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ABSTRACT: Despite the development of the use of frequency response analysis (FRA) in condition 
monitoring of power transformers, how to interpret the results of FRA measurements has not yet been 
standardized. Therefore, proposing new methods to interpret the results of FRA measurements in research 
works. is followed by a great interest by researchers. This paper proposes a k-nearest neighbor (k-NN) 
based method for condition monitoring of the transformers, using the results of FRA measurements. 
First, the necessary measurements are performed on healthy and faulty transformers (under different fault 
conditions), and the required database is created. Later, by extracting the peak (resonance) and trough 
(anti-resonance) points of the measured transfer functions from the transformer, several mathematical 
features for training and validation of k-NN are extracted. Finally, by applying the data obtained from 
actual transformers, the performance of k-NN in different states is evaluated and compared. The results 
show that the proposed method is able to determine the condition of the transformer (whether it is healthy 
or defective) with high accuracy, and if it is defective, identify the type of defect. In addition, in order to 
prove the ability of k-NN, a comparison is made with the results of the artificial neural network (ANN).
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1-  INTRODUCTION
Power transformers are one of the most important 

and expensive equipment in the electricity transmission 
network. Hence, this equipment is studied from different 
aspects such as inrush current, transient states, harmonics, 
and condition monitoring [1]. One of the new methods for 
monitoring the status of transformers is the FRA (frequency 
response analysis) method. The use of FRA in transformer 
condition monitoring has become widespread; therefore, 
today in monitoring the status of special transformers such 
as traction transformers and autotransformers are also used 
[2-4]. The FRA method, also known as the transfer function 
(TF) method, is a comparative method [5-6]. After designing 
and manufacturing the transformer and delivering to the 
customer, the transformer healthy state TF is measured. The 
result of this measurement is stored as a reference TF with the 
customer or manufacturer. During the annual visits or when 
a fault occurs in the transformer, the same measurement is 
performed again with the same terminal connection and the 
same environmental conditions. It is also advisable to measure 
the FRA when performing periodic maintenance or annual 
visits (to monitor the transformer status). If variations are 
observed in the measured TFs in comparison with the healthy 
one, this procedure helps the operator to detect a probable 
fault and disconnect the transformer terminals.

By comparing the results of the reference measurements 

and the results of the new measurements, the condition of 
the transformer can be evaluated. In other words, to evaluate 
the condition of the transformer, two sets of data must be 
compared, which is done with the help of the mathematical 
indicators. Although valid standards in the field of FRA 
have been developed [7-8], these standards further discuss 
measurement requirements and test circuits, and do not 
provide a way to interpret the results of FRA measurements. 
Therefore, in recent years many studies have been conducted 
to interpret the results of FRA measurements to obtain 
information about the status of the transformer [9-16]. Past 
researches [2-6], [9-19] have shown that the FRA can be 
used to detect five faults: axial displacement (AD), radial 
deformation (RD), disc space variation (DSV), short circuit 
(SC) and deformation of core sheets (DCS). Diagnosis of 
these defects in transformers is done in the following four 
steps:

· Detection of fault occurrence
· Identify the type of fault
· Determine the severity of the fault
· Detection of fault location
Obviously, the first two stages are more important and 

determine the condition of the transformer in terms of being 
healthy or defective [16]. Therefore, the main focus of this 
article is on diagnosing the occurrence and type of fault.

It can be said that transformer condition monitoring is 
a classification problem [4-5], [18-19]. Thus, the proposed 
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method for condition monitoring should work in a way that by 
applying the features extracted from the measurement results 
in the first step, it can be determined whether the transformer 
is healthy or defective, and if it is defective, determine its 
type. For this purpose, a lot of research works have been 
done in this field and their main focus has been on the use 
of intelligent classifiers. One of the best intelligent classifiers 
used in transformer fault diagnosis is the k-nearest neighbor 
(k-NN) method. Analysis of oil-dissolved gases to diagnose 
transformer defects using k-NN method has been done in 
[20-21]. In [22], detection of transformer insulation failures 
has been performed using a method based on k-NN and 
cross-correlation techniques. However, the FRA method has 
not been employed in these studies. Although, in [23] using 
the k-NN and FRA-based techniques, the transformer faults 
have been detected. However, only the two AD and RD defects 
have been examined. Therefore, there are also shortcomings 
in this regard, which can be expressed as follows:
Ø Very few studies [24-25] have diagnosed DCS fault 

using FRA. In these studies, only the effect of DCS fault on 
the frequency response of the transformer has been studied 
and the diagnosis of the fault type has not been considered. 
Meanwhile, in many studies [4-6], [9-19], two or three faults 
have been examined. Although, all five faults have been 
considered in [16], the proposed method is not intelligent 
and it cannot determine the condition of the transformer 
with certainty. In addition, its conclusion emphasizes that 
intelligent classifiers should be used in future research studies.
Ø The results of research works [5-6], [26] show that 

the five mentioned defects further affect the peak and 
trough points of the TFs; therefore, it seems that focusing on 
amplitude and frequency variations at these points can lead 
to desirable results. While in most research works, statistical 
indicators have been used for this purpose [13-16].
Ø In most research studies [5-6], [13-19], it has been 

assumed that the transformer is defective and later, the 
classification of defects has been performed. While the 
transformer operating engineer must first ensure that the 
transformer is defective, and later diagnose the type and 
severity of the fault. That is, the healthy condition should also 
be considered as one of the classes in the classification process.

In the current research, the following steps have been 
taken to solve the mentioned shortcomings:

1- Introducing 8 mathematical indicators used in valid 
references [26-28], based on peak and trough points

2- Creating a database of measurement results under 
healthy and defective conditions of transformers

3- Calculating mathematical indicators by applying them 
to the measured TFs and extracting the necessary features

4- Applying the features to the k-NN classifier for its 
training and validation

5- Checking the reliability of the features with the help of 
the data obtained from actual transformers

6- Proposing the most reliable feature for classifying the 
conditions of transformers in the industry

Organizing the rest of the article is as follows: in section 
2, data acquisition details are given. The proposed method is 
presented in Section 3. Section 4 presents the classification 
results. Section 5 includes the conclusion.

2- DATA ACQUISITION
First, a database of the healthy and faulty condition of the 

transformers (at different fault intensities), must be created 
in order to evaluate the performance of the k-NN. For this 
purpose, three sets of transformers have been tested in this 
study. In the measurements performed in this research, the 
circuit of Fig. 1 has been used [8]. It is important to note that 
in Fig. 1, instead of the output voltage ( outV ), the output 
current can be measured, in which case the TF will be of the 
admittance type.

2-1- The First Set of Transformers
The first set of transformers are the model transformers. 

A model transformer is a transformer that its structure is 
exactly the same as an actual transformer, but its voltage 
and power level may not be real. Therefore, it is only used 
for laboratory studies. In addition, different connections are 
available from its windings and it is possible to intentionally 
apply various defects on the transformer in order to obtain 
a more complete database. This group of transformers 
with almost similar structures have been tested and one of 
the studied defects (AD, RD, DSV, SC and DCS) has been 
applied to each of them.

2-2- The Second Set of Transformers
The second set are transformers that have a defect 

during operation, and their type of defect is unidentified at 
the beginning, and after opening its accessories, the type of 
fault is determined. It should be noted that the TF has been 
measured before opening the active part of the transformer.

have been tested in this study. In the measurements performed in this research, the circuit of Figure 1 has 

been used [8]. It is important to note that in Figure 1, instead of the output voltage (Vout), the output current 

can be measured, in which case the TF will be of the admittance type. 

 

  

 

Figure 1. Measurement circuits of TFs 
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2-3- The Third Set of Transformers
This set of transformers is intact and two measurements 

have been performed on them at different time intervals. The 
first measurement was performed in the factory and after the 
completion of the assembly process, at the time of delivery 
to the customer. Later, after installation at the operation site 
and before energizing the transformer, another measurement 
was performed. The purpose of this measurement is to show 
whether the k-NN based monitoring system can also predict 
the healthy condition of the transformer.

Table 1 provides complete information on all the three 
sets of transformers. Fig. 2 shows a number of test objects 
that have been tested in the laboratory. Fig. 3 also shows a 
sample measurement result from some of the transformers. 
It is evident that the DCS fault only affects the low frequency 
range, which is consistent with the results obtained in [24].

The peak and trough points of the measured TFs 
are clearly shown in Fig. 3. These points are actually the 
resonance and anti-resonance points of the TFs. Therefore, 
in some authorities, they are known by different names. It is 

evident that there are several resonance and anti-resonance 
points in each FRA trace. By changing the status of the 
transformer, the amplitude and frequency of the TFs change 
at these points. Therefore, by extracting the necessary features 
from the amplitude and frequency variations in these points, 
the condition of the transformer can be evaluated, which is 
performed in the next section.

3- THE PROPOSED METHOD
In this paper, the k-NN classifier is used to monitor the 

condition of the transformer. The theory of this method 
has been studied in detail in [29-30]. Therefore, it is briefly 
discussed in this section.

The k-NN is a simple and standard tool for solving 
classification problems. This algorithm is defined in two phases 
and the available data should be divided into two categories 
of training and test datas. The training phase includes the 
storage of the feature vectors and class labels of the training 
data. That is, the class for each training data is devoted. In 
the classification phase, the test data as well as the k value 

Table 1. Description of tested transformers 

Case study Rated values Winding structure Transformer condition 

Set 1 

1 10/0.4 kV, 1.3 
MVA 

HV: 31 double disc, 6 turns in each 
disc 

LV: 4 layers, 99 turns in each layer 

Displacement of LV winding relative to HV 
winding in 8 steps and creation of 1 cm 

displacement (equal to 1.2% of winding axial 
length) in each step 

2 10/0.4 kV, 1.2 
MVA 

HV: 30 double disc, 11 turns in each 
disc 

LV: 1 layer, 23 turns in each layer 

Deformation of the 6th to 54th discs by 7% of 
the winding radius in 4 degrees (from 1, 2, 3 

and 4 sides of the winding) 

3 10/0.4 kV, 1.2 
MVA Similar to Case 2 

Change the space between healthy discs from 
5 mm to 7.5, 10, 15, 20 and 25 mm and make 
changes in 3 locations including 2, 4 and 16 

discs 

4 10 kV, 1.2 
MVA 

HV: 60 disc, 9 turns in each disc 
Without LV winding SC between consecutive discs 

5 10 kV, 1 MVA HV: 10 disc, 11 turns in each disc 
Without LV winding 

Deformation of the core on one side at the 
rate of 10% ofcore radius 

Set 2 

6 20/0.4 kV, 0.4 
MVA 

HV: 40 disc, 17 turns in each disc 
LV: 2 layer, 9 turns in each layer defective transformer (fault type: AD) 

7 20/0.4 kV, 1 
MVA 

HV: 50 disc, 11 turns in each disc 
LV: 2 layer, 11 turns in each layer defective transformer (fault type: RD) 

8 63/20 kV, 30 
MVA 

HV: 80 disc, 15 turns in each disc 
LV: 5 layer, 64 turns in each layer defective transformer (fault type: DSV) 

9 20/0.4 kV, 0.5 
MVA 

HV: 45 disc, 13 turns in each disc 
LV: 2 layer, 10 turns in each layer defective transformer (fault type: DSV) 

10 20/0.4 kV, 0.5 
MVA Similar to Case 9 defective transformer (fault type: SC) 

11 20/0.4 kV, 1 
MVA Similar to Case 7 defective transformer (fault type: DCS) 

Set 3 
12 63/20 kV, 30 

MVA  Similar to Case 8 healthy transformer 

13 20/0.4 kV, 0.5 
MVA Similar to Case 9 healthy transformer 

 

  

Table 1. Description of tested transformers
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a) Case 3 b) Case 6 

 

 

c) Case 7 d) Case 11 

Figure 2. A view of the test objects in the laboratory 

 

  

Fig. 2. A view of the test objects in the laboratory

Fig. 3. Some of measured TFs of transformers

 

 

a) Case 2 

 

b) Case 4 
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a) Case 2 

 

b) Case 4 

 

c) Case 5 

 

d) Case 11 

Fig. 3. Some of measured TFs of transformers
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e) Case 13 

Figure 3. Some of measured TFs of transformers 

 

  

Fig. 3. Some of measured TFs of transformers

 

Figure 4. Flowchart of k-NN classifier 

 

(which is defined by the user), are given to the algorithm. The 
algorithm determines the distance of the test data from all 
training data, and if k=1 returns the nearest neighbor to the 
new data as the winning class. But if k is greater than 1, find 
the k neighbors for the new data, and whichever class has the 
most neighbors, the new data will belong to them. Therefore, 
k must be an odd number for the test data to only belong to a 
unique class. Determining the appropriate value of k depends 
on the data. Although larger values of k reduce the effect of 
noise on the classification, the boundary between classes 
becomes ambiguous and classification becomes difficult. 
The value of k is usually determined by trial and error. In 
this article, its value is considered 3. Fig. 4 shows the k-NN 
classifier flowchart.

The criterion for calculating the distance between data is 
the Euclidean Distance (ED), which is defined as follows:

( ) ( )2

1

, z y
n

i i
i

ED z y
=

= −∑
�

(1)

Where, z and y are training and test vectors, respectively, 
and n is the number of data.

In order to apply the data to k-NN, the necessary features 
must be extracted from the measurements results. In this 
paper, feature extraction is based on the use of information 
comparing the new TF with the reference TF. One of the best 
possible methods to compare the TFs with the reference TF 
is to use mathematical indices based on resonance and anti-
resonance points in the measured TFs. These indicators are 
defined in Table 2.

Where, the subscripts X and Y refer to the reference and 
the new TFs, respectively. ( )A i  and ( )f i  are the amplitude 
and frequency of the i-th resonance or anti-resonance point, 
respectively. If we consider the number of resonance and anti-
resonance points as n, i will equal i=1,…, n. aiw  and fiw  

are the weight coefficients of amplitude and frequency for 
resonance points, calculatng them is determined in [27].

After calculation of the above features for the training 
and test data sets, the training features are first applied to the 
k-NN and the class label of each data is specified. Later, by 
applying test data, the class of each new data is specified. The 
proposed method in this paper can be described as follows:

1- Measurement of reference TF and new TF of 
transformers

2- Calculation of resonance points and anti-resonance of 
measured TFs

Fig. 4. Flowchart of k-NN classifier
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3- Feature extraction with the help of relations (2) to (9)
4- Applying the training data along with the class of each 

data to k-NN
5- Calculating the distance between the test data and the 

training data using (1)
6- Selecting the first k member of the ordered set (from 

small to large), from the distance matrix and returning the 
class of new data

Based on the measurements made in Section 2, Table 3 
lists the number of training and test data along with their class 
labels. In the next section, this data is applied to k-NN and the 
performance of various features is evaluated.

4- RESULTS AND DISCUSSION
First, to train classifiers, their structure (input/output 

data) should be determined. For this purpose, the features 
introduced in equations (2) to (9) are used. Therefore, the 
input matrix for DA indicator (for example) can be defined 
as follows:

1, 1,1,h

n,h n, n,

1, 1, 1,

n, n, n,

            

input

          

a b

a b

c d e

c d e

AD RD

AD RD

DSV DCS SC

DSV DCS SC

DA DADA

DA DA DA

DA DA DA

DA DA DA

 
 
 
 
 =
 
 
 
 
 

  

  

�

(10)

Where, n represents the number of trough and peak points 
in TFs (the number of rows in the matrix), h is the number of 
healthy transformers, a, b, show the severity of AD and RD, 
respectively, c illustrates the severity of DSV, d demonstrates 
the location of SC for three locations, and e represents the 
severity of DCS. Based on the information given in Table 1, it 
can be said that the values of a, b, c, d, e, h are equal to 8, 4, 
15, 8, 1, and 1, respectively. Therefore, the number of matrix 

Table 2. Indicators used to extract the features  

Abbreviation Definition Equation 
number Equation 

𝐷𝐷𝐷𝐷 Deviation of Areas (2) 𝐷𝐷𝐷𝐷𝑖𝑖 = |𝐴𝐴𝑌𝑌(𝑖𝑖) − 𝐴𝐴𝑋𝑋(𝑖𝑖)| 
𝐷𝐷𝐷𝐷 Deviation of Frequencies (3) 𝐷𝐷𝐷𝐷𝑖𝑖 = |𝑓𝑓𝑌𝑌(𝑖𝑖) − 𝑓𝑓𝑋𝑋(𝑖𝑖)| 
𝐼𝐼𝐼𝐼𝐼𝐼 Index of Amplitude 

Deviation (4) 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = |𝐴𝐴𝑌𝑌
(𝑖𝑖) − 𝐴𝐴𝑋𝑋(𝑖𝑖)
𝐴𝐴𝑋𝑋(𝑖𝑖)

| 

IFD Index of Frequency 
Deviation (5) 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = |𝑓𝑓𝑌𝑌

(𝑖𝑖) − 𝑓𝑓𝑋𝑋(𝑖𝑖)
𝑓𝑓𝑋𝑋(𝑖𝑖)

| 

F𝑎𝑎 Amplitude Function (6) 𝐹𝐹𝑎𝑎𝑎𝑎 =
𝐴𝐴𝑌𝑌(𝑖𝑖)
𝐴𝐴𝑋𝑋(𝑖𝑖)

 

F𝑓𝑓 Frequency Function (7) 𝐹𝐹𝑓𝑓𝑓𝑓 =
𝑓𝑓𝑌𝑌(𝑖𝑖)
𝑓𝑓𝑋𝑋(𝑖𝑖)

 

W𝑎𝑎 Weighted Amplitude 
Function (8) 𝑊𝑊𝑎𝑎𝑎𝑎 =

𝐴𝐴𝑌𝑌(𝑖𝑖)
𝐴𝐴𝑋𝑋(𝑖𝑖)

× 𝑤𝑤𝑎𝑎𝑎𝑎 

W𝑓𝑓 Weighted Frequency 
Function (9) 𝑊𝑊𝑓𝑓𝑓𝑓 =

𝑓𝑓𝑌𝑌(𝑖𝑖)
𝑓𝑓𝑋𝑋(𝑖𝑖)

× 𝑤𝑤𝑓𝑓𝑓𝑓  

 

  
Table 3: Number of training and test data and their class labels 

Transformer 
condition 

Training data Test data 
Class 
label 

Case study Number 
of data 

Case study Number 
of data 

Healthy Case 13 1 Case 12 1 1 
AD Case 1 8 Case 6 1 2 
RD Case 2 4 Case 7 1 3 

DSV Case 3 15 Cases8, 9 2 4 
SC Case 4 8 Case 10 1 5 

DCS Case 5 1 Case 11 1 6 
 

  

Table 2. Indicators used to extract the features

Table 3: Number of training and test data and their class labels
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columns in the training data will be 37. For other indicators, 
the input matrix can be defined similarly to Equation (10). 
Output of k-NN in each indicator can have six different classes 
(according to six conditions). Therefore, the output vector in 
the training data will be a 1 37×  vector.

By applying the features extracted from the TFs to k-NN, 
its performance is evaluated. In addition, in order to prove 
the capability of k-NN, a comparison is made with the results 
of the artificial neural network (ANN). Since the perceptron 
neural network with back-propagation algorithm is one of the 
best methods to solve classification problems [31], this method 
is used to classify transformer conditions in this section. The 
network used in this research is a three-layer perceptron 
network consisting of an input layer, a hidden layer and an 
output layer. The back-propagation has been used to train the 
network. The hidden layer activation function is a hyperbolic 
tangent (known in the neural network toolbox in MATLAB 
software as tansig), and the output layer activation function 
is a linear function (known in the neural network toolbox in 
MATLAB software as purelin).

In addition to test data, some training data is also used 
for validation to prevent over-fitting. For this purpose, K-Fold 

Cross Validation method is used [32]. In this method, the 
classification is performed K times and each time a fraction 
of 1/K of data is used for validation, and the rest for classifier 
training. The mean of the errors is then returned as the 
calculation error. In this paper, the value of K is 5.

Table 4 shows the classification error resulting from the 
applying of validation and test data to k-NN and ANN for all 
indicators.

In ANN, s shown in Table 4, for any index the test data 
error is not less than 40%. In addition, the validation error 
is always above 20%. Therefore, the use of ANN is not 
recommended in solving the classification problem raised 
in this article. In k-NN, the rate of classification error for 
indicators aF , fF , aW , and fW  in test data is more than 
40%. In addition, the classification error in these indicators 
is also high in the validation data. In DA and DF indices, 
although the classification error is less than 10 % in the 
validation data, nonetheless, in the test data this error is 
more than 20% and out of the 7 examined cases, 2 cases are 
incorrectly detected. The IAD and IFD indices have the lowest 
classification error for validation and test data compared to 
other features. Therefore, they can be used as appropriate 

Table 4. Classification error resulting from the application of validation and test data to classifiers (in percentage) 

Index 

Classifier 

k-NN ANN 

Validation Test Validation Test 

DA 8.1 28.6 25.3 57.1 

DF 8.1 28.6 25.3 57.1 

IAD 5.4 14.3 21.6 42.9 

IFD 5.4 14.3 21.6 42.9 

𝐹𝐹𝑎𝑎 13.5 42.9 27 57.1 

𝐹𝐹𝑓𝑓 13.5 42.9 27 57.1 

𝑊𝑊𝑎𝑎 10.8 42.9 25.3 57.1 

𝑊𝑊𝑓𝑓 10.8 42.9 25.3 57.1 

 

  Table 5: Performance of IAD and IFD features in response to test data 

Transformer 
condition Case study 

Detection by 

IAD IFD IAD-IFD 

Healthy 12 Healthy Healthy Healthy 

AD 6 AD AD AD 

RD 7 AD RD RD 

DSV 8 DSV DSV DSV 

DSV 9 DSV DSV DSV 

SC 10 SC RD SC 

DCS 11 DCS DCS DCS 

 

Table 4. Classification error resulting from the application of validation and test data to classifiers (in percentage)

Table 5: Performance of IAD and IFD features in response to test data
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features in transformer condition monitoring. Table 5 details 
the condition monitoring of actual transformers using these 
two features. It can be seen that the k-NN in the IAD feature 
could not correctly detect the RD defect. While, in the IFD 
feature, the SC defect is not correctly diagnosed. Therefore, 
it seems that by combining these two indicators, all cases can 
be correctly identified. For this purpose, with a combination 
of these features and simultaneous use of both IAD and IFD, 
new feature was used for k-NN training and validation. 
As can be seen in the last column of Table 5, the IAD-IFD 
combination feature monitors the transformer condition 
correctly in all cases. Therefore, it can be used as a reliable 
method in industry.

5-  CONCLUSION
In this paper, due to the increasing use of FRA in 

transformer condition monitoring, one of the most widely 
used intelligent classifiers (k-NN) was used to classify the 
healthy and defective conditions of the transformer. For the 
k-NN training and testing, mathematical indicators based on 
the peak and trough points of the transformer TFs were used. 
Data for feature extractions were obtained by performing 
the necessary measurements on healthy and defective 
transformers (in different fault conditions). By applying the 
features to the k-NNs, their performance was evaluated. The 
obtained results show that the two IFD and IAD features are 
more accurate than others. Combining these two features, 
a new feature called IFD-IAD was introduced that was able 
to monitor the condition of the transformer with 100% 
accuracy. Although, transformer condition monitoring has 
been investigated using a k-NN based FRA in this research, 
nonetheless, further studies on multiple cases are needed to 
approve the functionality of the proposed method in other 
cases.
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