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ABSTRACT:  The densely packed decimal (DPD) encoding for secondary and primary storage of three 
binary coded decimal (BCD) digits is included in the IEEE 754-2019 standard for decimal floating-point 
arithmetic. Binary coded chiliad (BCC) representation of 3 BCD digits (i.e. radix-1000) will achieve equi-
efficient packing. The primary advantage is BCC operands can be directly manipulated by arithmetic 
operations, while DPD operands have to undergo DPD-to-BCD and reverse conversions afore and ahead 
of each arithmetic operation. Therefore, we are interested in designing the arithmetic unit that receives 
BCC operands and produces BCC results, following previous BCC works. Compared to the equivalent 
BCD or other radix-10 arithmetic, prospects show that equally efficient arithmetic units are feasible for 
BCC arithmetic, as even better performance has been achieved in the case of addition. Therefore, we 
demonstrate the IEEE 754-2019 compatibility of the BCC Encoding in this paper. Consequently, for 
the DPD-to-BCD expansion and the reverse compression, the DPD-to-BCC converter, and the reverse 
blocks, we show the delay, area, and power dissipation. The findings show a substantial delay (83%), 
area (27%), and power (29%) overhead. However, as the number of conversions in the latter case is 
much less than the former, overall power dissipation is expected to decrease considerably.
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1- INTRODUCTION
Many ancient civilizations’ numeral systems use ten and 

their powers to represent numbers, probably for there are ten 
fingers on two hands and people have begun to count with 
their fingers. Binary representation is also used internally 
by most modern computer hardware and software systems. 
Although many early computers, such as the ENIAC or the 
IBM 650, used decimal representation internally [1].

A long-standing practice is the implementation of 
decimal arithmetic operations on binary processors, which 
has its origins in the normal form of arithmetic for humans. 
Another justification is that, for many commercial and 
banking applications, the binary representation of certain 
decimal values is not sufficiently accurate [2]. However, at 
the dawn of the digital computer industry, the lack of 10-level 
logic devices compelled designers to use software-simulated 
radix-10 arithmetic operations carried out on binary digital 
processors [3]. Afterward, design engineers attempted to build 
specialized hardware units for decimal arithmetic operations 
with the rapid development of the computer industry.

In response to the new demands for high-performance 
decimal computations, research on the hardware realization 
of decimal arithmetic has been revived in the past two 
decades. Hardware decimal units and decimal arithmetic 
instruction subsets comprise several recently commercialized 

general-purpose digital processors. For instance, IBM 
included a decimal floating-point hardware unit in the z-196 
[4] server chips and increased it in the next z-family servers 
[5]. On each of the cores on the 12-core chip of the newest z15 
servers, the decimal floating-point (DFP) accelerator feature 
is present. Fujitsu also announced the Sparc64 X processor 
that includes an accelerator called SWoC (Software on Chip) 
to speed up cryptography and decimal calculation operations 
[5]. Correspondingly, SilMinds’ primary focus has also been 
on creating an extensible range of decimal floating-point 
arithmetic IP cores for financial applications over the past few 
years [6].

Binary coded decimal (BCD) encoding of radix-10 
numbers is commonly used for the implementation of 
decimal arithmetic on digital processors. However, the 
encoding efficiency of this representation is rather low (i.e., 
10 /16 0.625= ), which results in a waste of storage. 
To remedy this problem, one of the solutions that are 
recommended by IEEE 754-2019 (revision of IEEE 754-
2008) standard for decimal floating-point (FP) arithmetic 
[7] is the densely packed decimal (DPD) 10-bit encoding 
of three BCD digits, where encoding efficiency rises to 
1000 /1024 97.66%= . Thereafter, almost all of the 
hardware realizations of decimal arithmetic operators that 
we have encountered [8-15], assume DPD-encoded inputs 
and outputs. However, decimal arithmetic operations cannot 
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be performed on DPD operands before expanding to BCD 
or other arithmetic-friendly encodings that are directly 
manipulatable (e.g., 4-2-2-1 [16]); hence cost and delay 
overhead due to the required conversions. For example, DPD-
to-BCD expansion and the reverse compression require four 
gates at each end of the critical delay path, which leads to 10.5 
FO4 delay overhead per operation, while for instance two 16
-digit FP BCD operands can be added in 26.1  FO4 time 
[10]; hence 29% delay overhead.

Each three BCD digits, such as 
  100 10B C D B C D= + +  that represent [ ]0,  999 , can 

be equivalently encoded as a 10 -bit radix-1000 digit [17] to 
be hereafter referred to as binary coded chiliad (BCC) digit 
[18]. The BCC encoding efficiency is the same as in the DPD 
encoding. However, it has been shown that efficient decimal 
adders can be realized that directly manipulate BCC operands 
[18], with the obvious advantage that the aforementioned 
conversion overhead per operation is removed. Nevertheless, 
such conversions are required only as I/O processing at the 
input and output ports of the processor. It surely is the case 
that if a particular computation dictates one conversion per 
arithmetic operation (as is the case for all DPD applications) 
our BCC scheme would not be recommended. However, 
note that the decimal arithmetic hardware has been realized 
in commercial processors in response to demands of, for 
instance, monetary and billing applications which are 
known for undertaking several fixed-point operations before 
reporting a result. Accordingly, we have used TELCO as a 
benchmark for our evaluations (see Section 6).

The conditional speculative mixed BCD/binary addition 
scheme of [19, 20] have extended to radix-1000 operands 
in [18] as the opening work on BCC addition. To decide on 

( )10 324 2 10+ = −  speculation through using the 7 most 
significant bits (MSBs) of similarly weighted digits of addition 
operands. The second work we have encountered [21] studies 
all other possible speculation possibilities (i.e., besides from 
the 7-bit case of [18], all the other five cases are based on 2-6 
bits). 

The notations are used for delay and cost measures 
throughout the paper, are ä g  and #g  (delay and cost of a 
simple gate). Subsequently, circuit synthesis will be used to 
indorse the estimates, as the former model overlooks the 
consequence of fan-out.

This paper expands our previous research on BCC 
arithmetic [22] by (1) providing new details on the BCC 
Encoding compatibility of IEEE 754-2019, (2) adding a case 
study to support the proposed architecture as a benchmark., 
and (3) presentation and analysis of results that estimate the 
number of required DPD-to-BCD and reverse conversions 
in the conventional DPD-only processing environment 
concerning the BCC case due to BCC-to-DPD input and 
reverse output conversions.

The remainder of this work is structured as follows. A 
history of the IEEE 754-2019 standard is given in section 2. 
The BCC encoding is briefly covered in Section 3. Section 4 
addresses the effect of BCC encoding on the addition of FP 
and the compatibility of IEEE 754-2019. Implementation 
details are provided in Section 5. Section 6 is devoted to 
defining the TELCO benchmark as a case study to analyze the 
architectures, and Section 7 offers final remarks.

2- IEEE 754-2019 STANDARD
The IEEE 754-2008 standard revised the IEEE 754-

1985, for FP representation and arithmetic [7], and provides 
two standards for storage of decimal FP numbers, of which 
the DPD is popular in hardware realization of decimal FP 
units. Mike F. Cowlishaw devised DPD in 2002 [23] as an 
enhancement of Chen–Ho encoding, which was incorporated 
into the IEEE 754-2019 [7] and IEE/ISO/IEC 60559:2020 [24] 
standards for DFP. It uses a Huffman code, picking several 
combinations of digits by leading indicator bits. Similar to 
Chen-Ho encoding, DPD categorizes each decimal digit into 
one of two classes:

·   (“small” digits 0 through 7): Three more bits are 
required to specify the value of small digits after it is known 
that a digit is in class  .

·   (“large” digits 8 and 9): One bit is required to 
differentiate between the values 8 (i.e., 1000) or 9 (i.e., 1001), 
once a digit in class   has been indicated.

The decoding (DPD to 3 BCD digits expansion) and 
encoding (3 BCD digits to DPD compression) patterns are 
described in Tables 1 and 2, respectively. Starting with the 
MSB (i.e., a ) of the most significant digit (denoted as MSD), 
the 12 bits of three BCD digits (i.e., B , C , and D ) have 
been represented by letters a  through m  (excluding l , for 
clarity). Once more starting with the MSB (i.e., p ), the 10 

Table 1. DPD Encoding (Compression from 3 BCD digits) 

Case 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝒂𝒂𝒂𝒂𝒂𝒂 𝒑𝒑𝒑𝒑𝒑𝒑 𝒔𝒔𝒔𝒔𝒔𝒔 𝒗𝒗 𝒘𝒘𝒘𝒘 𝒚𝒚 
1 𝒮𝒮 𝒮𝒮 𝒮𝒮 000 𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓ℎ 0 𝑗𝑗𝑗𝑗 𝑚𝑚 
2 𝒮𝒮 𝒮𝒮 ℒ 001 𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓ℎ 1 00 𝑚𝑚 
3 𝒮𝒮 ℒ 𝒮𝒮 010 𝑏𝑏𝑏𝑏𝑏𝑏 𝑗𝑗𝑗𝑗ℎ 1 01 𝑚𝑚 
4 ℒ 𝒮𝒮 𝒮𝒮 011 𝑗𝑗𝑗𝑗𝑗𝑗 𝑓𝑓𝑓𝑓ℎ 1 10 𝑚𝑚 
5 ℒ ℒ 𝒮𝒮 100 𝑗𝑗𝑗𝑗𝑗𝑗 00ℎ 1 11 𝑚𝑚 
6 ℒ 𝒮𝒮 ℒ 101 𝑓𝑓𝑓𝑓𝑓𝑓 01ℎ 1 11 𝑚𝑚 
7 𝒮𝒮 ℒ ℒ 110 𝑏𝑏𝑏𝑏𝑏𝑏 10ℎ 1 11 𝑚𝑚 
8 ℒ ℒ ℒ 111 00𝑑𝑑 11ℎ 1 11 𝑚𝑚 

 
  

Table 1. DPD Encoding (Compression from 3 BCD digits)
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bits of the encoded DPD digits are represented by letters p  
through y .

During compression, for instance, if the decimal number 
is 399 with two   digits (namely, 0011 1001 1001), then the 
7th row of Table 1 describes the pattern to be used (because 
the sequence aei  is 011). Therefore, the indicator bits, ,v  
and wx , are set to 1 and 11 in this row, and therefore the 
encoding is 011 101 1 111. Similarly, if the decimal numbers 
were 020 (namely, 0000 0010 0000, with three   digits) then 
the 1st row of Table 1 describes the output 000 010 0 000. 

As 24 of the 10-bit DPD values (i.e., 1024) are unused, 
any of the four possible combinations could have been for the 
values pq  in the 8th row of Table 1.

During expansion, if the encoded bits are 011 101 1 
111, which are corresponding by the 7th row of Table 2 
(since vwxst  bits are 11110), hence giving 0011 1001 1001. 

Therefore, reversing the first compression example.
Implementation details for mappings described by Tables 

1 and 2 are provided in Section 5.
A DFP number is encoded in k  bits (a finite DFP number 

{ }, , S q C , infinity or a NaN) using the following three fields, 
detailed in Fig. 1:

· S : A 1-bit sign field, which encodes the coefficient sign.
· G : A combo field of ( )5w + -bit, containing the 

binary biased exponent of ( )2w + -bit E q bias= +  and 
the 4 most significant p -digit coefficient bits. The value of 
the exponent’s 2 most significant bits can’t be 3.

· T : A ( )10 j× -bit trailing significand field, encoding 
1 3p j− = ×  trailing digits of significand using DPD, or 

binary integer values using BID from 0  to 10 12 j× − .
For example, Table 3 shows the format encoding parameter 

values corresponding to the basic decimal formats of [7]. 

Table 2. DPD Decoding (Expansion to 3 BCD Digits) 

 

Case 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 𝑩𝑩 = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝑪𝑪 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝑫𝑫 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 

1 0 ⋅ ⋅ ⋅ ⋅ 0𝑝𝑝𝑝𝑝𝑝𝑝 0𝑠𝑠𝑠𝑠𝑠𝑠 0𝑤𝑤𝑤𝑤𝑤𝑤 
2 100 ⋅ ⋅ 0𝑝𝑝𝑝𝑝𝑝𝑝 0𝑠𝑠𝑠𝑠𝑠𝑠 100𝑦𝑦 
3 101 ⋅ ⋅ 0𝑝𝑝𝑝𝑝𝑝𝑝 100𝑢𝑢 0𝑠𝑠𝑠𝑠𝑠𝑠 
4 110 ⋅ ⋅ 100𝑟𝑟 0𝑠𝑠𝑠𝑠𝑠𝑠 0𝑝𝑝𝑝𝑝𝑝𝑝 
5 11100 100𝑟𝑟 100𝑢𝑢 0𝑝𝑝𝑝𝑝𝑝𝑝 
6 11101 100𝑟𝑟 0𝑝𝑝𝑝𝑝𝑝𝑝 100𝑦𝑦 
7 11110 0𝑝𝑝𝑝𝑝𝑝𝑝 100𝑢𝑢 100𝑦𝑦 
8 11111 100𝑟𝑟 100𝑢𝑢 100𝑦𝑦 

 a. NB: “⋅” stands for don’t care. 

 

  

Table 2. DPD Decoding (Expansion to 3 BCD Digits)

Width 1 bit 𝑤𝑤 + 5 bits 𝑡𝑡 = (10 × 𝑗𝑗) bits= (3 × 𝑗𝑗) digits 
Field Sign (𝑆𝑆) Combination (𝐺𝐺) Trailing significand (𝑇𝑇) 

  𝐺𝐺0 …𝐺𝐺𝑤𝑤+4  

Fig. 1. The storage format of DFP numbers in [7] 
  

Fig. 1. The storage format of DFP numbers in [7]

Table 3. Parameters for defining the basic DFP number format of Fig. 1 
 

Format name Decimal-32 Decimal-64 Decima-l28 Decimal-𝒌𝒌 (𝒌𝒌 ≥ 𝟑𝟑𝟑𝟑) 

Storage width (𝑘𝑘) 32 64 128 1 + (𝑤𝑤 + 5) + 𝑡𝑡 

Trailing significand field width (𝑡𝑡) 20 50 110 15 × 𝑘𝑘 16⁄ − 10 

Combination field with (𝑤𝑤 + 5) 11 13 17 𝑘𝑘 16⁄ + 9 

Number of significand digits (𝑝𝑝) 7 16 34 9 × 𝑘𝑘 32⁄ − 2 

Exponent bias, 𝐸𝐸 − 𝑞𝑞 101 398 6176 𝐸𝐸max + 𝑝𝑝 − 2 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 +96 +384 +6144 +3 × 2𝑘𝑘 16⁄ +3 

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 −95 −383 −6143 −3 × 2𝑘𝑘 16⁄ +3 + 1 

 

  

Table 3. Parameters for defining the basic DFP number format of Fig. 1
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Decimal number formats are specified for any multiple of 32 
bits of at least 32 bits.

3- RADIX-1000 REPRESENTATION OF DECIMAL 
NUMBERS

Each 3 BCD digits (e.g., 
[ ]  100 10 0,  999B C D B C D= + + ∈ ) that entail 

storage can be identically represented in 10 bits as a number 
in radix-1000. Therefore, the efficiency of such encoding that 
is known as binary coded chiliad (also known as declet or 
binary coded millennium [17]) is alike to DPD. Nevertheless, 
BCC numbers can directly be manipulated by arithmetic 
operators (opposite to DPD), that no expansion/compaction 
is needed on retrieval of operands and storage of results in/
from processor’s registers and memory; henceforth substantial 
latency and power savings are gained. Nonetheless, only one 
conversion from IEEE 754-2019 standard DPD inputs to BCC 
is needed at the input ports, and just at the output ports the 
reverse conversion is required. 

The best radix-10 adder for BCD operands that uses 
conditional speculation [19], has been already extended for 
BCC operands [18], where speculation constant of BCC (i.e., 

( )2
24 11000= ) has three trailing zero, while that of BCD 
(i.e., ( )2

6 110= ) has one in binary representation. Therefore, 
the three (in contrast to one in BCD) least significant bits 
of BCC operands have been left out in the evaluation of 
speculation condition. Moreover, simpler logical expressions 
for asserting the speculation condition have been proposed 
in [21]. To do this, more trailing bits of each BCC digit are 
leaving out. As such, [21] show 30%, 27%, and 17% advantages 
in power, area, and power delay product (PDP) measures, 
respectively. Moreover, lower time constraints are met by the 
proposed designs. Notice that these enhancements are only 
due to BCC addition and do not show any additional savings 
resulting from the absence of DPD-to-BCC and the reverse 

conversions before and after each arithmetic operation.
To conclude, we notice that within the discussion sessions 

for determining the representation of decimal numbers in FP 
as a portion of the IEEE 754-2008 standard (superseded by 
IEEE 754-2019 [7]), it has been proposed to use the radix-1000 
representation of decimal numbers, but not endorsed [17].

4- THE IMPACT OF BCC ENCODING ON FLOATING-
POINT ADDITION AND THE IEEE 754-2019 
COMPATIBILITY

Most of the DFP units that are implemented in the industrial 
solutions opted for the BCD representation as an internal 
format to have efficient decimal computations. Therefore, 
while complying with the DPD ‎standard, we are inspired to 
design a decimal hardware architecture that can use BCC for 
intermediate results. Following the common practice of DPD-
to-BCD expansion and the reverse compression, before and 
after decimal arithmetic operations, we present the required 
DPD-to-BCC and BCC-to-DPD conversions and study their 
impact on decimal addition.

Some decimal arithmetic applications extensively use 
fixed-point decimal data (e.g., accounting [25]), where no 
particular problem occurs in using BCC encoding. In this 
section, we discuss the peculiarities of the BCC encoding 
on FP decimal addition. Fig. 2 depicts the Decimal-64 FP 
format and the related adder architecture, where the 50-bit 
significand is due to fifteen less significant DPD encoded BCD 
digits, the most significant BCD digit (denoted as MSD) is 
embedded in the combination field, and details of extraction 
and compaction circuits are shown in Section 5 (see Fig. 4). 
This 13–bit combination field also contains the exponent 
(embedded two MSBs hE  and eight least significant bits lE
) and number classification (NC) information (i.e., NaN cases 
and ∞± ).

Since the trailing 50 bits of the significand are not directly 
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    , MSD NC

DPD-to-BCD Expansion

MSD 15 BCD digits    

Extractor
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MSD 15 BCD digits    

    

    

5

        5 DPD-encoded Triple BCD digits    , MSD NC
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Fig. 2. Decimal-64 FP format and the related adder architecture 

  

Fig. 2. Decimal-64 FP format and the related adder architecture
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manipulatable, DPD-to-BCD (or other arithmetic friendly 
encoding of decimal digits) expansion and the reverse 
compression are required before and after each arithmetic 
operation. This leads to extra power dissipation and 

Since the trailing 50 bits of the significand are not directly manipulatable, DPD-to-BCD (or other arithmetic 

friendly encoding of decimal digits) expansion and the reverse compression are required before and after 

each arithmetic operation. This leads to extra power dissipation and 4 δ𝑔𝑔 delay overhead per conversion. 

Additionally, wider or extra registers are required to accommodate the converted significand (e.g., 64 bits 

in case of BCD) and extracted exponent (e.g., 10 bits in case of Decimal-64). For instance, some research 

reports have used 75-bit [12] or 83-bit [9] specialized registers for decoded Decimal-64 DPD operands. 

Additionally, a DPD-based commercial realization of Decimal-128 uses separate registers for significand 

(144-bit) and exponent (16-bit) [5]. 
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Fig. 2. Decimal-64 FP format and the related adder architecture 

 

4-1- The Intermediate BCC FP Format 

The forward DPD-to-BCC conversion, only affects the trailing 50 bits of DPD significand, which is to be 

converted to five BCC digits comprising to trailing 50 bits of BCC significand. Hence, the resulted BCC-

64 FP operand perfectly fit in the commonly used 64-bit registers and memory words (see Fig. 3), while 

the trailing 50 bits (i.e., five BCC digits) are readily available to be directly manipulated. The MSD and 

exponent extraction, out of the combination field, and the reverse compaction are undertaken exactly in the 

 
delay overhead per conversion. Additionally, wider or 
extra registers are required to accommodate the converted 
significand (e.g., 64 bits in case of BCD) and extracted 
exponent (e.g., 10 bits in case of Decimal-64). For instance, 
some research reports have used 75-bit [12] or 83-bit [9] 
specialized registers for decoded Decimal-64 DPD operands. 
Additionally, a DPD-based commercial realization of 
Decimal-128 uses separate registers for significand (144-bit) 
and exponent (16-bit) [5].

4-1- The Intermediate BCC FP Format
The forward DPD-to-BCC conversion, only affects the 

trailing 50 bits of DPD significand, which is to be converted 
to five BCC digits comprising to trailing 50 bits of BCC 
significand. Hence, the resulted BCC-64 FP operand perfectly 
fit in the commonly used 64-bit registers and memory words 
(see Fig. 3), while the trailing 50 bits (i.e., five BCC digits) 
are readily available to be directly manipulated. The MSD and 
exponent extraction, out of the combination field, and the 
reverse compaction are undertaken exactly in the same way as 
in the DPD-to-BCD expansion and the reverse compression. 
The cost and delay of forward extraction (backward 
compaction) as can be easily Figured out from [7, 23], and 
shown in Section 5, correspond to only seven and two gates 
(six and two gates), respectively.

Note that the MSD extraction is obviously off the critical 
delay path of addition operation in both DPD and BCC cases. 
However, the combination field compaction is off the critical 
delay path only in the BCC case, since the MSD (i.e., a BCD 
digit) is available two gates earlier than BCC digits (see [21]). 

Nevertheless, the main advantages of BCC encoding are:
1.	 The BCC significand is directly manipulatable. No 

interoperation conversion is required until a result is to be 
reported to an output device, where BCC-to-DPD conversion 
is required. The required logic for DPD-to-BCC and the 
reverse conversions, which can be implemented within the 
I/O processor, are given in Section 5. 

2. The significand adder is 54-bit wide in comparison to a 
64-bit adder in the DPD case.

4-2- BCC Exponent Base
When the exponent difference of two BCC FP addition 

operands is not a multiple of 3, the required alignment 
shift operation is nontrivial and rather complex. The same 
problem, noted in addition to two BID-encoded [7] decimal 
FP operands [26] may be accure more seriously. However, the 
BCC alignment complexity can be mitigated by allowing the 
BCC exponent base to be 1000; thus, leading to multiple-of-3 
exponents and simple BCC shifts. 

4-3- Mixed BCC/binary FP Adders
Double (quadruple) precision binary FP addition 

according to IEEE 754-2019 standard requires 53-bit (113-bit) 
binary adders, while the proposed BCC FP addition scheme is 
based on 54-bit (114-bit) binary adders for Decimal-64 (-128) 
operands. Therefore, the latter can be shared by the binary 
FP addition unit, where only one bit of the available capacity 
is not used. However, in the common case where the DPD 
operands are converted to 64-bit (136-bit) BCD numbers, 11 
(23) bits of the additional capacity are unused, while normally 
contribute to additional power dissipation.

5- IMPLEMENTATION DETAILS
This section provides the required logical expressions for 
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Fig. 3. BCC-64 FP format and the related adder architecture 
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the DPD-to-BCD expansion, BCD-to-DPD compression, 
extraction, and compaction. Moreover, details of the 
proposed DPD-to-BCC and BCC-to-DPD conversions are 
comprised. 

5-1- DPD-to-BCD Expansion and BCD-to-DPD Compression
Since the DPD digits are not directly manipulatable, DPD-

to-BCD expansion and reverse compression are required 
before and after each arithmetic operation. This requirement 
is depicted in the architecture of Decimal-64 FP of Fig. 2 and 
entails delay, cost, and power dissipation. Recall that each 
DPD digit pqrstuvwxy  expanded to three BCD digits 
B abcd= , C efgh= , and D ijkm=  before performing 
arithmetic operations in the architecture of Decimal-64 FP 
format. Likewise, reverse compression is required for storing 
the results. 

The following logic expressions describing each DPD 
output bit during compression with 47 δ#g  cost and 4 αä g  
delay:

	
( ) ( ) ( )p b a j a i f a e i= ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∧

	
( ) ( ) ( )q c a k a i g a e i= ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∧

	
r d=

	
( )( ) ( )( ) ( )s f e a i j a e i e i= ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

	
( )( ) ( )( ) ( )t g e a i k a e i a i= ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

u h=
	

v a e i= ∨ ∨
	

( ) ( )w a e i j e i= ∨ ∧ ∨ ∧ ∧
	

( ) ( )x e a i k a i= ∨ ∧ ∨ ∧ ∧
	

y m=

Likewise, the logic expressions describing each output bit 

during expansion with 51δ#g  cost and 4 αä g  delay are as 
follows:

	
( ) ( )( )a v w x s s t= ∧ ∧ ∨ ∨ ∧

	
( )( )b p v w x s t= ∧ ∨ ∨ ∧ ∧

	
( )( )c q v w x s t= ∧ ∨ ∨ ∧ ∧

	
d r=

	
( ) ( )( )( )e v w x w x s t= ∧ ∧ ∨ ∧ ∧ ∨

	
( )( )( ) ( )f s v v x p v w x s t= ∧ ∨ ∧ ∨ ∧ ∧ ∧ ∧ ∧

	
( )( )( ) ( )g t v v x q v w x s t= ∧ ∨ ∧ ∨ ∧ ∧ ∧ ∧ ∧

	
h u=

	
( ) ( )( )( )i v w x w x s t= ∧ ∧ ∨ ∧ ∧ ∨

	
( ) ( ) ( )( )( )j w v s v w x p v w x s t= ∧ ∨ ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

	
( ) ( ) ( )( )( )k x v t v w x q v w x s t= ∧ ∨ ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

	
m y=

5-2- EXTRACTION AND COMPACTION
The MSD and exponent extraction, out of the combination 

field, and the reverse compaction in the architecture of Fig. 3 
are undertaken exactly in the same way as in the architecture 
of Fig. 2. The cost and delay of forward extraction as is 
depicted in Fig. 4 (a) (backward compaction as is depicted in 
Fig. 4 (b)) corresponds to only 7 #g  and
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corresponds to only 7#𝑔𝑔 and 2δ𝑔𝑔 (6#𝑔𝑔 and 2δ𝑔𝑔), respectively. 
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implemented within the I/O processor. Fig. 5 depicts a straightforward solution for DPD-to-BCC (a) and 

BCC-to-DPD (b), where BCD serves as an intermediate format. DPD-to-BCD expansion and the reverse 

compression are the same as ones in subsection 5.1 and logics for BCD-to-binary and the reverse converters 

are given here. 
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to-BCD expansion and the reverse compression are the same 
as ones in subsection 5.1 and logics for BCD-to-binary and 
the reverse converters are given here.

Fig. 6 depicts a weighted bit set (WBS) that collectively 
represents the binary equivalent of three BCD digits   B C D
, which arithmetic’s value can be expressed as in (1), where 
abcd , efgh , and ijkm , represent the equivalent of B , C
, and D , respectively.

The MSD and exponent extraction, out of the combination field, and the reverse compaction in the 

architecture of Fig. 3 are undertaken exactly in the same way as in the architecture of Fig. 2. The cost and 
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�  
(1)

The 4-deep WBS is reduced to a 2-deep one via half 
adders, full adders, and (4; 2) compressors, as appropriate, 
followed by an 8-bit adder that produces the final BCC digit. 
Bit dependencies such as 0ab =  and 0eg = , and the like 
are used to simplify the required logic. 

The reverse BCC-to-BCD converter is illustrated in Fig. 7, 
which is designed based on the work of [27].

5-4- Synthesis Results
We have described all the blocks listed in Figs. 2 and 3 with 

HDL for a more accurate evaluation and also for verification 
(with 100,000 random inputs to check accuracy).  Such codes 
are used by Synopsys Design Compiler to synthesize all units 
through the standard method of TSMC 0.90 µì m  CMOS 
technology under normal operating conditions (core voltage 
1.2 V  and operating temperature 25 °C).

Table 4 shows the delay, area, and power dissipation for 
the DPD-to-BCD expansion and the reverse compression, 
the DPD-to-BCC converter, and the reverse blocks. As was 
expected, the results show a substantial delay, area, and 
power overhead. However, note that total power dissipation 
is expected to considerably reduce since the number of 
conversions in the latter case is far less than that of the 
former. To illustrate this reduction in the number of needed 
conversions, Section 6 studies a case study.

6- CASE STUDY
The TELCO benchmark is a decimal number system 

based on telephone billing application developed by IBM 
to analyze the balance between I/O time and calculation 
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time in a billing system for a telecommunications company 
[28]. The benchmark offers an example of a compliant set of 
multiplication and addition operations for IEEE 754-2019. 
The conversions from the IEEE-754 DPD to computationally 
efficient formats of BCD and BCC, which take place as a case 
study within the operations of a telephone billing application, 
through the TELCO benchmark, are the subject of our 
assessment.

Note that conversion errors might lead to incorrect 

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters
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Fig. 6. BCD-to-binary converter block in Fig. 5  
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Fig. 7. 10-bit binary to 3-digit BCD numbers converter in block 4 
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results when a decimal calculation is performed using binary 
floating-point arithmetic. Fig. 8 presents an example of a 5% 
tax levied on a telephone call at a rate of EUR 0.70, rounded 
to the nearest cent (ties to even). The result is one cent less 
than expected (tax calculations are governed by law), using 
a double-precision binary floating-point for the calculation. 
These systemic one-cent errors add up, so the annual losses 
for a cell phone company with millions of calls a day could 
amount to over EUR 1 million [2].

Note that these errors are caused by a lack of binary 
floating-point precision and not by rounding. Although 
erroneous, these kinds of precisely rounded decimal results 
are enforced by legal and financial criteria and are the 
intended results of a decimal measurement.

Therefore, for financial calculations or any application 
based on decimal human-oriented arithmetic, binary floating-
points cannot be used for they can neither comply with legal 
requirements nor provide precisely rounded decimal results.

For processing telephone bills, the TELCO benchmark 
executes the following code illustrated in Fig. 9 on decimal 
data, where the number of calls per telephone subscriber (i.e., 
n ) is typically several thousand. The number of required 
DPD-to-BCD and reverse conversions amount to (18 3n +
) in the conventional DPD-only processing environment, 

while the BCC case is only ( 2 4n + ) due to BCC-to-DPD 
conversions at the input and reverse at the output.

The number of conversions for each number of calls 
is shown in Fig. 10 for the DPD and BCC architectures. 
The prescribed number of calls is 1000-10000 per 1000 call 
intervals. The gap between the DPD and the BCC curves 
clearly shows the superiority of the BCC encoding.

7- CONCLUSIONS
Densely packed decimal (DPD) encoding is the commonly 

used by one of the two encodings prescribed by the IEEE 
754-2019 standard for FP decimal number representation 
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Converter 
Critical Path Area Power 

[𝒏𝒏𝒏𝒏] Ratio NAND2 Ratio [𝝁𝝁𝝁𝝁] Ratio 

DPD-to-BCD 0.175 1.00 1697 1.00 440 1.00 
BCD-to-DPD 0.178 1.02 1785 1.05 479 1.09 
DPD-to-BCC 0.320 1.83 2095 1.23 566 1.29 
BCC-to-DPD 0.313 1.79 2160 1.27 518 1.18 
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Fig. 8. An example of calculating a decimal tax using a binary floating-point (reproduced from [20]) 
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    𝑇𝑇 = 0; 
    for 𝑖𝑖 = 1 to 𝑛𝑛 do 
        𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; 
        𝐵𝐵 = 𝑃𝑃 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵; 
        𝐷𝐷 = 𝑃𝑃 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; 
        𝐶𝐶[𝑖𝑖] = 𝑃𝑃 + 𝐵𝐵 + 𝐷𝐷; 
        𝑇𝑇 = 𝑇𝑇 + 𝐶𝐶[𝑖𝑖]; 
    end for; 

Fig. 9. Pseudo-code for the computations in TELCO benchmark 

  

Fig. 9. Pseudo-code for the computations in TELCO benchmark
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Fig. 10. Number of conversions per number of calls for TELCO benchmark 
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and arithmetic. Pre (post) conversion, to (from) arithmetic-
friendly decimal encodings (for instance, BCD) is mandatory, 
for every arithmetic operation which results in additional 
latency, power, and area consumption. While abiding by 
IEEE 754-2019 DPD encoding for decimal data exchange and 
secondary storage, we spot that the inherently manipulaTable 
binary coded chiliad (BCC) encoding of decimal numbers 
can be favored for internal representation of decimal numbers 
due to succeeding properties:

Similar encoding effectiveness as DPD for storage of BCC 
operands (i.e., 10 bits per three BCD digits), in registers and 
primary memory.

· Latency, area, and power savings due to anticipating the 
necessity for pre/post conversions meant for every arithmetic 
operation. The only once required DPD-to-BCC and the 
reverse conversions at the I/O ports can be delegated to I/O 
processors, as is normally the case in DPD/BCD processing 
environment

· Prospects for BCC arithmetic that are at least equally 
efficient compared to the equivalent BCD or other radix-10 
arithmetic, as in the case of addition even better performance 
has been achieved.

· BCC-64 (BCC-128) equi-width registers and binary 
double (quadruple) precision operands, which are important 
for the sharing of decimal/binary hardware.

· To mitigate the complexity of BCC FP alignment shifts, 
a base-1000 exponent format can be used. 

Work is ongoing to investigate the impact of BCC 
encoding on the processor design as well as on unified add / 
subtract, multiplier, divider, and decimal FP units.

NOMENCLATURE
⋅ 	 stands for don’t care
 	 “small” digits 0 through 7
 	 “large” digits 8 and 9
p 	 number of significand digits
S 	 sign field
G 	 combination field

T 	 trailing significand
lE 	 embedded eight least significant bits of exponent E
hE 	 embedded two MSBs of exponent E

 minE 	 the minimum value of exponent E
 maxE 	 the maximum value of exponent E

ns 	 nanosecond
µì W 	 microwatt
αä g 	 delay of a simple gate
δ#g 	 cost of a simple gate
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