on microwave theory 
and techniques 51, no. 3 (2003): 915-921.

[3] T. B. A. Senior, J. L. Volakis, Aproximate boundary conditions in 
electromagnetic, The Institution of Electrical Engineering, 1995.

[4] Gholipour, Alireza, Reza Faraji-Dana, Guy AE Vandenbosch, and 
Safieddin Safavi-Naeini. “Surface impedance modeling of plasmonic 
circuits at optical communication wavelengths.” Journal of lightwave 
technology 31, no. 20 (2013): 3315-3322.

[5] Gholipour, Alireza, and Shokrollah Karimian. “Rectangular Nano-Wire 
Analysis at Terahertz and Optical Frequencies Using Interior-Exterior 
Method and Surface Impedance Model.” In  2019 2nd West Asian 
Colloquium on Optical Wireless Communications (WACOWC), pp. 
143-146. IEEE, 2019.

[6] T. B. a. Senior and J. L. Volakis, “Generalized impedance boundary 
conditions in scattering,” Proc. IEEE, vol. 79, no. 10, pp. 1413–1420, 
1991.

[7] K. Coperich and A. C. Cangellaris, “Enhanced skin effect for partial-
element equivalent-circuit (PEEC) models,” Microw. Theory Tech. IEEE 
Trans., vol. 48, no. 9, pp. 1435–1442, 2000.

[8] Shiquan He; Sha, W.E.I.; Lijun Jiang; Choy, W.C.H.; Weng Cho Chew; 
Zaiping Nie; “Finite-Element-Based Generalized Impedance Boundary 
Condition for Modeling Plasmonic Nanostructures,” Nanotechnology, 

IEEE Trans., vol. 11, no. 2, pp. 336–345, 2012.
[9] Gholipour, Alireza, Reza Faraji-Dana, and Guy AE Vandenbosch. “High 

performance analysis of layered nanolithography masks by a surface 
impedance generating operator.” JOSA A 34, no. 4 (2017): 464-471.

[10] G. Hanson, “On the applicability of the surface impedance integral 
equation for optical and near infrared copper dipole antennas,” Antennas 
Propagation, IEEE Trans., vol. 54, no. 12, pp. 3677–3685, 2006.

[11] K. Wang and D. Mittleman, “Dispersion of surface plasmon polaritons 
on metal wires in the terahertz frequency range,” Phys. Rev. Lett., vol. 
157401, no. April, pp. 1–4, 2006.

[12] J. Yang, Q. Cao, C. Zhou1, “Analytical Recurrence Formula for the 
Zeroth-order Metal Wire Plasmon of Terahertz Waves,” J. Opt. Soc. Am. 
A, Vol. 27, No.7, July 2010.

[13] L. Knockaert, P. Van den Abeele, and D. De Zutter, “Surface impedance of 
cylinders and wedges: A Neumann approach,” Int. J. Electron. Commun., 
vol. 53, no. 1, pp. 11–17, 1999.

[14] L. Knockaert and D. De Zutter, “Integral equation for the fields inside 
a dielectric cylinder immersed in an incident E-wave,” Antennas 
Propagation, IEEE Trans., vol. 34, no. 8, pp. 1065–1067, 1986.

[15] Gholipour, A. “Analysis of optical nanostructures using the surface 
impedance generating operator.” JOSA B 37, no. 2 (2020): 295-303.

[16] Weng Cho Chew, Mei Song Tong and Bin Hu, Integral Equation Methods 
for Electromagnetic and Elastic Waves, Morgan, 2009.

[17] A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski. Optical 
properties of metallic films for vertical-cavity optoelectronic devices, 
Appl. Opt. 37, 5271-5283 (1998)

HOW TO CITE THIS ARTICLE
Gholipour, A. Analysis of Nano-Wires at Terahertz and Optical Frequencies Using 
Surface Impedance Models. AUT J. Elec. Eng., 53(1) (2021) 99-110.

DOI: 10.22060/eej.2021.19196.5383


