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ABSTRACT:  Distribution Network Reconfiguration (DNR) is an important challenge in the operation 
of distribution networks which may be influenced by factors such as Wind Turbine Generators (WTG). 
In this paper, a novel policy is implemented to solve the DNR problem in presence of WTGs. The 
objectives of proposed DNR policy are minimization of active power losses, total electrical energy 
costs, and total emissions of the network. To solve the problem, an improved version of Honey Bee 
Mating Optimization (IHBMO) algorithm is implemented. Moreover, a stochastic scenario-based model 
is considered to meet the uncertainty of WTGs and loads. The bases of the proposed stochastic model 
are generation of stochastic scenarios using the roulette wheel mechanism, and a scenario reduction 
technique to decrease the computation burden of the problem.  For each scenario, a multi-objective 
mechanism is employed to save non-dominated solutions extracted by IHBMO. A decision-making 
procedure based on fuzzy clustering technique is used to rank the obtained non-dominated solutions 
according to the decision-maker preferences. Finally, an 84-bus distribution test network is considered 
to evaluate the feasibility and effectiveness of the proposed method.  Obtained results show that the 
proposed method can be a very promising potential method for solving the stochastic multi-objective 
reconfiguration problem in distribution systems.
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1- INTRODUCTION
A. Research motivation 

With the entry of WTGs into distribution networks, the 
management and operation of these networks has become 
more complex [1]. One of the important issues in the 
operation of distribution networks is the reconfiguration in 
radial networks. DNR is the action of closing the tie switches 
and opening the sectionalizing switches in the network to 
obtain a new radial configuration. DNR is performed for 
various purposes such as reducing losses, costs, and etc. [2-5].

 The DNR problem, considering WTGs, is a mixed integer 
nonlinear optimization problem due to the binary variables 
representing the status of switches, and the nonlinear 
characteristics of power flow constraints [2]. 

B. Literature review
In the recent years, important research has been conducted 

on the DNR problem and a great number of methods have been 
proposed in the technical literature. In [6], two domains are 
simultaneously considered for reconfiguration problem: re-
switching strategies and transformer tap-changer adjustments. 
In [7], optimal network reconfiguration is obtained in large-
scale distribution system using harmony search algorithm. In 
[8], network reconfiguration is implemented using minimum 
cost maximum flow-based branch exchanges and random 

walks-based loss estimations. In [9, 10], single-objective DNR 
problem is solved using hybrid optimization algorithms; in 
the hybrid algorithms, two algorithms are combined to cover 
weaknesses of one another. In [11], a new formulation of 
DNR problem is presented for reducing the voltage volatility 
induced by distributed generation.

 In the new distribution networks, distributed generations 
(DG) and WTGs play a key role in the network operation 
[12-14]. The study on the reconfiguration of distributions in 
presence of DGs and WTGs has been done in several papers. In 
[12], the contingency assessment and network reconfiguration 
is studied in the presence of wind power and energy storage. 
In [13], a stochastic reconFiguration approach is considered 
for optimal coordination of V2G plug-in electric vehicles 
considering correlated wind power generation. In [14], an 
integrated approach is proposed for distribution network 
reconfiguration incorporating distributed generators.

C. Necessity of the research
The papers surveyed above did not implicitly incorporate 

with the WTGs into the DNR problem using an exact multi-
objective optimization method. Indeed, DNR is a nonlinear 
and non-differentiable optimization problem which could 
not be solved by the conventional approaches. Additionally, 
existence of uncertain parameters in the network such as loads 
and wind, may lead to undesired solutions for conFiguration 
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of the networks. This paper aims to address these specific 
problems and presents a novel multi-objective optimization 
algorithm to solve the DNR problem considering the random 
nature of loads and wind.

In the proposed approach, DNR is modeled as a multi-
objective optimization problem with the objectives of power 
losses, total costs, and emission of the network. To solve 
the proposed problem, HBMO algorithm is considered, 
and to improve the local search procedure of the HBMO, 
a new formulation is considered. Moreover, to solve the 
multi-objective aspect of the problem, an external memory 
is used to storage non-dominated solutions found along the 
search process, and a fuzzy clustering technique is utilized to 
evaluate the obtained non-dominated solutions. Finally, the 
goal attainment optimization (GAO) is implemented as a tool 
for decision making to select the proper solution based on the 
network requirement.

To cope the uncertainty of wind and loads, a scenario-
based random approach is proposed. The scenarios are 
generated according to the probability distribution function 
and using the roulette wheel mechanism. Later, in order to 
reduce the computational load of the problem, a method of 
reducing the number of scenarios has been used.

D.  Novelty and main contributions
With considering this explanation, the novelty of the 

paper compared to the previous articles can be summarized 
as follows:

1- The DNR problem is modeled for several objectives and 
the uncertain effects of wind and loads are considered on the 
DNR problem.

 2. The GAO method is used to extract the appropriate 
solutions to the needs of the network, which provides the 
ability for the decision maker to select the best response 
among the non-dominant solutions.

 3- A new method has been used to improve the 
performance of the HBMO optimization algorithm, which 
improves the local search process of the algorithm and leads 
to the production of more accurate answers in less amount of 
time.

E. Organization and structure of the paper
The rest of the paper includes different sections: Section 

II includes the mathematical model of the DNR problem. 
Later, in section III, the original HBMO algorithm and the 
method of modification of that is implemented.  In section 
IV, the multi-objective problem is illustrated. In section V, 
the fuzzy clustering technique is illustrated. In section VI, 
the solution of stochastic problem is described. The proposed 
multi-objective IHBMO method is presented in section VII. 
The results of using the proposed method on a practical 
system are presented and discussed in Section VIII. Finally, 
the conclusion is made in Section IX.

2- DISTRIBUTION NETWORK RECONFIGURATION 
PROBLEM

In this paper, the multi-objective DNR problem is 

formulated for three objective functions, as follow:
1) Minimization of the power losses: 
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where the vector X  includes the control variables. The 
state of the thi  tie switch is specified by jTie , which 0 and 1 
correspond to open and close states, respectively. 

2)  Minimization of the total cost of injected power into 
the network
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3) Minimization of emissions produced by DGs and 
substation bus: 
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3- IMPROVED HONEY BEE MATING OPTIMIZATION 
A. Primary HBMO

 The basis of the primary HBMO algorithm is based on the 
mating process of honey bees’ social life. At the beginning of 
the algorithm, an initial population of bees is produced, which 
is divided into three groups: the non-reproductive females or 
workers, the males or drones, and the reproductive female or 
queen [15]. Continuing to the process of mating begins with 
the queen’s flight and departure from the nest.  The drones 
follow the queen and mate with her in the air while flying. At 
the start, the queen starts her flight at a random speed and 
returns to the nest when her speed reaches near zero, or when 
her spermatheca is full. The details of the mating process 
between queen and drones have been presented in [16 and 
17].

B. Improvement of HBMO (IHBMO)
 As mentioned, mating between the queen and the drones 

produces a population of broods. In the primary algorithm, 
the process of producing broods is modeled with the following 
formulation:         
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In the improved HBMO, a new rule base is proposed to 
improve the brood generation that could be described in 
IHBMO as follows. By applying this new formula, we expect 
to solve the algorithm local search problem.

At first, three dronesAt first, three drones ),,(
321 mmm SpSpSp  are randomly extracted from the queen’s spermathecal, so that m1 

≠ m2 ≠ m3. Later, the vector of drone position is calculated as follows: 
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Where, rand (·), γ1, γ2, γ3 are the random numbers in the range [0, 1]. 

The better answer between
,1Xbrood

 and 
,2Xbrood

 is considered as a new brood. 

IV. MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

   In this paper, the proposed optimization problem is a complex multi-objective optimization problem with 

constraints, and a multi-objective IHBMO algorithm is considered to solve it. To obtain a set of pareto-

optimal solutions, the introduced algorithm must optimize several objective functions simultaneously in a 

single run.  In general, a multi-objective problem is formulated as follows [18, 19]: 
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The goal of multi-objective problem solving is to extract non-dominant solutions. A non-dominate solution 

must overcome the other solutions. In this regard, if the following two conditions are met, solution 1X  

dominates solution 2X  [20]: 

(1): All the objectives corresponding to the solution 1X  are better than the objectives corresponding to 

the solution 2X : 
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Where, rand (·), γ1, γ2, γ3 are the random numbers in the 
range [0, 1].

The better answer between ,1Xbrood  and ,2Xbrood  is 
considered as a new brood.

4- MULTI-OBJECTIVE OPTIMIZATION PROBLEM
   In this paper, the proposed optimization problem 

is a complex multi-objective optimization problem with 
constraints, and a multi-objective IHBMO algorithm is 
considered to solve it. To obtain a set of pareto-optimal 
solutions, the introduced algorithm must optimize several 
objective functions simultaneously in a single run.  In general, 
a multi-objective problem is formulated as follows [18, 19]:
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The goal of multi-objective problem solving is to extract 
non-dominant solutions. A non-dominate solution must 
overcome the other solutions. In this regard, if the following 

two conditions are met, solution 1X  dominates solution 2X  
[20]:

(1): All the objectives corresponding to the solution 1X  are 
better than the objectives corresponding to the solution 2X :

{ } 1 21, 2,..., , (X ) (X )j jj n f f∀ ∈ ≤
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(2): The solution 1X  is completely better than 2X  in at least 
one of the objectives:
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5- FUZZY BASED CLUSTERING
 In the proposed multi-objective improved HBMO 

algorithm (MIHBMO), the solutions obtained during search 
and evaluation is stored in a fixed size external memory. 
In order to keep the external memory size constant, the 
non-dominated solution must be ranked according to the 
objective functions. Moreover, the objectives functions of 
DNR problem are imprecise, therefore, to recognize the best 
compromise solution, a fuzzy-based clustering procedure is 
proposed. In (10), the membership function of each objective 
function is defined for each non-dominated solution:
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where, the values of min
if and max

if  are evaluated using 
the computed results of optimizing each objective function, 
separately.

For each solution in the external memory, the normalized 
membership value is evaluated using:
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Using (11), a type of decision-making criteria is obtained 
which its value is changed based on the decision maker 
priority.

6- SCENARIO APPROACH BASIS
 In this paper, the uncertainty caused by wind and load 

is modeled using load and wind forecast error. In this way, 
typical probability distribution functions (PDF) of the load/
wind forecast errors are implemented [21]. According 
to reference [22], we divided the probability distribution 
function curve into seven segments (it should be noted that 
the greater number of segments will result to more accurate 
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prediction with more computational burden). Additionally, 
two roulette wheels mechanism are used to generate the 
scenarios. The steps of generating the final scenarios are as 
follows:

Step 1: the scenario generation. The initial scenarios are 
generated by applying the roulette wheel mechanism to the 
PDFs of load and wind [23].  The structure of each scenario 
and its probability is shown in (12) and (13), respectively.
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Step 2: the scenario reduction.  In this step, in order to 
reduce the computational burden, we use a scenario reduction 
method, named the developed backward reduction method 
[24]. Using this method, the number of scenarios is reduced 
by maintaining the accuracy of the work. The proposed 
scenario reduction method works as follow:

Step 2-1. Construct the Kantorovich Distance matrix 
(KDM) [24]. First, the KD of each pair scenario must be 
calculated.  The KD of each pair scenarios are calculated as:

1

0.5( , ) ( v( , ))
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i j i j
s
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=
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where ( , )i jv scenario scenario is a cost function, defined as 
vector distance between scenarios i and j subsets.

Step 2-2. Determine the next closest scenario to each 
scenario ( { }( , )min i jKD scenario scenario ).  

Step 2-3. Compute ,i jkp  for each pair of scenarios in the 
previous step:

{ }, ( , )min
i

i j
i j scenarioKD scenario scenariokp p= ×

�
(15)

Compare the ,i jkp for all scenario pairs in the KDM and 
locate which pair has the minimum value. From the two 
members of this pair, the deleting scenario is chosen based 
on: (i) relative closeness to other scenarios, and (ii) small 
probability of occurrence.

Step 2-4. After deleting one scenario, add the probability 
of the deleted scenario to the probability of the scenario which 
is closest to it and construct new KDM.

Step 2-5. Go to step 2 and eliminate 1 scenario during 

each iteration, until the desired number of final remaining 
scenarios is met.

Step 3: Generate aggregated Scenario. The scenario 
aggregation method is formulated as follows:

1
min { (X )} 1, ,

sN

Scenario s s
s

p f i N
=

=∑ 

�
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After executing this equation, a decision maker can claim 
that the output control variables can optimize all scenarios 
while the constraints are met in them.

7- Stochastic MIHBMO algorithm
In the previous sections, different parts of the stochastic 

MIHBMO algorithm were presented.  The flowchart of the 
proposed algorithm to solve the DNR problem in presence of 
WTGs is presented in Fig. 1.

8- SIMULATION RESULTS
A. Assumption 

 In this paper, MIHBMO algorithm is proposed to solve 
multi-objective DNR problem containing WTG units. The 
studies have been implemented in MATLAB 2014 using an 
Intel(R) Core (TM) i7-7500 CPU, 2.7-GHz personal computer 
with 8 GB of RAM.

   A practical case study is used in this section to analyze 
the performance of the proposed method. The proposed case 
study is IEEE 84-bus radial distribution Network [9], and its 
schematic is shown in Fig. 1. To optimize the multi-objective 
DNR problem containing DG units, 10 DG units are placed on 
the proposed distribution network. Five units of all DG units 
are considered as WTG and another five units are considered 
for backing WTGs that their specification is given in Table 
1. Moreover, the emission factor corresponding to NOX, CO2 
and SO2 are shown in Table 2.

B. Sensitivity analysis of IHBMO algorithm
 The most important parameter of HBMO algorithm is the 

number of the initial population, which has a direct impact 
on the accuracy and execution time of the algorithm. Table 3 
evaluates the sensitivity of the IHBMO algorithm to the initial 
population size compared to the original HBMO algorithm. 
For each case (number of population), both algorithms are 
run 20 times and their results are summarized from different 
points of view. According to the results of Table 3, it is clear 
that the IHBMO algorithm is robust and less sensitive than 
the HBMO algorithm.

It should be noted that in Table 3, the DNR problem is 
solved for loss minimization without considering DGs and 
WTGs.

C. Comparison of IHBMO with Other Methods
In order to compare the results of the algorithm with 

other papers, Table 4 presents the results of the DNR 
problem on the original 84-bus network. Since the DNR 
problem has been solved without considering DGs in 
the previous papers, in this section DGs are omitted. In 
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this Table, the DNR problem is solved to minimize the 
networks losses. According to the results of Table 4, the 
proposed algorithm performs better than references [26, 
27], and obtains the same results as references [28, 29], 
which confirms the efficiency of the proposed method.

   To check the efficiency of IHBMO over the original 
HBMO algorithm, the objective functions including the 
total active power losses, the total cost of DG units and 

substation buses and the total emission produced by DG 
units and substation buses are minimized separately. The 
individually optimized results are shown in Tables 5, 6 
and 7, respectively. By comparing the results of IHBMO 
algorithm in comparison to the original HBMO for 20 
random tails, it is obvious that the IHBMO algorithm is 
able to find better solutions for each objective function.
D. Application of MIHBMO to solve Stochastic Multi- 

start

 Obtain the representative scenarios by the proposed 
mechanism in section VI 

Definition of stochastic multi-
objective DNR problem

Input the basic date of problem

Initialize the population of UHBMO algorithm as
 equ (1)

Employ Max-Min method to obtain new radial 
configuration of network. 

Store the non-dominated solutions of current 
representative scenario in its repository

Compute all objective function using equations (1, 2 and 3).

Extract the queen, drones and worker in population. For this 
mean, at first we must compute the normalized membership 
value for all 

Compute the membership function corresponding to all 
objectives.

Compute the normalized membership value for all bees by
 equ (11).

Sort the population of bees according to decreasing value of 
computed normalized membership function 

Extract queen, drones and worker.

Update the previous population of bees using local 
search approach, illustrated in section III

Store the non-dominated solution of updated population 
of current scenario in its memory.

Update the previous population of bees using local 
search approach, illustrated in section III

Use the fuzzy clustering mechanism (equation 10-11) 
to control the size of repository.

Termina tion c riteria is 
satisfied?

All representative 
scenarios are checked?

End  
Fig 1.  Flowchart of proposed MIHBMO algorithm for stochastic multi-objective DNR problem 

  

Fig 1.  Flowchart of proposed MIHBMO algorithm for stochastic multi-objective DNR problem
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Table 1. Specification of DG units 
 

DG number Capacity (kw) DG type Location 

DG1 300 Gas turbine 3 

DG2 300 Gas turbine 59 

DG3 300 Micro turbine 21 

DG4 300 Micro turbine 76 

DG5 300 Gas turbine 46 

WTG1 200 Wind turbine 54 

WTG2 200 Wind turbine 11 

WTG3 200 Wind turbine 71 

WTG4 200 Wind turbine 36 

WTG5 200 Wind turbine 82 

 

  

Table 2. Emission factor [25] 
 

Emission type 
Emission factors (kg/MWh) 
Micro turbine Gas turbine Grid WTG 

NOx 0.44 0.03 2.2952 0 
CO2 1596 1078 921.25 0 
SO2 0.008 0.006 3.5824 0 

 

  Table 3. Results for different population   
 

Number of 
populations Method 

Average of 
loss 

(kW) 

Standard 
deviation 

Worst 
solution 

(kW) 

Best solution 
(kW) 

No of global 
solution 

20 HBMO 475.6 9.8 496.9 469.8 0 
IHBMO 467.7 3.2 471.0 463.2 4 

40 HBMO 471.2 4.1 475.7 466.2 0 
IHBMO 466.1 1.9 471.0 463.2 7 

80 HBMO 467.5 2.4 469.7 463.2 5 
IHBMO 464.5 1.1 466.2 463.2 10 

160 HBMO 465.3 1.3 471.0 463.2 11 
IHBMO 463.2 0 463.2 463.2 20 

320 HBMO 463.8 0.97 465.2 463.2 14 
IHBMO 463.2 0 463.2 463.2 20 

 

  

Table 1. Specification of DG units

Table 2. Emission factor [25]

Table 3. Results for different population  

Table 4. Comparison of IHBMO with other method of DNR problem 
 

Method Loss 
(kW) 

Loss Reduction 
(%) 

Min Voltage 
(V) Open Switches 

IHBMO 463.2 12.92 0.9532 S55, S7, S86, S72, S88, S14, S90, S83, S92, S39, S34, S42, S62 
Chiou et al. [26] 469.8 11.68 0.9285 S55, S7, S86, S72, S88, S89, S90, S83, S92, S35, S34, S41, S62 

SA [27] 469.8 11.68 0.9285 S55, S7, S86, S72, S88, S89, S90, S83, S92, S35, S34, S41, S62 
Ahuja et al. [28] 463.2 12.92 0.9532 S55, S7, S86, S72, S88, S14, S90, S83, S92, S39, S34, S42, S62 

SAFWA [29] 463.2 12.92 0.9532 S55, S7, S86, S72, S88, S14, S90, S83, S92, S39, S34, S42, S62 
 

  

Table 4. Comparison of IHBMO with other method of DNR problem
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objective DNR problem Considering Wind Turbines
 To model the stochastic problem, first 1000 realizations of 

WTG production and loads value were developed as the initial 
scenario set. The developed backward reduction method 
was then used to obtain 10 representative scenarios. For this 
mean, 990 iterations of the scenario reduction method were 
run. The active power of WTG corresponding to final set of 
reduced scenarios is shown in Table 8. In the last rows of Table 

8 the results of aggregated scenario are shown. 
 Table 9 shows the three solutions related to extreme trade-

off points of the representative scenario. According to Table 9, 
the results obtained from the stochastic multi-objective DNR 
problem, differ from the deterministic results. This difference 
is due to the fact that in stochastic modeling, different cases 
of wind turbine production and load are considered for the 
proposed problem, but in the deterministic wind generation 

 

Table 5. Comparison of average and standard deviation for 20 trails (objective function f1) 

 
Method Best solution(kW) Worst solution(kW) Average(kW) Time (Sec) 
IHBMO 428.7424 429.1095 428.9051 ~396 
HBMO 431.8361 436.1372 433.8189 ~417 

 
  

Table 5. Comparison of average and standard deviation for 20 trails (objective function f1)

Table 6. Comparison of average and standard deviation for 20 trails (objective function f2)
 

Table 6. Comparison of average and standard deviation for 20 trails (objective function f2) 
 

Method Best solution(kg) Worst solution(kg) Average(kg) Time (Sec) 
IHBMO 169640.52 170228.09 169802.93 ~383 
HBMO 169770.49 172166.77 171594.10 ~411 

 
   

Table 7. Comparison of average and standard deviation for 20 trails (objective function f3). 
 

Method Best solution ($) Worst solution ($) Average ($) Time (Sec) 
IHBMO 1552.513 1558.886 1553.810 ~409 
HBMO 1567.521 1574.040 1569.849 ~437 

 

  

Table 7. Comparison of average and standard deviation for 20 trails (objective function f3)

Table 8. The active power of WTG corresponding to 10 representative scenarios and aggregated scenario. 

 

Number 
Active power (kW) 

WTG1 WTG2 WTG3 WTG4 WTG5 probability 

1 310.08 295 299.91 305 305 0.109 

2 299.91 305 299.91 294.83 310 0.110 

3 305 295 295 305 300 0.100 

4 299.91 310 290.08 310.08 300 4.12e-5 

5 299.91 300 290.08 310.08 295 1.05e-2 

6 310.08 305 295 310.08 305 4.39e-03 

7 310.08 305 290.08 305 305 1.74e-06 

8 294.83 295 285.16 299.91 290 0.087 

9 315.16 295 295 310.08 300 0.232 

10 305 290 295 294.83 295 0.373 

Aggregated 

scenario 
306.48 294.12 295.10 300.92 298.73 - 

 

  

Table 8. The active power of WTG corresponding to 10 representative scenarios and aggregated scenario
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Table 9. Optimum results of each representative scenario 
 

No Power losses(kw) Emission (kg) Cost ($) Open switches 

1 

425.42 177328.42 1625.07 1, 85, 11,87, 75, 12, 90, 91, 92, 29, 94, 41, 49 

497.24 170473.10 1700.59 84, 85, 86, 65, 75, 12, 15, 91, 92, 93, 94, 95, 49 

460.06 179510.07 1566.45 84, 6, 86, 87, 75, 12, 15, 91, 92, 29, 94 95, 96 

2 

426.02 172423.55 1649.79 1, 6, 86, 87, 88, 89,90, 91, 92, 93, 94, 95, 96 

572.70 169792.25 1691.33 84, 85, 11, 65, 75, 89, 15, 77, 92, 29,  94, 95, 96 

649.12 183822.65 1553.02 84, 76, 11, 65, 75, 89, 15, 77, 25, 29, 94, 95, 96 

3 

425.50 172797.93 1658.19 84, 85, 11, 87, 75, 12, 15, 91, 25, 93, 94, 41, 49 

535.57 169069.81 1671.48 1, 85, 86,87, 88, 89, 15, 77, 25, 93, 94, 95, 96 

544.51 180546.64 1550.75 1, 85, 11,87, 75, 89, 90, 91, 92, 29, 94, 41, 96 

4 

433.88 179010.68 1609.71 84, 6, 86,65, 75, 89, 90, 91, 92, 93, 94 41, 49 

502.16 170953.00 1678.22 1, 6, 11, 87, 88, 17,15, 91, 25, 93, 94, 95, 49 

598.38 180857.54 1554.69 84, 6, 11, 65, 64, 89, 15, 91, 25, 93, 94, 95, 96 

5 

443.90 179498.88 1418.86 84, 6, 86,65, 88, 89, 90, 91, 92, 29, 94, 41, 96 

454.62 176025.91 1450.04 1, 6, 11, 65, 88, 89, 15, 91, 25, 29, 94, 41, 96 

534.17 189108.55 1313.34 1, 85, 11, 65, 88, 89, 90, 91, 92, 93, 94, 95, 96 

6 

425.85 174016.11 1685.64 84, 6, 11, 87, 88, 89, 15, 91, 92, 93, 94, 41, 96 

497.97 170962.18 1688.70 1, 6, 86, 65, 88, 89, 15, 77, 92, 93, 94, 95, 96 

613.30 181488.78 1566.52 1, 6, 86, 65, 75, 89, 90, 77, 25, 29, 94, 95, 96 

7 

425.39 177345.86 1622.93 84, 6, 86, 87, 88, 89, 90, 91, 92, 93, 94, 41, 96 

569.68 169866.34 1690.85 84, 6, 11, 87, 88, 89, 90, 77, 92, 29, 94, 41, 96 

679.77 181727.66 1552.63 1, 6, 86, 87, 88, 17, 90,  91, 25, 29, 94, 95, 96 

8 

426.30 170538.66 1610.09 1, 6, 86, 87, 88, 89,90, 77, 92, 29, 94, 41, 96 

464.57 169325.95 1657.21 84, 6, 11,87, 75, 12, 90, 77, 92, 29, 94, 41, 96 

472.46 180272.34 1536.55 1, 6, 86, 65, 88, 89,90, 77, 25, 93, 94, 95, 96 

9 

430.41 178828.47 1609.37 84, 6, 86,87, 75, 12, 15, 91, 25, 93, 94, 95, 96 

519.81 169130.85 1677.02 1, 85, 11,65, 75, 12, 90, 91, 92, 93, 94, 41, 49 

464.91 180241.75 1547.06 1, 6, 11, 65, 88, 89, 90, 91, 92, 93, 94, 41, 96 

10 

425.94 173916.44 1609.01 84, 85, 11, 87, 75, 12, 15, 77, 25, 93, 94, 95, 49 

475.40 170972.35 1667.30 1, 6, 11, 65, 75, 89,15, 77, 25, 29, 94, 41, 49 

672.08 180899.60 1545.24 84, 6, 86,87, 88, 89, 90, 91, 25, 93, 94, 41, 49 

 

 

 

 

 

Table 9. Optimum results of each representative scenario
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and load model, only one scenario is considered. Fig. 2 shows 
the Pareto fronts obtained from the deterministic and the 
aggregated scenario. According to the presented results in 
Table 9 and Fig. 3, it is obvious that the difference between the 
results of the deterministic and the representative scenarios 
ignore the concern of proper WTG prediction and load in the 
DNR problemss. 

According to the results presented of Table 9 and Fig. 3, 
there is a clear difference between the results of deterministic 
and stochastic analysis. The probability of occurrence of 

deterministic scenario 4.1% (among 1000 generated scenarios) 
and represented scenarios is the total of 10.4%. In other words, 
the probability of occurrence of aggregated scenario is 2.53 
times the probability of occurrence deterministic scenario, 
and as a result the answer is closer to reality. It should be noted 
that if we want to increase the probability of occurrence of 
aggregated scenario, we should consider more representative 
scenarios that lead to an increase in the computational load 
of the problem.

 The main goal of producing non-dominant solutions to 
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Fig 2.  Single line diagram of distribution test system [9]. 

  

Fig 2.  Single line diagram of distribution test system [9]

  

a) Deterministic scenario b) Aggregated scenario. 

Fig 3. Obtained non-dominated solutions of multi-objective DNR problem.  
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Fig 3. Obtained non-dominated solutions of multi-objective DNR problem.
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the proposed multi-objective DNR problem is to achieve the 
best compromise solution based on the needs of the networks. 
In this regard, the goal attainment optimization (GAO) 
approach [26] is used to select the best compromise solution 
among the existing solutions. It is stated that in the GAO, a 
vector of weights ( { }1 2, ,...., nW w w w= ) is considered to 
control the importance of objectives that

1
1n

ii
w

=
=∑ . In Table 8, 

the obtained results of the GAO method are presented.
   Table 10 presents seven different solutions extracted 

by GAO from the total solutions. The proposed solutions 
indicate the different preferences of the decision maker in 
different network conditions. For example, the first solution 
(case 1) is for the case where the loss is an important solution 
and the operator has given all the weight to the losses (

1 2 31, 0 0w w and w= = = ). In the VII-1 case, all three 
objective functions are equally important and have equal 
weight (

1 2 30.33, 0.33 0.33w w and w= = = ).

9-  CONCLUSION
 In this paper, a multi-objective evolutionary algorithm 

based on the modification of HBMO algorithm, has been 
proposed to solve the multi-objective DNR problems. The 
objectives of the DNR problems were active power losses, 
total electrical energy costs and total emissions of DGs and 
substation busses. Additionally, the problem has been solved 
in the stochastic framework by generating stochastic scenarios 
to reach a more realistic solution. Moreover, to decrease the 
computational burden, a developed backward technique has 
been employed to decrease the number of produced scenarios. 
Finally, to extract the preferable non-dominant solutions, the 
GAO mechanism was applied on the proposed problem. The 
obtained results prove the following findings for the paper:

- Better performance of IHBMO than HBMO in local 
search.

- Efficient model for stochastic nature of load and wind in 
the DNR problem.

- The ability of decision maker in finding optimal 

 

Table 10: Objective functions values in all cases, (Aggregated scenario). 
 

Case Importance    

W1 W2 W3 
Power 

losses(kw) 
Emission(kg) Cost($) 

I 1 0 0 425.5052 173375.1 1666.02 

II 0 1 0 515.2248 169863.2 1672.20 

III 0 0 1 653.7676 179551.2 1546.26 

IV 

0 0.5 0.5 - 171279.4 1643.83 

0 0.3 0.7 - 172109.1 1613.82 

0 0.7 0.3 - 171214.2 1644.20 

V 

0.5 0 0.5 507.9013 - 1590.46 

0.3 0 0.7 503.2578 - 1574.78 

0.7 0 0.3 442.4666 - 1592.59 

VI 

0.5 0.5 0 460.0125 177635.5 - 

0.7 0.3 0 446.8394 177311.2 - 

0.3 0.7 0 501.0477 176336.1 - 

VII 

0.33 0.33 0.33 462.1669 178910.9 1577.57 

0.2 0.4 0.4 527.8031 176274.6 1568.58 

0.4 0.2 0.4 457.9954 179053.6 1578.14 

0.4 0.4 0.2 457.8056 175099.1 1602.01 

0.2 0.2 0.6 503.7636 175615.3 1571.20 

0.2 0.6 0.2 463.1760 175033.7 1600.82 

0.6 0.2 0.2 445.9974 177092.9 1592.08 

 

Table 10: Objective functions values in all cases, (Aggregated scenario)



121

E. Azad-Farsanni and M. Zare., AUT J. Elec. Eng., 53(1) (2021) 111-124, DOI: 10.22060/eej.2021.19203.5384

 

Table.A. Three-phase load and line data of case study. 
 

 
 

Bus to 
bus 

Section 
resistanc

e (Ω) 

Section 
reactance 

(Ω) 

End bus 
real load 

(kw) 

End bus 
reactive  

load 
(kv Ar) 

 Bus to 
bus 

Section 
resistance 

(Ω) 

Section 
reactance 

(Ω) 

End 
bus 
real 
load 
(kw) 

End bus 
reactive  

load 
(kv Ar) 

A-1 0.1944 0.6624 0 0 48-49 0.0655 0.1345 0 0 
1-2 0.2096 0.4304 100 50 49-50 0.0393 0.0807 200 160 
2-3 0.2358 0.4842 300 200 50-51 0.0786 0.1614 800 600 
3-4 0.0917 0.1883 350 250 51-52 0.0393 0.0807 500 300 
4-5 0.2096 0.4304 220 100 52-53 0.0786 0.1614 500 350 
5-6 0.0393 0.0807 1100 800 53-54 0.0524 0.1076 500 300 
6-7 0.0405 0.1380 400 320 54-55 0.1310 0.2690 200 80 
7-8 0.1048 0.2152 300 200 H-56 0.2268 0.7728 0 0 
7-9 0.2358 0.4842 300 230 56-57 0.5371 1.1029 30 20 

7-10 0.1048 0.2152 300 260 57-58 0.0524 0.1076 600 420 
B-11 0.0786 0.1614 0 0 58-59 0.0405 0.1380 0 0 
11-12 0.3406 0.6944 1200 800 59-60 0.0393 0.0807 20 10 
12-13 0.0262 0.0538 800 600 60-61 0.0262 0.0538 20 10 
12-14 0.0786 0.1614 700 500 61-62 0.1048 0.2152 200 130 
C-15 0.1134 0.3864 0 0 62-63 0.2358 0.4842 300 240 
15-16 0.0524 0.1076 300 150 63-64 0.0243 0.0828 300 200 
16-17 0.0524 0.1976 500 350 I-65 0.0486 0.1656 0 0 
17-18 0.1572 0.3228 700 400 65-66 0.1703 0.3497 50 30 
18-19 0.0393 0.0807 1200 1000 66-67 0.1215 0.4140 0 0 
19-20 0.1703 0.3497 300 300 67-68 0.2187 0.7452 400 360 
20-21 0.2358 0.4842 400 350 68-69 0.0486 0.1656 0 0 
21-22 0.1572 0.3228 50 20 69-70 0.0729 0.2484 0 0 
21-23 0.1965 0.4035 50 20 70-71 0.0567 0.1932 2000 1500 
23-24 0.1310 0.2690 50 10 71-72 0.0262 0.0528 200 150 
D-25 0.0567 0.1932 50 30 J-73 0.3240 1.1040 0 0 
25-26 0.1048 0.2152 100 60 73-74 0.0324 0.1104 0 0 
26-27 0.2489 0.5111 100 70 74-75 0.0567 0.1932 1200 950 
27-28 0.0486 0.1656 1800 1300 75-76 0.0486 0.1656 300 180 
28-29 0.1310 0.2690 200 100 K-77 0.2511 0.8556 0 0 
E-30 0.1965 0.3960 0 0 77-78 0.1296 0.4416 400 360 
30-31 0.1310 0.2690 1800 1600 78-79 0.0486 0.1656 2000 1300 
31-32 0.1310 0.2690 200 150 79-80 0.1310 0.2640 200 140 
32-33 0.0262 0.0538 200 100 80-81 0.1310 0.2640 500 360 
33-34 0.1703 0.3497 800 600 81-82 0.0917 0.1883 100 30 
34-35 0.0524 0.1076 100 60 82-83 0.3144 0.6456 400 360 
35-36 0.4978 1.0222 100 60 5-55 0.1310 0.2690   
36-37 0.0393 0.0807 20 10 7-60 0.1310 0.2690   
37-38 0.0393 0.0807 20 10 11-43 0.1310 0.2690   
38-39 0.0786 0.1614 20 10 12-72 0.3406 0.6994   
39-40 0.2096 0.4304 20 10 13-76 0.4585 0.9415   
38-41 0.1965 0.4035 200 160 14-18 0.5371 1.0824   
41-42 0.2096 0.4304 50 30 16-26 0.0917 0.1883   
F-43 0.0486 0.1656 0 0 20-83 0.0786 0.1614   
43-44 0.0393 0.0807 30 20 28-32 0.0524 0.1076   
44-45 0.1310 0.2690 800 700 29-39 0.0786 0.1614   
45-46 0.2358 0.4842 200 150 34-46 0.0262 0.0538   
G-47 0.2430 0.8280 0 0 40-42 0.1965 0.4035   
47-48 0.0655 0.1345 0 0 53-64 0.0393 0.0807   

Table.A. Three-phase load and line data of case study.

configuration based on the priority of operation.
Moreover, the other technical aspect of the network such 

as protection schemes, volt-var control and etc. could be 

added in the DNR problem. 

APPENDIX. 
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NOMENCLATURE:

Distributed Generation (DG) 

Nomenclature: 

iR  Resistance of the 
thi  branch 

β A random number between 0 and 1 

iI  Current of the 
thi  branch 

Broodj The jth brood. 

brN  
Mumber of branches (X)ig  Inequality constraints. 

jTie  
State of the 

thi  tie switch 
(X)ih  Equality constraints . 

kp  Active power of thk  DG n  Number of objective functions. 

kpf  Power factor of thk  DG min
if  

Lower limits of the 
thi  objective function 

tieN  
Number of tie switches max

if  
Upper limits of the 

thi  objective function 

DGN  Number of DGs m  number of non-dominated solutions 
i
DGCost  

Cost of 
thi DGs k  weight for the thk  objective function 

GridCost  Cost of substation bus 
,
iL

k sw  A binary parameter indicating whether the 
thk class interval of the thi load is selected (

, 1iL
k sw = ) or not ( , 0iL

k sw = ) 
i
DGC  

Cost coefficient of 
thi DG ,

jWTG
k sw  a binary parameter indicating whether the 

thk class interval of the 
thj WTG is 

selected ( , 1jWTG
k sw = ) or not ( , 0jWTG

k sw = ). 

GridC  
Cost coefficient of substation bus 

LN  
Number of loads. 

i
DGE  

Emission produced by the 
thi DG WTGN  

Number of WTGs. 

GridE  
Emission produced by the substation bus. 

sN  
Number of initial scenarios. 

(X)if  The 
thi objective function. i  probability of thi interval of PDF. 

 

I. INTRODUCTION 

A. Research motivation   
With the entry of WTGs into distribution networks, the management and operation of these networks has 

become more complex [1]. One of the important issues in the operation of distribution networks is the 

reconfiguration in radial networks. DNR is the action of closing the tie switches and opening the 

sectionalizing switches in the network to obtain a new radial configuration. DNR is performed for various 

purposes such as reducing losses, costs, and etc. [2-5]. 
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