
AUT Journal of Electrical Engineering

AUT J. Elec. Eng., 53(1) (2021) 47-56
DOI: 10.22060/eej.2020.19022.5379

New Insight on the Application of Binary Coded Chiliad (BCC) Encoding for Decimal
Arithmetic
 M. Dorrigiv1,*

1 Department of Electrical and Computer Engineering, Semnan University, Semnan, Iran

ABSTRACT: The densely packed decimal (DPD) encoding for secondary and primary storage of three
binary coded decimal (BCD) digits is included in the IEEE 754-2019 standard for decimal floating-point
arithmetic. Binary coded chiliad (BCC) representation of 3 BCD digits (i.e. radix-1000) will achieve equi-
efficient packing. The primary advantage is BCC operands can be directly manipulated by arithmetic
operations, while DPD operands have to undergo DPD-to-BCD and reverse conversions afore and ahead
of each arithmetic operation. Therefore, we are interested in designing the arithmetic unit that receives
BCC operands and produces BCC results, following previous BCC works. Compared to the equivalent
BCD or other radix-10 arithmetic, prospects show that equally efficient arithmetic units are feasible for
BCC arithmetic, as even better performance has been achieved in the case of addition. Therefore, we
demonstrate the IEEE 754-2019 compatibility of the BCC Encoding in this paper. Consequently, for
the DPD-to-BCD expansion and the reverse compression, the DPD-to-BCC converter, and the reverse
blocks, we show the delay, area, and power dissipation. The findings show a substantial delay (83%),
area (27%), and power (29%) overhead. However, as the number of conversions in the latter case is
much less than the former, overall power dissipation is expected to decrease considerably.

Review History:

Received: Sep. 29, 2020
Revised: Dec. 07, 2020
Accepted: Dec. 09, 2020
Available Online: Jun. 01, 2021

Keywords:

Binary coded chiliad encoding

decimal computer arithmetic

IEEE 754-2019

densely packed decimal encoding

encoding conversion

47

*Corresponding author’s email: dorrigiv@semnan.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article
 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

1- INTRODUCTION
Many ancient civilizations’ numeral systems use ten and

their powers to represent numbers, probably for there are ten
fingers on two hands and people have begun to count with
their fingers. Binary representation is also used internally
by most modern computer hardware and software systems.
Although many early computers, such as the ENIAC or the
IBM 650, used decimal representation internally [1].

A long-standing practice is the implementation of
decimal arithmetic operations on binary processors, which
has its origins in the normal form of arithmetic for humans.
Another justification is that, for many commercial and
banking applications, the binary representation of certain
decimal values is not sufficiently accurate [2]. However, at
the dawn of the digital computer industry, the lack of 10-level
logic devices compelled designers to use software-simulated
radix-10 arithmetic operations carried out on binary digital
processors [3]. Afterward, design engineers attempted to build
specialized hardware units for decimal arithmetic operations
with the rapid development of the computer industry.

In response to the new demands for high-performance
decimal computations, research on the hardware realization
of decimal arithmetic has been revived in the past two
decades. Hardware decimal units and decimal arithmetic
instruction subsets comprise several recently commercialized

general-purpose digital processors. For instance, IBM
included a decimal floating-point hardware unit in the z-196
[4] server chips and increased it in the next z-family servers
[5]. On each of the cores on the 12-core chip of the newest z15
servers, the decimal floating-point (DFP) accelerator feature
is present. Fujitsu also announced the Sparc64 X processor
that includes an accelerator called SWoC (Software on Chip)
to speed up cryptography and decimal calculation operations
[5]. Correspondingly, SilMinds’ primary focus has also been
on creating an extensible range of decimal floating-point
arithmetic IP cores for financial applications over the past few
years [6].

Binary coded decimal (BCD) encoding of radix-10
numbers is commonly used for the implementation of
decimal arithmetic on digital processors. However, the
encoding efficiency of this representation is rather low (i.e.,
10 /16 0.625=), which results in a waste of storage.
To remedy this problem, one of the solutions that are
recommended by IEEE 754-2019 (revision of IEEE 754-
2008) standard for decimal floating-point (FP) arithmetic
[7] is the densely packed decimal (DPD) 10-bit encoding
of three BCD digits, where encoding efficiency rises to
1000 /1024 97.66%= . Thereafter, almost all of the
hardware realizations of decimal arithmetic operators that
we have encountered [8-15], assume DPD-encoded inputs
and outputs. However, decimal arithmetic operations cannot

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

48

be performed on DPD operands before expanding to BCD
or other arithmetic-friendly encodings that are directly
manipulatable (e.g., 4-2-2-1 [16]); hence cost and delay
overhead due to the required conversions. For example, DPD-
to-BCD expansion and the reverse compression require four
gates at each end of the critical delay path, which leads to 10.5
FO4 delay overhead per operation, while for instance two 16
-digit FP BCD operands can be added in 26.1 FO4 time
[10]; hence 29% delay overhead.

Each three BCD digits, such as
 100 10B C D B C D= + + that represent []0, 999 , can

be equivalently encoded as a 10 -bit radix-1000 digit [17] to
be hereafter referred to as binary coded chiliad (BCC) digit
[18]. The BCC encoding efficiency is the same as in the DPD
encoding. However, it has been shown that efficient decimal
adders can be realized that directly manipulate BCC operands
[18], with the obvious advantage that the aforementioned
conversion overhead per operation is removed. Nevertheless,
such conversions are required only as I/O processing at the
input and output ports of the processor. It surely is the case
that if a particular computation dictates one conversion per
arithmetic operation (as is the case for all DPD applications)
our BCC scheme would not be recommended. However,
note that the decimal arithmetic hardware has been realized
in commercial processors in response to demands of, for
instance, monetary and billing applications which are
known for undertaking several fixed-point operations before
reporting a result. Accordingly, we have used TELCO as a
benchmark for our evaluations (see Section 6).

The conditional speculative mixed BCD/binary addition
scheme of [19, 20] have extended to radix-1000 operands
in [18] as the opening work on BCC addition. To decide on

()10 324 2 10+ = − speculation through using the 7 most
significant bits (MSBs) of similarly weighted digits of addition
operands. The second work we have encountered [21] studies
all other possible speculation possibilities (i.e., besides from
the 7-bit case of [18], all the other five cases are based on 2-6
bits).

The notations are used for delay and cost measures
throughout the paper, are ä g and #g (delay and cost of a
simple gate). Subsequently, circuit synthesis will be used to
indorse the estimates, as the former model overlooks the
consequence of fan-out.

This paper expands our previous research on BCC
arithmetic [22] by (1) providing new details on the BCC
Encoding compatibility of IEEE 754-2019, (2) adding a case
study to support the proposed architecture as a benchmark.,
and (3) presentation and analysis of results that estimate the
number of required DPD-to-BCD and reverse conversions
in the conventional DPD-only processing environment
concerning the BCC case due to BCC-to-DPD input and
reverse output conversions.

The remainder of this work is structured as follows. A
history of the IEEE 754-2019 standard is given in section 2.
The BCC encoding is briefly covered in Section 3. Section 4
addresses the effect of BCC encoding on the addition of FP
and the compatibility of IEEE 754-2019. Implementation
details are provided in Section 5. Section 6 is devoted to
defining the TELCO benchmark as a case study to analyze the
architectures, and Section 7 offers final remarks.

2- IEEE 754-2019 STANDARD
The IEEE 754-2008 standard revised the IEEE 754-

1985, for FP representation and arithmetic [7], and provides
two standards for storage of decimal FP numbers, of which
the DPD is popular in hardware realization of decimal FP
units. Mike F. Cowlishaw devised DPD in 2002 [23] as an
enhancement of Chen–Ho encoding, which was incorporated
into the IEEE 754-2019 [7] and IEE/ISO/IEC 60559:2020 [24]
standards for DFP. It uses a Huffman code, picking several
combinations of digits by leading indicator bits. Similar to
Chen-Ho encoding, DPD categorizes each decimal digit into
one of two classes:

·  (“small” digits 0 through 7): Three more bits are
required to specify the value of small digits after it is known
that a digit is in class  .

·  (“large” digits 8 and 9): One bit is required to
differentiate between the values 8 (i.e., 1000) or 9 (i.e., 1001),
once a digit in class  has been indicated.

The decoding (DPD to 3 BCD digits expansion) and
encoding (3 BCD digits to DPD compression) patterns are
described in Tables 1 and 2, respectively. Starting with the
MSB (i.e., a) of the most significant digit (denoted as MSD),
the 12 bits of three BCD digits (i.e., B , C , and D) have
been represented by letters a through m (excluding l , for
clarity). Once more starting with the MSB (i.e., p), the 10

Table 1. DPD Encoding (Compression from 3 BCD digits)

Case 𝑩𝑩 𝑪𝑪 𝑫𝑫 𝒂𝒂𝒂𝒂𝒂𝒂 𝒑𝒑𝒑𝒑𝒑𝒑 𝒔𝒔𝒔𝒔𝒔𝒔 𝒗𝒗 𝒘𝒘𝒘𝒘 𝒚𝒚
1 𝒮𝒮 𝒮𝒮 𝒮𝒮 000 𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓ℎ 0 𝑗𝑗𝑗𝑗 𝑚𝑚
2 𝒮𝒮 𝒮𝒮 ℒ 001 𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓ℎ 1 00 𝑚𝑚
3 𝒮𝒮 ℒ 𝒮𝒮 010 𝑏𝑏𝑏𝑏𝑏𝑏 𝑗𝑗𝑗𝑗ℎ 1 01 𝑚𝑚
4 ℒ 𝒮𝒮 𝒮𝒮 011 𝑗𝑗𝑗𝑗𝑗𝑗 𝑓𝑓𝑓𝑓ℎ 1 10 𝑚𝑚
5 ℒ ℒ 𝒮𝒮 100 𝑗𝑗𝑗𝑗𝑗𝑗 00ℎ 1 11 𝑚𝑚
6 ℒ 𝒮𝒮 ℒ 101 𝑓𝑓𝑓𝑓𝑓𝑓 01ℎ 1 11 𝑚𝑚
7 𝒮𝒮 ℒ ℒ 110 𝑏𝑏𝑏𝑏𝑏𝑏 10ℎ 1 11 𝑚𝑚
8 ℒ ℒ ℒ 111 00𝑑𝑑 11ℎ 1 11 𝑚𝑚

Table 1. DPD Encoding (Compression from 3 BCD digits)

49

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

bits of the encoded DPD digits are represented by letters p
through y .

During compression, for instance, if the decimal number
is 399 with two  digits (namely, 0011 1001 1001), then the
7th row of Table 1 describes the pattern to be used (because
the sequence aei is 011). Therefore, the indicator bits, ,v
and wx , are set to 1 and 11 in this row, and therefore the
encoding is 011 101 1 111. Similarly, if the decimal numbers
were 020 (namely, 0000 0010 0000, with three  digits) then
the 1st row of Table 1 describes the output 000 010 0 000.

As 24 of the 10-bit DPD values (i.e., 1024) are unused,
any of the four possible combinations could have been for the
values pq in the 8th row of Table 1.

During expansion, if the encoded bits are 011 101 1
111, which are corresponding by the 7th row of Table 2
(since vwxst bits are 11110), hence giving 0011 1001 1001.

Therefore, reversing the first compression example.
Implementation details for mappings described by Tables

1 and 2 are provided in Section 5.
A DFP number is encoded in k bits (a finite DFP number

{ }, , S q C , infinity or a NaN) using the following three fields,
detailed in Fig. 1:

· S : A 1-bit sign field, which encodes the coefficient sign.
· G : A combo field of ()5w + -bit, containing the

binary biased exponent of ()2w + -bit E q bias= + and
the 4 most significant p -digit coefficient bits. The value of
the exponent’s 2 most significant bits can’t be 3.

· T : A ()10 j× -bit trailing significand field, encoding
1 3p j− = × trailing digits of significand using DPD, or

binary integer values using BID from 0 to 10 12 j× − .
For example, Table 3 shows the format encoding parameter

values corresponding to the basic decimal formats of [7].

Table 2. DPD Decoding (Expansion to 3 BCD Digits)

Case 𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 𝑩𝑩 = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 𝑪𝑪 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝑫𝑫 = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊

1 0 ⋅ ⋅ ⋅ ⋅ 0𝑝𝑝𝑝𝑝𝑝𝑝 0𝑠𝑠𝑠𝑠𝑠𝑠 0𝑤𝑤𝑤𝑤𝑤𝑤
2 100 ⋅ ⋅ 0𝑝𝑝𝑝𝑝𝑝𝑝 0𝑠𝑠𝑠𝑠𝑠𝑠 100𝑦𝑦
3 101 ⋅ ⋅ 0𝑝𝑝𝑝𝑝𝑝𝑝 100𝑢𝑢 0𝑠𝑠𝑠𝑠𝑠𝑠
4 110 ⋅ ⋅ 100𝑟𝑟 0𝑠𝑠𝑠𝑠𝑠𝑠 0𝑝𝑝𝑝𝑝𝑝𝑝
5 11100 100𝑟𝑟 100𝑢𝑢 0𝑝𝑝𝑝𝑝𝑝𝑝
6 11101 100𝑟𝑟 0𝑝𝑝𝑝𝑝𝑝𝑝 100𝑦𝑦
7 11110 0𝑝𝑝𝑝𝑝𝑝𝑝 100𝑢𝑢 100𝑦𝑦
8 11111 100𝑟𝑟 100𝑢𝑢 100𝑦𝑦

 a. NB: “⋅” stands for don’t care.

Table 2. DPD Decoding (Expansion to 3 BCD Digits)

Width 1 bit 𝑤𝑤 + 5 bits 𝑡𝑡 = (10 × 𝑗𝑗) bits= (3 × 𝑗𝑗) digits
Field Sign (𝑆𝑆) Combination (𝐺𝐺) Trailing significand (𝑇𝑇)

 𝐺𝐺0 …𝐺𝐺𝑤𝑤+4

Fig. 1. The storage format of DFP numbers in [7]

Fig. 1. The storage format of DFP numbers in [7]

Table 3. Parameters for defining the basic DFP number format of Fig. 1

Format name Decimal-32 Decimal-64 Decima-l28 Decimal-𝒌𝒌 (𝒌𝒌 ≥ 𝟑𝟑𝟑𝟑)

Storage width (𝑘𝑘) 32 64 128 1 + (𝑤𝑤 + 5) + 𝑡𝑡

Trailing significand field width (𝑡𝑡) 20 50 110 15 × 𝑘𝑘 16⁄ − 10

Combination field with (𝑤𝑤 + 5) 11 13 17 𝑘𝑘 16⁄ + 9

Number of significand digits (𝑝𝑝) 7 16 34 9 × 𝑘𝑘 32⁄ − 2

Exponent bias, 𝐸𝐸 − 𝑞𝑞 101 398 6176 𝐸𝐸max + 𝑝𝑝 − 2

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 +96 +384 +6144 +3 × 2𝑘𝑘 16⁄ +3

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 −95 −383 −6143 −3 × 2𝑘𝑘 16⁄ +3 + 1

Table 3. Parameters for defining the basic DFP number format of Fig. 1

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

50

Decimal number formats are specified for any multiple of 32
bits of at least 32 bits.

3- RADIX-1000 REPRESENTATION OF DECIMAL
NUMBERS

Each 3 BCD digits (e.g.,
[] 100 10 0, 999B C D B C D= + + ∈) that entail

storage can be identically represented in 10 bits as a number
in radix-1000. Therefore, the efficiency of such encoding that
is known as binary coded chiliad (also known as declet or
binary coded millennium [17]) is alike to DPD. Nevertheless,
BCC numbers can directly be manipulated by arithmetic
operators (opposite to DPD), that no expansion/compaction
is needed on retrieval of operands and storage of results in/
from processor’s registers and memory; henceforth substantial
latency and power savings are gained. Nonetheless, only one
conversion from IEEE 754-2019 standard DPD inputs to BCC
is needed at the input ports, and just at the output ports the
reverse conversion is required.

The best radix-10 adder for BCD operands that uses
conditional speculation [19], has been already extended for
BCC operands [18], where speculation constant of BCC (i.e.,

()2
24 11000=) has three trailing zero, while that of BCD
(i.e., ()2

6 110=) has one in binary representation. Therefore,
the three (in contrast to one in BCD) least significant bits
of BCC operands have been left out in the evaluation of
speculation condition. Moreover, simpler logical expressions
for asserting the speculation condition have been proposed
in [21]. To do this, more trailing bits of each BCC digit are
leaving out. As such, [21] show 30%, 27%, and 17% advantages
in power, area, and power delay product (PDP) measures,
respectively. Moreover, lower time constraints are met by the
proposed designs. Notice that these enhancements are only
due to BCC addition and do not show any additional savings
resulting from the absence of DPD-to-BCC and the reverse

conversions before and after each arithmetic operation.
To conclude, we notice that within the discussion sessions

for determining the representation of decimal numbers in FP
as a portion of the IEEE 754-2008 standard (superseded by
IEEE 754-2019 [7]), it has been proposed to use the radix-1000
representation of decimal numbers, but not endorsed [17].

4- THE IMPACT OF BCC ENCODING ON FLOATING-
POINT ADDITION AND THE IEEE 754-2019
COMPATIBILITY

Most of the DFP units that are implemented in the industrial
solutions opted for the BCD representation as an internal
format to have efficient decimal computations. Therefore,
while complying with the DPD ‎standard, we are inspired to
design a decimal hardware architecture that can use BCC for
intermediate results. Following the common practice of DPD-
to-BCD expansion and the reverse compression, before and
after decimal arithmetic operations, we present the required
DPD-to-BCC and BCC-to-DPD conversions and study their
impact on decimal addition.

Some decimal arithmetic applications extensively use
fixed-point decimal data (e.g., accounting [25]), where no
particular problem occurs in using BCC encoding. In this
section, we discuss the peculiarities of the BCC encoding
on FP decimal addition. Fig. 2 depicts the Decimal-64 FP
format and the related adder architecture, where the 50-bit
significand is due to fifteen less significant DPD encoded BCD
digits, the most significant BCD digit (denoted as MSD) is
embedded in the combination field, and details of extraction
and compaction circuits are shown in Section 5 (see Fig. 4).
This 13–bit combination field also contains the exponent
(embedded two MSBs hE and eight least significant bits lE
) and number classification (NC) information (i.e., NaN cases
and ∞±).

Since the trailing 50 bits of the significand are not directly

5

 5 DPD-encoded Triple BCD digits

16-digit BCD Significand Adder

 , MSD NC

DPD-to-BCD Expansion

MSD 15 BCD digits

Extractor

50

Exponent Adder

60

MSD 15 BCD digits

5

 5 DPD-encoded Triple BCD digits , MSD NC

BCD-to-DPD CompressionCompactor

60

50

42

42

64

64

Significand₂

64

1 5 8 50

10

10
Exponent₂

10

Fig. 2. Decimal-64 FP format and the related adder architecture

Fig. 2. Decimal-64 FP format and the related adder architecture

51

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

manipulatable, DPD-to-BCD (or other arithmetic friendly
encoding of decimal digits) expansion and the reverse
compression are required before and after each arithmetic
operation. This leads to extra power dissipation and

Since the trailing 50 bits of the significand are not directly manipulatable, DPD-to-BCD (or other arithmetic

friendly encoding of decimal digits) expansion and the reverse compression are required before and after

each arithmetic operation. This leads to extra power dissipation and 4 δ𝑔𝑔 delay overhead per conversion.

Additionally, wider or extra registers are required to accommodate the converted significand (e.g., 64 bits

in case of BCD) and extracted exponent (e.g., 10 bits in case of Decimal-64). For instance, some research

reports have used 75-bit [12] or 83-bit [9] specialized registers for decoded Decimal-64 DPD operands.

Additionally, a DPD-based commercial realization of Decimal-128 uses separate registers for significand

(144-bit) and exponent (16-bit) [5].

5

 5 DPD-encoded Triple BCD digits

16-digit BCD Significand Adder

 , MSD NC

DPD-to-BCD Expansion

MSD 15 BCD digits

Extractor

50

Exponent Adder

60

MSD 15 BCD digits

5

 5 DPD-encoded Triple BCD digits , MSD NC

BCD-to-DPD CompressionCompactor

60

50

42

42

64

64

Significand₂

64

1 5 8 50

10

10
Exponent₂

10

Fig. 2. Decimal-64 FP format and the related adder architecture

4-1- The Intermediate BCC FP Format

The forward DPD-to-BCC conversion, only affects the trailing 50 bits of DPD significand, which is to be

converted to five BCC digits comprising to trailing 50 bits of BCC significand. Hence, the resulted BCC-

64 FP operand perfectly fit in the commonly used 64-bit registers and memory words (see Fig. 3), while

the trailing 50 bits (i.e., five BCC digits) are readily available to be directly manipulated. The MSD and

exponent extraction, out of the combination field, and the reverse compaction are undertaken exactly in the

delay overhead per conversion. Additionally, wider or
extra registers are required to accommodate the converted
significand (e.g., 64 bits in case of BCD) and extracted
exponent (e.g., 10 bits in case of Decimal-64). For instance,
some research reports have used 75-bit [12] or 83-bit [9]
specialized registers for decoded Decimal-64 DPD operands.
Additionally, a DPD-based commercial realization of
Decimal-128 uses separate registers for significand (144-bit)
and exponent (16-bit) [5].

4-1- The Intermediate BCC FP Format
The forward DPD-to-BCC conversion, only affects the

trailing 50 bits of DPD significand, which is to be converted
to five BCC digits comprising to trailing 50 bits of BCC
significand. Hence, the resulted BCC-64 FP operand perfectly
fit in the commonly used 64-bit registers and memory words
(see Fig. 3), while the trailing 50 bits (i.e., five BCC digits)
are readily available to be directly manipulated. The MSD and
exponent extraction, out of the combination field, and the
reverse compaction are undertaken exactly in the same way as
in the DPD-to-BCD expansion and the reverse compression.
The cost and delay of forward extraction (backward
compaction) as can be easily Figured out from [7, 23], and
shown in Section 5, correspond to only seven and two gates
(six and two gates), respectively.

Note that the MSD extraction is obviously off the critical
delay path of addition operation in both DPD and BCC cases.
However, the combination field compaction is off the critical
delay path only in the BCC case, since the MSD (i.e., a BCD
digit) is available two gates earlier than BCC digits (see [21]).

Nevertheless, the main advantages of BCC encoding are:
1.	 The BCC significand is directly manipulatable. No

interoperation conversion is required until a result is to be
reported to an output device, where BCC-to-DPD conversion
is required. The required logic for DPD-to-BCC and the
reverse conversions, which can be implemented within the
I/O processor, are given in Section 5.

2. The significand adder is 54-bit wide in comparison to a
64-bit adder in the DPD case.

4-2- BCC Exponent Base
When the exponent difference of two BCC FP addition

operands is not a multiple of 3, the required alignment
shift operation is nontrivial and rather complex. The same
problem, noted in addition to two BID-encoded [7] decimal
FP operands [26] may be accure more seriously. However, the
BCC alignment complexity can be mitigated by allowing the
BCC exponent base to be 1000; thus, leading to multiple-of-3
exponents and simple BCC shifts.

4-3- Mixed BCC/binary FP Adders
Double (quadruple) precision binary FP addition

according to IEEE 754-2019 standard requires 53-bit (113-bit)
binary adders, while the proposed BCC FP addition scheme is
based on 54-bit (114-bit) binary adders for Decimal-64 (-128)
operands. Therefore, the latter can be shared by the binary
FP addition unit, where only one bit of the available capacity
is not used. However, in the common case where the DPD
operands are converted to 64-bit (136-bit) BCD numbers, 11
(23) bits of the additional capacity are unused, while normally
contribute to additional power dissipation.

5- IMPLEMENTATION DETAILS
This section provides the required logical expressions for

5

 5 BCC digits

54-bit Significand Adder

 ℎℎ, MSD NC

MSD 5 BCC digits

Extractor 50

Exponent Adder

MSD 5 BCC digits

 ℎℎ

 ℎℎ

5

 5 BCC digits ℎℎ, MSD NC

Compactor
50

42

42

54

54

Significand₂

54

1 5 8 50

10

10
Exponent₂

10

Fig. 3. BCC-64 FP format and the related adder architecture

Fig. 3. BCC-64 FP format and the related adder architecture

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

52

the DPD-to-BCD expansion, BCD-to-DPD compression,
extraction, and compaction. Moreover, details of the
proposed DPD-to-BCC and BCC-to-DPD conversions are
comprised.

5-1- DPD-to-BCD Expansion and BCD-to-DPD Compression
Since the DPD digits are not directly manipulatable, DPD-

to-BCD expansion and reverse compression are required
before and after each arithmetic operation. This requirement
is depicted in the architecture of Decimal-64 FP of Fig. 2 and
entails delay, cost, and power dissipation. Recall that each
DPD digit pqrstuvwxy expanded to three BCD digits
B abcd= , C efgh= , and D ijkm= before performing
arithmetic operations in the architecture of Decimal-64 FP
format. Likewise, reverse compression is required for storing
the results.

The following logic expressions describing each DPD
output bit during compression with 47 δ#g cost and 4 αä g
delay:

	
() () ()p b a j a i f a e i= ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∧

	
() () ()q c a k a i g a e i= ∧ ∨ ∧ ∧ ∨ ∧ ∧ ∧

	
r d=

	
()() ()() ()s f e a i j a e i e i= ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

	
()() ()() ()t g e a i k a e i a i= ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

u h=
	

v a e i= ∨ ∨
	

() ()w a e i j e i= ∨ ∧ ∨ ∧ ∧
	

() ()x e a i k a i= ∨ ∧ ∨ ∧ ∧
	

y m=

Likewise, the logic expressions describing each output bit

during expansion with 51δ#g cost and 4 αä g delay are as
follows:

	
() ()()a v w x s s t= ∧ ∧ ∨ ∨ ∧

	
()()b p v w x s t= ∧ ∨ ∨ ∧ ∧

	
()()c q v w x s t= ∧ ∨ ∨ ∧ ∧

	
d r=

	
() ()()()e v w x w x s t= ∧ ∧ ∨ ∧ ∧ ∨

	
()()() ()f s v v x p v w x s t= ∧ ∨ ∧ ∨ ∧ ∧ ∧ ∧ ∧

	
()()() ()g t v v x q v w x s t= ∧ ∨ ∧ ∨ ∧ ∧ ∧ ∧ ∧

	
h u=

	
() ()()()i v w x w x s t= ∧ ∧ ∨ ∧ ∧ ∨

	
() () ()()()j w v s v w x p v w x s t= ∧ ∨ ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

	
() () ()()()k x v t v w x q v w x s t= ∧ ∨ ∧ ∧ ∧ ∨ ∧ ∧ ∧ ∨ ∧

	
m y=

5-2- EXTRACTION AND COMPACTION
The MSD and exponent extraction, out of the combination

field, and the reverse compaction in the architecture of Fig. 3
are undertaken exactly in the same way as in the architecture
of Fig. 2. The cost and delay of forward extraction as is
depicted in Fig. 4 (a) (backward compaction as is depicted in
Fig. 4 (b)) corresponds to only 7 #g and

The MSD and exponent extraction, out of the combination field, and the reverse compaction in the

architecture of Fig. 3 are undertaken exactly in the same way as in the architecture of Fig. 2. The cost and

delay of forward extraction as is depicted in Fig. 4 (a) (backward compaction as is depicted in Fig. 4 (b))

corresponds to only 7#𝑔𝑔 and 2δ𝑔𝑔 (6#𝑔𝑔 and 2δ𝑔𝑔), respectively.

5-3- The Proposed DPD-to-BCC and BCC-to-DPD Conversions

This subsection provides the required logic for DPD-to-BCC and BCC-to-DPD conversions, which can be

implemented within the I/O processor. Fig. 5 depicts a straightforward solution for DPD-to-BCC (a) and

BCC-to-DPD (b), where BCD serves as an intermediate format. DPD-to-BCD expansion and the reverse

compression are the same as ones in subsection 5.1 and logics for BCD-to-binary and the reverse converters

are given here.

a) Extractor Logic b) Compactor Logic

Fig. 4. Details of the extractor (a) and compactor (b) blocks in Figs. 2 and 3
DPD declet

DPD-to-BCD Expansion

BCD-to-binary Converter

10

4 44

BCC digit

10

BCC digit

Binary-to-BCD Converter

BCD-to-DPD Compression

10

4 44

DPD declet

10

a) b)

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters

Fig. 6 depicts a weighted bit set (WBS) that collectively represents the binary equivalent of three BCD

digits 𝐵𝐵 𝐶𝐶 𝐷𝐷, which arithmetic's value can be expressed as in (1), where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒ℎ, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, represent

the equivalent of 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷, respectively.

100𝐵𝐵 + 10𝐶𝐶 + 𝐷𝐷 = 800𝑎𝑎 + 400𝑏𝑏 + 200𝑐𝑐 + 100𝑑𝑑 + 80𝑒𝑒 + 40𝑓𝑓 + 20𝑔𝑔 + 10ℎ + 8𝑖𝑖 + 4𝑗𝑗 + 2𝑘𝑘 + 𝑚𝑚 (1)

 (6#g and

The MSD and exponent extraction, out of the combination field, and the reverse compaction in the

architecture of Fig. 3 are undertaken exactly in the same way as in the architecture of Fig. 2. The cost and

delay of forward extraction as is depicted in Fig. 4 (a) (backward compaction as is depicted in Fig. 4 (b))

corresponds to only 7#𝑔𝑔 and 2δ𝑔𝑔 (6#𝑔𝑔 and 2δ𝑔𝑔), respectively.

5-3- The Proposed DPD-to-BCC and BCC-to-DPD Conversions

This subsection provides the required logic for DPD-to-BCC and BCC-to-DPD conversions, which can be

implemented within the I/O processor. Fig. 5 depicts a straightforward solution for DPD-to-BCC (a) and

BCC-to-DPD (b), where BCD serves as an intermediate format. DPD-to-BCD expansion and the reverse

compression are the same as ones in subsection 5.1 and logics for BCD-to-binary and the reverse converters

are given here.

a) Extractor Logic b) Compactor Logic

Fig. 4. Details of the extractor (a) and compactor (b) blocks in Figs. 2 and 3
DPD declet

DPD-to-BCD Expansion

BCD-to-binary Converter

10

4 44

BCC digit

10

BCC digit

Binary-to-BCD Converter

BCD-to-DPD Compression

10

4 44

DPD declet

10

a) b)

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters

Fig. 6 depicts a weighted bit set (WBS) that collectively represents the binary equivalent of three BCD

digits 𝐵𝐵 𝐶𝐶 𝐷𝐷, which arithmetic's value can be expressed as in (1), where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒ℎ, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, represent

the equivalent of 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷, respectively.

100𝐵𝐵 + 10𝐶𝐶 + 𝐷𝐷 = 800𝑎𝑎 + 400𝑏𝑏 + 200𝑐𝑐 + 100𝑑𝑑 + 80𝑒𝑒 + 40𝑓𝑓 + 20𝑔𝑔 + 10ℎ + 8𝑖𝑖 + 4𝑗𝑗 + 2𝑘𝑘 + 𝑚𝑚 (1)

), respectively.

5-3- The Proposed DPD-to-BCC and BCC-to-DPD
Conversions

This subsection provides the required logic for DPD-
to-BCC and BCC-to-DPD conversions, which can be
implemented within the I/O processor. Fig. 5 depicts a
straightforward solution for DPD-to-BCC (a) and BCC-to-
DPD (b), where BCD serves as an intermediate format. DPD-

a) Extractor Logic b) Compactor Logic
Fig. 4. Details of the extractor (a) and compactor (b) blocks in Figs. 2 and 3

Fig. 4. Details of the extractor (a) and compactor (b) blocks in Figs. 2 and 3

53

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

to-BCD expansion and the reverse compression are the same
as ones in subsection 5.1 and logics for BCD-to-binary and
the reverse converters are given here.

Fig. 6 depicts a weighted bit set (WBS) that collectively
represents the binary equivalent of three BCD digits B C D
, which arithmetic’s value can be expressed as in (1), where
abcd , efgh , and ijkm , represent the equivalent of B , C
, and D , respectively.

The MSD and exponent extraction, out of the combination field, and the reverse compaction in the

architecture of Fig. 3 are undertaken exactly in the same way as in the architecture of Fig. 2. The cost and

delay of forward extraction as is depicted in Fig. 4 (a) (backward compaction as is depicted in Fig. 4 (b))

corresponds to only 7#𝑔𝑔 and 2δ𝑔𝑔 (6#𝑔𝑔 and 2δ𝑔𝑔), respectively.

5-3- The Proposed DPD-to-BCC and BCC-to-DPD Conversions

This subsection provides the required logic for DPD-to-BCC and BCC-to-DPD conversions, which can be

implemented within the I/O processor. Fig. 5 depicts a straightforward solution for DPD-to-BCC (a) and

BCC-to-DPD (b), where BCD serves as an intermediate format. DPD-to-BCD expansion and the reverse

compression are the same as ones in subsection 5.1 and logics for BCD-to-binary and the reverse converters

are given here.

a) Extractor Logic b) Compactor Logic

Fig. 4. Details of the extractor (a) and compactor (b) blocks in Figs. 2 and 3
DPD declet

DPD-to-BCD Expansion

BCD-to-binary Converter

10

4 44

BCC digit

10

BCC digit

Binary-to-BCD Converter

BCD-to-DPD Compression

10

4 44

DPD declet

10

a) b)

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters

Fig. 6 depicts a weighted bit set (WBS) that collectively represents the binary equivalent of three BCD

digits 𝐵𝐵 𝐶𝐶 𝐷𝐷, which arithmetic's value can be expressed as in (1), where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒ℎ, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, represent

the equivalent of 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷, respectively.

100𝐵𝐵 + 10𝐶𝐶 + 𝐷𝐷 = 800𝑎𝑎 + 400𝑏𝑏 + 200𝑐𝑐 + 100𝑑𝑑 + 80𝑒𝑒 + 40𝑓𝑓 + 20𝑔𝑔 + 10ℎ + 8𝑖𝑖 + 4𝑗𝑗 + 2𝑘𝑘 + 𝑚𝑚 (1)

The MSD and exponent extraction, out of the combination field, and the reverse compaction in the

architecture of Fig. 3 are undertaken exactly in the same way as in the architecture of Fig. 2. The cost and

delay of forward extraction as is depicted in Fig. 4 (a) (backward compaction as is depicted in Fig. 4 (b))

corresponds to only 7#𝑔𝑔 and 2δ𝑔𝑔 (6#𝑔𝑔 and 2δ𝑔𝑔), respectively.

5-3- The Proposed DPD-to-BCC and BCC-to-DPD Conversions

This subsection provides the required logic for DPD-to-BCC and BCC-to-DPD conversions, which can be

implemented within the I/O processor. Fig. 5 depicts a straightforward solution for DPD-to-BCC (a) and

BCC-to-DPD (b), where BCD serves as an intermediate format. DPD-to-BCD expansion and the reverse

compression are the same as ones in subsection 5.1 and logics for BCD-to-binary and the reverse converters

are given here.

a) Extractor Logic b) Compactor Logic

Fig. 4. Details of the extractor (a) and compactor (b) blocks in Figs. 2 and 3
DPD declet

DPD-to-BCD Expansion

BCD-to-binary Converter

10

4 44

BCC digit

10

BCC digit

Binary-to-BCD Converter

BCD-to-DPD Compression

10

4 44

DPD declet

10

a) b)

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters

Fig. 6 depicts a weighted bit set (WBS) that collectively represents the binary equivalent of three BCD

digits 𝐵𝐵 𝐶𝐶 𝐷𝐷, which arithmetic's value can be expressed as in (1), where 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒ℎ, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, represent

the equivalent of 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷, respectively.

100𝐵𝐵 + 10𝐶𝐶 + 𝐷𝐷 = 800𝑎𝑎 + 400𝑏𝑏 + 200𝑐𝑐 + 100𝑑𝑑 + 80𝑒𝑒 + 40𝑓𝑓 + 20𝑔𝑔 + 10ℎ + 8𝑖𝑖 + 4𝑗𝑗 + 2𝑘𝑘 + 𝑚𝑚 (1)

�
(1)

The 4-deep WBS is reduced to a 2-deep one via half
adders, full adders, and (4; 2) compressors, as appropriate,
followed by an 8-bit adder that produces the final BCC digit.
Bit dependencies such as 0ab = and 0eg = , and the like
are used to simplify the required logic.

The reverse BCC-to-BCD converter is illustrated in Fig. 7,
which is designed based on the work of [27].

5-4- Synthesis Results
We have described all the blocks listed in Figs. 2 and 3 with

HDL for a more accurate evaluation and also for verification
(with 100,000 random inputs to check accuracy). Such codes
are used by Synopsys Design Compiler to synthesize all units
through the standard method of TSMC 0.90 µì m CMOS
technology under normal operating conditions (core voltage
1.2 V and operating temperature 25 °C).

Table 4 shows the delay, area, and power dissipation for
the DPD-to-BCD expansion and the reverse compression,
the DPD-to-BCC converter, and the reverse blocks. As was
expected, the results show a substantial delay, area, and
power overhead. However, note that total power dissipation
is expected to considerably reduce since the number of
conversions in the latter case is far less than that of the
former. To illustrate this reduction in the number of needed
conversions, Section 6 studies a case study.

6- CASE STUDY
The TELCO benchmark is a decimal number system

based on telephone billing application developed by IBM
to analyze the balance between I/O time and calculation

DPD declet

DPD-to-BCD Expansion

BCD-to-binary Converter

10

4 44

BCC digit

10

BCC digit

Binary-to-BCD Converter

BCD-to-DPD Compression

10

4 44

DPD declet

10

a) b)

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters

time in a billing system for a telecommunications company
[28]. The benchmark offers an example of a compliant set of
multiplication and addition operations for IEEE 754-2019.
The conversions from the IEEE-754 DPD to computationally
efficient formats of BCD and BCC, which take place as a case
study within the operations of a telephone billing application,
through the TELCO benchmark, are the subject of our
assessment.

Note that conversion errors might lead to incorrect

Fig. 5. The proposed DPD-to-BCC (a) and BCC-to-DPD (b) converters

29 28 27 26 25 24 23 22 21 20
𝑎𝑎 𝑎𝑎 𝑏𝑏 𝑒𝑒 𝑓𝑓 𝑒𝑒 𝑖𝑖 𝑗𝑗 𝑘𝑘 𝑚𝑚
 𝑏𝑏 𝑐𝑐 𝑐𝑐 𝑎𝑎 𝑔𝑔 𝑓𝑓 𝑔𝑔 ℎ
 𝑑𝑑 𝑑𝑑 𝑏𝑏 ℎ 𝑑𝑑
 𝑐𝑐

𝑎𝑎 𝑢𝑢8 𝑢𝑢7 𝑢𝑢6 𝑢𝑢5 𝑢𝑢4 𝑢𝑢3 𝑢𝑢2 𝑢𝑢1 𝑚𝑚
 𝑣𝑣8 𝑣𝑣7 𝑣𝑣6 𝑣𝑣5 𝑣𝑣4 𝑣𝑣2

𝑠𝑠9 𝑠𝑠8 𝑠𝑠7 𝑠𝑠6 𝑠𝑠5 𝑠𝑠4 𝑠𝑠3 𝑠𝑠2 𝑠𝑠1 𝑠𝑠0
Fig. 6. BCD-to-binary converter block in Fig. 5

 ₀ ₉ ₈ ₇ ₆ ₂ ₄ ₃ ₁ ₅

 ₀ ₂ ₃ ₁ ₀ ₂ ₃ ₁ ₀ ₂ ₃ ₁

ʻ ʼ

ʻ ʼ

Fig. 7. 10-bit binary to 3-digit BCD numbers converter in block 4

Fig. 6. BCD-to-binary converter block in Fig. 5

Fig. 7. 10-bit binary to 3-digit BCD numbers converter in block 4

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

54

results when a decimal calculation is performed using binary
floating-point arithmetic. Fig. 8 presents an example of a 5%
tax levied on a telephone call at a rate of EUR 0.70, rounded
to the nearest cent (ties to even). The result is one cent less
than expected (tax calculations are governed by law), using
a double-precision binary floating-point for the calculation.
These systemic one-cent errors add up, so the annual losses
for a cell phone company with millions of calls a day could
amount to over EUR 1 million [2].

Note that these errors are caused by a lack of binary
floating-point precision and not by rounding. Although
erroneous, these kinds of precisely rounded decimal results
are enforced by legal and financial criteria and are the
intended results of a decimal measurement.

Therefore, for financial calculations or any application
based on decimal human-oriented arithmetic, binary floating-
points cannot be used for they can neither comply with legal
requirements nor provide precisely rounded decimal results.

For processing telephone bills, the TELCO benchmark
executes the following code illustrated in Fig. 9 on decimal
data, where the number of calls per telephone subscriber (i.e.,
n) is typically several thousand. The number of required
DPD-to-BCD and reverse conversions amount to (18 3n +
) in the conventional DPD-only processing environment,

while the BCC case is only (2 4n +) due to BCC-to-DPD
conversions at the input and reverse at the output.

The number of conversions for each number of calls
is shown in Fig. 10 for the DPD and BCC architectures.
The prescribed number of calls is 1000-10000 per 1000 call
intervals. The gap between the DPD and the BCC curves
clearly shows the superiority of the BCC encoding.

7- CONCLUSIONS
Densely packed decimal (DPD) encoding is the commonly

used by one of the two encodings prescribed by the IEEE
754-2019 standard for FP decimal number representation

Table 4. Synthesis Results for Converters

Converter
Critical Path Area Power

[𝒏𝒏𝒏𝒏] Ratio NAND2 Ratio [𝝁𝝁𝝁𝝁] Ratio

DPD-to-BCD 0.175 1.00 1697 1.00 440 1.00
BCD-to-DPD 0.178 1.02 1785 1.05 479 1.09
DPD-to-BCC 0.320 1.83 2095 1.23 566 1.29
BCC-to-DPD 0.313 1.79 2160 1.27 518 1.18

Table 4. Synthesis Results for Converters

Decimal to Binary
Conversion (inexact)

Telephone billing

Binary Floating-
Point Unit

Binary to Decimal
Conversion (exact)

Fig. 8. An example of calculating a decimal tax using a binary floating-point (reproduced from [20])

Fig. 8. An example of calculating a decimal tax using a binary floating-point (reproduced from [20])

 𝑇𝑇 = 0;
 for 𝑖𝑖 = 1 to 𝑛𝑛 do
 𝑃𝑃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷;
 𝐵𝐵 = 𝑃𝑃 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵;
 𝐷𝐷 = 𝑃𝑃 × 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷;
 𝐶𝐶[𝑖𝑖] = 𝑃𝑃 + 𝐵𝐵 + 𝐷𝐷;
 𝑇𝑇 = 𝑇𝑇 + 𝐶𝐶[𝑖𝑖];
 end for;

Fig. 9. Pseudo-code for the computations in TELCO benchmark

Fig. 9. Pseudo-code for the computations in TELCO benchmark

55

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

Fig. 10. Number of conversions per number of calls for TELCO benchmark

0

50,000

100,000

150,000

200,000

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 1 0 0 0 0

N
U

M
B

ER
 O

F
C

O
N

V
ER

SI
O

N
S

NUMBER OF CALLS

DPD BCC

and arithmetic. Pre (post) conversion, to (from) arithmetic-
friendly decimal encodings (for instance, BCD) is mandatory,
for every arithmetic operation which results in additional
latency, power, and area consumption. While abiding by
IEEE 754-2019 DPD encoding for decimal data exchange and
secondary storage, we spot that the inherently manipulaTable
binary coded chiliad (BCC) encoding of decimal numbers
can be favored for internal representation of decimal numbers
due to succeeding properties:

Similar encoding effectiveness as DPD for storage of BCC
operands (i.e., 10 bits per three BCD digits), in registers and
primary memory.

· Latency, area, and power savings due to anticipating the
necessity for pre/post conversions meant for every arithmetic
operation. The only once required DPD-to-BCC and the
reverse conversions at the I/O ports can be delegated to I/O
processors, as is normally the case in DPD/BCD processing
environment

· Prospects for BCC arithmetic that are at least equally
efficient compared to the equivalent BCD or other radix-10
arithmetic, as in the case of addition even better performance
has been achieved.

· BCC-64 (BCC-128) equi-width registers and binary
double (quadruple) precision operands, which are important
for the sharing of decimal/binary hardware.

· To mitigate the complexity of BCC FP alignment shifts,
a base-1000 exponent format can be used.

Work is ongoing to investigate the impact of BCC
encoding on the processor design as well as on unified add /
subtract, multiplier, divider, and decimal FP units.

NOMENCLATURE
⋅ 	 stands for don’t care
 	 “small” digits 0 through 7
 	 “large” digits 8 and 9
p 	 number of significand digits
S 	 sign field
G 	 combination field

T 	 trailing significand
lE 	 embedded eight least significant bits of exponent E
hE 	 embedded two MSBs of exponent E

 minE 	 the minimum value of exponent E
 maxE 	 the maximum value of exponent E

ns 	 nanosecond
µì W 	 microwatt
αä g 	 delay of a simple gate
δ#g 	 cost of a simple gate

REFERENCES
[1]	 W. Buchholz, “Fingers or fists? (the choice of decimal or binary

representation),” in Communications of the ACM, pp. 3–11, 1959.
[2]	 M.F. Cowlishaw, “Decimal floating-point: algorism for computers,” in

Proceedings of the 16th IEEE Symposium on Computer Arithmetic
(ARITH ‘03), pp. 104–111, 2003.

[3]	 W.S. Brown, and P.L. Richman, “The Choice of Base,” in Communications
of the ACM, Vol. 12, pp. 560–561, 1969.

[4]	 S.R. Carlough, A. Collura, S.M. Mueller, and M. Kroener, “The IBM
zEnterprise-196 Decimal Floating-Point Accelerator,” in Proceedings
of the 20th IEEE Symposium on Computer Arithmetic (ARITH ‘11), pp.
139–146, 2011.

[5]	 C. Jacobi, and C. Webb, “History of IBM Z mainframe processors,” in
IEEE Micro, pp. 1–10, 2020.

[6]	 H.A.H. Fahmy, “Decimal Floating Point Number System,” in Embedded
Systems Design with Special Arithmetic and Number Systems,
Springer, 2017.

[7]	 IEEE Standards Committee, “IEEE 754-2019 Standard for Floating-
Point Arithmetic,” Revision of IEEE 754-2008, IEEE Computer Society
Standard, pp. 1–84, 2019.

[8]	 L.-K. Wang, M.J. Schulte, J.D. Thompson, and N. Jairam, “Hardware
Designs for Decimal Floating-Point Addition and Related Operations,”
in IEEE Transactions on Computers, Vol. 58, No. 3, pp. 322–335, 2009.

[9]	 L.-K. Wang, and M.J. Schulte, “A Decimal Floating-Point Adder with
Decoded Operands and a Decimal Leading-Zero Anticipator,” in
Proceedings of the 19th IEEE Symposium on Computer Arithmetic
(ARITH ‘09), pp. 125–134, 2009.

[10]	Á. Vázquez, and E. Antelo, “A High-Performance Significand BCD Adder
with IEEE 754-2008 Decimal Rounding,” in Proceedings of the 19th IEEE
Symposium on Computer Arithmetic (ARITH ‘09), pp. 135–144, 2009.

[11]	M.A. Erle, B.J. Hickmann, and M.J. Schulte, “Decimal Floating-Point
Multiplication,” in IEEE Transactions on Computers, Vol. 58, No. 7, pp.

Fig. 10. Number of conversions per number of calls for TELCO benchmark

M. Dorrigiv., AUT J. Elec. Eng., 53(1) (2021) 47-56, DOI: 10.22060/eej.2020.19022.5379

56

902–916, 2009.
[12]	C. Minchola, and G. Sutter, “An FPGA IEEE 754-2008 Decimal Floating-

Point Multiplier,” in International Conference on Reconfigurable
Computing and FPGAs, pp. 59–64, 2009.

[13]	C. Lichtenau, S. Carlough, and S.M. Mueller, “Quad Precision Floating
Point on the IBM z13,” in Proceedings of the 23rd IEEE Symposium on
Computer Arithmetic (ARITH ‘16), pp. 87-94, 2016.

[14]	A.A. Wahba, and H.A.H. Fahmy, “Area Efficient and Fast Combined
Binary/Decimal Floating-Point Fused Multiply Add Unit,” in IEEE
Transactions on Computers, Vol. 66, No. 2, pp. 226-239, 2017.

[15]	R. Mian, M. Shintani, and M. Inoue, “Cycle-Accurate Evaluation of
Software-Hardware Co-Design of Decimal Computation in RISC-V
Ecosystem,” in Proceedings of the 32nd IEEE International System-on-
Chip Conference (SOCC), pp. 412-417, 2019.

[16]	Á. Vázquez, E. Antelo, and P. Montuschi, “A New Family of High-
Performance Parallel Decimal Multipliers,” in Proceedings of the 18th
IEEE Symposium on Computer Arithmetic (ARITH ‘07), pp. 195–204,
2007.

[17]	IEEE 754-2008 Working Group Mail Archive, available at http://grouper.
ieee.org/groups/754/email/msg00801.html, 2003, retrieved on June 9, 2021.

[18]	S. Emami, M. Dorrigiv, and G. Jaberipur, “Radix-10 Addition with
Radix-1000 Encoding of Decimal Operands,” in Proceedings of the 16th
CSI International Symposiums on Computer Architecture & Digital
Systems, pp. 139–144, 2012.

[19]	Á. Vázquez, and E. Antelo, “Conditional Speculative Decimal Addition,”
in Proceedings of the 7th Conference on Real Numbers and Computers,

pp. 47–57, 2006.
[20]	Á. Vázquez, “High-Performance Decimal Floating-Point Units,” Ph.D.

dissertation, Univ Santiago de Compostela, 2009.
[21]	M. Dorrigiv, and G. Jaberipur, “Conditional speculative mixed decimal/

binary adders via binary-coded-chiliad encoding,” in Computers &
Electrical Engineering, Vol. 50, pp. 39–53, 2016.

[22]	M. Dorrigiv, “The IEEE 754-2019 Compatibility of the Binary Coded
Chiliad (BCC) Encoding,” in Proceedings of the 20th CSI International
Symposiums on Computer Architecture & Digital Systems, in print,
2020.

[23]	M. Cowlishaw, “Densely packed decimal encoding,” in IEE Proceedings
- Computers and Digital Techniques, Vol. 149, No. 3, pp. 102–104, 2002.

[24]	IEE/ISO/IEC 60559:2020, “ISO/IEC/IEEE International Standard
- Floating-point arithmetic,” International Organization for
Standardization, pp. 1–86, 2020.

[25]	J.M. Muller, N. Brisebarre, F. de Dinechin, C. Jeannerod, V. Lefèvre, G.
Melquiond, N. Revol, D. Stehlé, and S. Torres, “Handbook of Floating-
Point Arithmetic,” Birkhäuser, 2010.

[26]	C. Tsen, S. Gonzalez-Navarro, and M.J. Schulte, “Hardware Design of
a Binary Integer Decimal-based Floating-Point Adder,” in Proceedings
of the 25th IEEE International Conference on Computer Design, pp.
288–295, 2007.

[27]	J.D. Nicoud, “Iterative Arrays for Radix Conversion,” in IEEE Transactions
on Computers, Vol. C-20, No. 12, pp.1479–1489, 1971.

[28]	IBM Corporation, “The ‘telco’ benchmark,” available at http://speleotrove.
com/decimal/telco.html, retrieved on September 27, 2020.

HOW TO CITE THIS ARTICLE
Dorrigiv, M. New Insight on the Application of Binary Coded Chiliad (BCC) Encoding
for Decimal Arithmetic. AUT J. Elec. Eng., 53(1) (2021). 47-56.

DOI: 10.22060/eej.2020.19022.5379

