[1] M.-F. Sagot. "Spelling approximate repeated or common motifs using a suffix tree", In C. L. Lucchesi and A. V. Moura, editors, LATIN’98: Theoretical Informatics, Lecture Notes in Computer Science, pp. 111–127. Springer-Verlag, 1998.
[2] G. Pavesi, G. Mauri, G. Pesole, "An algorithm for finding signals of unknown length in DNA sequences", Bioinformatics;17 Suppl 1:S207-14, 2001.
[3] E. Eskin, U. Keich, M. S. Gelfand, P. A. Pevzner. “Genome-Wide Analysis of Bacterial Promoter Regions.” In Proc. of the Pacific Symposium on Biocomputing (PSB-2003). Kaua’i, Hawaii: January 3-7, 2003.
[4] G. Z. Hertz, and G. D. Stormo, “Identifying DNA and protein patterns with statistically significant alignments of multiple sequences”, Bioinformatics. 15(7-8):563-77,1999.
[5] T. L. Bailey, and C. Elkan, "The value of prior knowledge in discovering motifs with MEME", Proc. Int. Conf. Intell. Syst. Mol. Biol., 3, 21–29, 1995.
[6] C. E. Rouchka, A brief overview of Gibbs sampling." [online] Available:http://kbrin.a-bldg.louisville.edu/rouchka/HOMEPAGE/PAPERS/gibbs.pdf.
[7] N. Karaoglu, S. M. Stroh, and B. Manderick, "GAMOT: An Efficient Genetic Algorithm for Finding Challenging Motifs in DNA Sequences", In Proc. of Trim Siz, 2006.
[8] C. T. Hardin, E. C. Rouchka, “DNA motif detection using particle swarm optimization and expectation-maximization”, In IEEE Proc. of Swarm Intelligence Symposium, SIS, pp. 181- 184, 2005.
[9] U. Keich and P. Pevzner. Finding motifs in the twilight zone. In Proceedings of the Sixth Annual International Conference on Research in Computational Molecular Biology, RECOMB, pages 195–204, 2002.
[10] E. Rocke and M. Tompa. An algorithm for finding novel gapped motifs in DNA sequences. In Sorin Istrail, Pavel Pevzner, and Michael Waterman, editors, Proceedings of the 2nd Annual International Conference on Computational Molecular Biology (RECOMB-98), pages 228–233, New York, 1998. ACM Press.
[11] L. Yang, E. Huang, and V.B. Bajic. Some implementation issues of heuristic methods for motif extraction from dna sequences. Int.J.Comp.Syst.Signals (To Appear), 2004.
[12] M.-F. Sagot. "Spelling approximate repeated or common motifs using a suffix tree", In C. L. Lucchesi and A. V. Moura, editors, LATIN’98: Theoretical Informatics, Lecture Notes in Computer Science, pp. 111–127. Springer-Verlag, 1998.
[13] G. Pavesi, G. Mauri, G. Pesole, "An algorithm for finding signals of unknown length in DNA sequences", Bioinformatics;17 Suppl 1:S207-14, 2001.
[14] E. Eskin, U. Keich, M. S. Gelfand, P. A. Pevzner. “Genome-Wide Analysis of Bacterial Promoter Regions.” In Proc. of the Pacific Symposium on Biocomputing (PSB-2003). Kaua’i, Hawaii: January 3-7, 2003.
[15] G. Z. Hertz, and G. D. Stormo, “Identifying DNA and protein patterns with statistically significant alignments of multiple sequences”, Bioinformatics. 15(7-8):563-77, 1999.
[16] T. L. Bailey, and C. Elkan, "The value of prior knowledge in discovering motifs with MEME", In Proceeding of International Conference on Intelligent Systems and Molecular Biology, Vol. 3, pp. 21–29, 1995.
[17] X. Wu, J. Cheng, C. Song, and B. Wang. A combined model and a varied gibbs sampling algorithm used for motif discovery. In Yi-Ping Phoebe Chen, editor, 2nd Asia-Pacific Bioinformatics Conference, volume 29 of CRPIT, pp. 99-104, Dunedin, New Zealand, 2004. ACS.
[18] N. Karaoglu, S. M. Stroh, and B. Manderick, "GAMOT: An Efficient Genetic Algorithm for Finding Challenging Motifs in DNA Sequences", In Proc. of Trim Siz, 2006.
[19] J. Zhu and M. Zhang. “SCPD: a promoter database of the yeast Saccharomyces cerevisiae”, Bioinformatics 15:563-577, 1999.
[20] J. Kennedy and R. Eberhart, "Particle swarm optimization", in Proc. IEEE Int. Conf. Neural Networks, vol. 4, 1995, pp. 1942–1947.
[21] B. C. H. Chang, A. Ratnaweera, and S. K. Halgamuge, "Particle Swarm Optimization for Protein Motif Discovery", In journal of Genetic Programming and Evolvable Machines, Vol. 5, pp. 203–214, 2004.
[22] C. T. Hardin, E. C. Rouchka, “DNA motif detection using particle swarm optimization and expectation-maximization”, In IEEE Proc. of Swarm Intelligence Symposium, SIS, pp. 181- 184, 2005.
[23] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm optimization,” in Proc. Evolutionary Programming VII, vol. 1447, 1998, pp. 591–600.
[24] H. Hoos, and T. Stützle, “Stochastic Local Search: Foundations and Applications”, Morgan Kaufmann Publishers, San Francisco, CA, USA. 2004.
[25] R. Akbari, K. Ziarati, “Combination of Particle Swarm Optimization and Stochastic Local Search for Multimodal Function Optimization”, In proceeding of IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 388-392, 2008.
[26] M. O. Rayes, V. Trevisan, “Factorization of Chebyshev Polynomials”, 1998.
[27] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients”, In IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 240-255, 2004.
[28] Chia-Nan Ko a,*, Ying-Pin Chang b, Chia-Ju Wu, “An orthogonal-array-based particle swarm optimizer with nonlinear time-varying evolution”, Applied Mathematics and Computation 191 (2007) 272–279.
[29] J. Riget, and J. S. Vesterstrom, “A Diversity-guided Particle Swarm Optimizer-The ARPSO EVALife”, Tech. Rep. 2002-02.
[30] S. T. Hsieh, T. Y. Sun, C. L. Lin, and C. C. Liu, “Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer”, In IEEE Transactions on Evolutionary Computation, Vol. ,No. , pp. , 2007.
[31] J. H. Seo1, C. H. Im, C. G. Heo, J. K. Kim, H. K. Jung, and C. G. Lee. “Multimodal Function Optimization Based on Particle Swarm Optimization”, In IEEE Transaction on Magnetics, Vol. 42, No. 4, pp. 1095-1098, 2006.
[32] R. Akbari, and K. Ziarati, “A Rank Based Particle Swarm optimization with Dynamic Adaptation”, Journal of Computational and Applied Mathematics, Elsevier, Vol. 235, No. 8, pp. 2694-2714, 2011.