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ABSTRACT 

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction 

optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based 

algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent 

produces a bud through a reproduction operator; thereafter the parent and its bud compete to survive 

according to a performance index obtained from the underlying objective function of the optimization 

problem; this leads to the fitter individual. The convergence measure of ARO is analyzed. The proposed 

method is applied to real-world and benchmark applications, while its effectiveness is demonstrated through 

computer simulations. Results of simulation show that ARO outperforms GA because ARO results in good 

structure and fast convergence rate in comparison with GA. 
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1.  INTRODUCTION 

In the last few years Bayesian networks (BN) have 

become a popular way of modeling probabilistic 

relationships among a set of variables for a given domain 

[1, 2]. The BN is a graphical model that denotes joint 

probabilistic distribution among variables of interest based 

on the variables’ probabilistic relationships. The structure 

of the BN is represented as a directed acyclic graph 

(DAG). In a DAG, each node represents a variable that 

takes on a value over both continuous and discrete data set 

of domain and is connected with its parent’s nodes. Each 

arc represents the conditional dependency between the two 

nodes so connected. With the development of large-scale 

database systems, the BN has become a popular 

knowledge representational scheme for probabilistic 

knowledge in data mining and knowledge discovery [1]-

[4]. 

In building the BN, which represents the conditional 

dependencies in a database of cases, the problem of 

searching for the structure of the BN is both important and 

difficult. Although sometimes experts can create good 

Bayesian networks from their own experience, it can be a 

very hard task for large domains. Therefore, many 

methods have been investigated to automate the creation 

of Bayesian networks using cases collected from past 

experience [5]–[11]. The automated creation of a 

Bayesian network can be separated into two tasks, 

structure learning, which consists of creating the structure 

of the Bayesian network from the collected data, and 

parameter learning, which consists of calculating the 

numerical parameters for a given structure. 

This work will focus on the structure learning problem. 

Although other methods have been described for such 

learning, the method considered in this paper relies on 

searching the structure which best fits the collected data. 

This method can be seen as an optimization problem: 

having a formula quality measure which gives the fitness 

of the structures, the structure that maximizes that formula 

must be found using a search procedure.  

The number of possible structures is huge and it has 

been proved that the search is NP-hard [12]. Therefore, 

heuristic search procedures have been tried.  

In this paper, a new structure learning method of the 

BNs based on asexual reproduction optimization genetic 

algorithm is proposed. This algorithm is a structural 

learning method based on free optimization algorithm 

inspired by one of the astounding biological phenomenon, 

asexual reproduction; hence we entitle it Asexual 

Reproduction Optimization (ARO). ARO is an individual 

based algorithm which intelligently guides the search 

process and it can reach to the global optimum. It 
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meanwhile escapes from local optima by adaptively 

exploration and exploitation as inspired by the biological 

model. In the proposed method, BN structure is 

represented as chromosomes and it learns the topologies 

of the BN nodes. 

This paper is organized as follows. In Section 2, a brief 

introduction to BNs is given. Section 3 introduces 

structure learning of the BN. ARO is completely described 

in Section 4. In section 5 our proposed method for BN 

structure learning is introduced. Section 6 shows the 

convergence measures of the ARO algorithm.  In Section 

7, the proposed method is applied to real-world and 

benchmark problems and the results and analysis are 

shown. Finally, some conclusions are drawn in Section 8. 

2.  BAYESIAN NETWORKS 

During the last decade, Bayesian networks (and 

probabilistic graphical models in general) have become 

very popular in artificial intelligence [1, 2]. A Bayesian 

network (BN) provides a means of encoding the 

dependencies between a set of random variables, where 

the random variables and dependencies are represented as 

the nodes and edges of a directed acyclic graph. Missing 

edges (which imply conditional independence) are 

exploited in order to factor the joint distribution of all 

random variables into a set of simpler probability 

distributions. 

A Bayesian network expresses a joint probability 

distribution over a set of random variables, and consists 

of: 

A set of random variables
1,..., nX X , a directed acyclic 

graph in which each variable appears once. The immediate 

predecessors of a variable 
iX Xi are referred to as its 

parents, with values ( )iParents X . The joint probability 

distribution is factored as: 

1 1

1

( ,..., )

( | ( ))

n n

n

i i i

i

P X x X x

p X x Parents x


  


 

(1) 

 

Figure 1 shows a simple BN. When the variables are 

discrete, a tabular representation is used for conditional 

probabilities. For real-valued observations, Gaussian 

mixtures can be used. The topology of a BN gives direct 

information about the dependency relationships between 

the variables involved. In particular, it represents which 

variables are conditionally independent given another 

variable. 

The process of building the BN can be separated into 

two tasks: structure learning and parameter learning. 

Structure learning is a search for an appropriate structure 

for the BN such that the BN accommodates the given set 

of samples. Parameter learning is computation of the 

conditional probabilities for the given BN structure such 

that the output of the BN approximates the distribution of 

the given set of samples. The most popular parameter 

learning method is the expectation maximization (EM) 

algorithm [6]. In this paper, the focus is structure learning 

of the BN and building an appropriate BN structure such 

that the BN structure accommodates the given set of 

samples. 

 

 
Figure 1: A Simple Bayesian Network [13] 

 

3.  STRUCTURAL LEARNING 

Consider the problem of analyzing the distribution over 

some set X of random variables X1,…,Xn, each of which 

takes values in some domain Val (Xi). For simplicity, we 

focus on the case where the variables are discrete-valued; 

however our approach extends easily to the continuous 

case. Our input is a fully observed data set 

{ [1],..., [ ]}D x x M , where each x[m] is a complete 

assignment to the variables X1,…,Xn in Val (X1,…,Xn). Our 

goal is to find a network structure G that is a good 

predictor for the data. The most common approach to this 

task is to define it as an optimization problem. We define 

a scoring function score(G : D), which evaluates different 

networks relative to the data D. We then need to solve the 

combinatorial optimization problem of finding the 

network that achieves the highest score. For the remainder 

of this discussion, we take the training set D to be fixed.  

Several scoring functions have been proposed; most 

common scoring functions are the BIC/MDL score and the 

BDe score [14]. The details of these scores are not 

relevant for our discussion. The most important property 

is that the scores are decomposable, i.e., that each  

( )score G is the sum of scores associated with individual 

families (where a family is a node and its parents): 

1

( ) ( , ( ))
n

i G i

i

score G score X Pa X


    (2) 

Given a scoring function, our task is to find: 

arg max ( )G score G    (3) 

This task is a hard combinatorial problem. Several of 

its specific instantiations have been shown to be NP-hard, 

even when the maximum number of parents per node is at 

most two [12]. The key intuition behind this result is that, 

due to the global acyclicity constraint, the choice of parent 
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set for one node imposes constraints to the possible parent 

sets for the other nodes. 

Robinson showed that r(n), the number of possible 

structures for Bayesian network having n nodes, is given 

by the recurrence formula as follows [15]: 

( )1 ( ) 2

1

( ) ( 1) 2 ( )
O n

n
i i n i

i

n
r n r n i n

i

 



 
    

 
    (4) 

Because of the super-exponential size of the search 

space, exhaustive search for the best structure is 

impossible. Many heuristic methods have been proposed 

for Bayesian network structure determination. We are here 

more specifically interested in score-based methods, 

primarily greedy search (GS) [15] and minimum weight 

spanning tree (MWST) algorithms [16]. GS is a greedy 

search carried out in DAG spaces where the interest of 

each structure located near the current structure is assessed 

by means of a BIC/MDL type measurement or a Bayesian 

score like BDe (see [17] for a description of these scores). 

In order to learn a BN from data through heuristic 

search, three elements must be defined: (1) the search 

space, i.e. what hypotheses will be considered during 

learning, (2) the search heuristic, i.e. what criterion will be 

employed for evaluating different hypotheses, and (3) the 

search algorithm, i.e. how we will search for the best 

hypothesis. In a structure learning task, the search space is 

constructed from the set of all DAGs containing (as nodes) 

the random variables at issue, by learning the CPTs for 

each one of those DAGs. 

4.   ASEXUAL REPRODUCTION OPTIMIZATION 

A.  Biological foundations of ARO 

Asexual reproduction is a method of reproduction 

where a 1N (chromosome number) cell produces two to 

four cells with the same chromosome number. This can be 

done by binary fission of a motile stage or a non-motile 

stage. In many armoured dinokonts the original cell 

divides along predetermined sutures and then each half 

produces a new half with new thin plates [18]. Asexual 

reproduction involves only one parent passing on the 

genetic information to their offspring. This sharing of 

genetic information makes the offspring identical to the 

parent [19].  

Many species reproduce successfully in the absence of 

sex [20]. Asexual reproduction is common among 

organisms like bacteria, rapidly reproducing to generate 

large populations. In these large populations, mutation can 

provide considerable genetic variations, so sex may be 

less important in producing genetic diversity within the 

population [21].  

There are different types of asexual reproduction like 

“binary fission” [22], “asexual spore production” [23], 

“plants asexual reproduction” [24] and “budding” [25]. In 

the binary fission only single-icelled organisms reproduce. 

The cell duplicates its contents, including its nucleus and 

other organelles and then splits into two cells with each 

one being identical. (Bacteria, amoeba, algae) [26]. In 

Asexual Spore Production, spores are similar to seeds, but 

are produced by the division of cells on the parent, not by 

the union of two cells. One parent may produce many 

spores; each of this will grow into a new individual, 

identical to its parent. (fungi, green algae, moulds, ferns). 

Many spores are produced to ensure that at least some of 

the individual organisms will survive. Zoospores can also 

be produced by some fungi and green algae. They move 

using tail-like flagella [23].  

A plant continues to grow throughout its life. The 

rapidly growing tips of roots and stems contain specialized 

reproductive cells called meristem. At a certain time these 

cells will be diverted into cells that make up roots, stems 

and leaves. If parts of the plant are damaged, the meristem 

cells make repairs. Clones can be made from cuttings of a 

plant, because the meristem cells can specialize to 

reproduce the different parts needed to make a new plant. 

Asexual reproduction can produce many plants very 

quickly. This is an advantage in places where the 

environment doesn't change very much (bacteria). By 

building a large population of organisms very quickly the 

species is able to thrive. The great disadvantage is that 

when the environment changes, all of the organisms will 

die, if they do not have the ability to adapt to the change 

[24]. 

Eventually in the budding mathematically modeled by 

ARO, the parent organism produces a bud (a smaller 

version of itself), which eventually detaches itself from the 

parent and becomes a self-sufficient individual - identical 

to the parent. Coral also reproduces in this way, but do not 

detach themselves (hydra, yeast, coral, sea sponge) [27]. 

Asexual reproduction is a significant adaptation to 

specific environments and biological conditions where the 

cost of sexual reproduction to a species is considerable 

[28]. Asexuality can be seen as the reverse side of the coin 

"why sex?", which has been questioned among scientists 

over the history of biology [29]. According to [29], the 

question should be directed primarily to the genetic 

consequences of sex. Awareness of the genetic 

consequences of reproductive modes forms the basis of 

the background to the evolutionary approach.   

Sexual reproduction usually involves two individual 

organisms. The offspring that are produced from this 

union have a mix of characteristics, half from one parent 

and the other half from the other parent. It should be 

considered that most of evolutionary algorithms model 

sexual reproduction. Sexual reproduction does not always 

involve male and female parents, however they can have 

specialized gametes (reproductive cells that have only one 

role - to join with another gamete during reproduction). 

Many organisms are capable of both sexual and asexual 

reproduction, like some moulds, such as Rhizopus, which 

produce spores. They can also produce zygospores, 
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enabling them to reproduce sexually as well.  

B.   Main framework of ARO 

As discussed in the previous section, there are various 

kinds of asexual reproduction. The proposed algorithm is 

inspired by the budding method of asexual reproduction. 

Each individual is illustrated by a binary string like the 

binary representation in evolutionary algorithms. A 

decision variable vector n

n XxxxX  ;),...,,( 21
 is 

called an individual in ARO and each variable is 

considered as the chromosome made by a number of bits 

called genes. Therefore, a chromosome with a length of L 

is considered such that the first bit represents the sign of 

the individual. The next 1l  bits show the integer part 

while the last 2l bits present the decimal part of the 

chromosome. As a result 121  llL and the length of 

an individual becomes Ln . Figure 2 illustrates an ARO 

chromosome.  

 

 
 

Figure 2: Chromosome with 3 parts including sign, integer and 

decimal parts 

 

We assume that each solution in the search space (S) is 

an organism in its environment. In addition, it is supposed 

that there are limited resources in the environment such 

that only the most deserving individual can survive. To 

start the algorithm, an individual is randomly initiated in 

the distinctive domain of S, thereafter the individual 

reproduces an offspring labeled bud by a particular 

operator called reproduction mechanism completely 

described later. The parent and its offspring compete to 

survive according to a performance index or a fitness 

function. If the bud wins the competition, its parent will be 

discarded. Therefore, the bud is replaced with its parent 

and it becomes the new parent. If the parent triumphs then, 

the bud will be thrown away. The algorithm repeats steps 

illustrated in table 1 until the stopping criteria are 

satisfied.  

It is obvious that the choice of an appropriate 

reproduction operator is very crucial. While ARO only 

applies one operator, most evolutionary algorithms use the 

number of operators to explore the search space and to 

exploit available information according to the traditional 

control theory. In order to reproduce, a substring which 

has g bits,  LUniformg ,1~  in each chromosome is 

randomly chosen. Afterward bits of the substring mutate 

such that in any selected gene, 1 is replaced by 0 and vice 

versa.  

 

 

TABLE 1 

PSEUDO CODE FOR ARO 

Begin 

    t=1; 

   % Parent Initialization between lower and upper 

bound 

    P=Initialize(L,U);   

   % Fitness of P is calculated 

    Fitness_P=fit(P); 

   %Stopping Criteria 

    While stopping conditions are not met  

           % P reproduces a Bud 

         Bud(t)=Reproduce(P);  

            % Fitness of Bud(t) is calculated 

          Fitness_Bud(t)=fit(Bud(t)); 

          If Fitness_Bud(t) is better than Fitness_P 

                         % Bud(t) is replaced with P      

                         P=Bud(t);  

          Else 

                        % Bud(t) is discarded                      

                        clear Bud(t);  

          end 

          t=t+1; 

    End 

end 

 

In fact, this substring named larva is a mutated form of 

its parent. According to the optimization theory, even 

though both exploration and exploitation mechanisms are 

indispensable, mutated form of its parent, only does larva 

explore the search space. In order to enhance the 

algorithm optimization ability, an exploitation mechanism 

is moreover appended so larva and its parent probably 

share their information by merging; consequently, bud is 

generated similar to its biological model. On the other 

hand, during mutation, crossover is implicitly occurred. 

Figure 3 shows the reproduction mechanism. 

 

 
Figure 3: Reproduction mechanism generating bud chromosome 

 

After produced, the bud fitness is evaluated according 

to the performance index. As illustrated in table 1, bud 

fitness is compared with its parent fitness. At last, the most 

merited is capable of subsisting to reproduce. 

C.  ARO adaptive search ability 

In the first ARO simulation, the reproduction operator 

was implemented as follows. After larva was produced by 

its parent, a random number uniformly distributed in [0, 1] 

is generated. If this number is less than 0.5, the bit will be 

selected from the parent otherwise it will be chosen from 

larva till bud is completed. It means that merging is 

definitely performed. The number of bits going to be 

altered, g, is a random number. When g is large, more 
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exploration is expected and vice versa, while the 

exploitation applied is done based on the aforementioned 

procedure; this means that the amount of exploration is 

merely controlled by g. Similarly exploitation rate is 

handled by the probability of merging the larva with its 

parent. Consequently, we may employ a procedure to 

adaptively set the rate of exploration and exploitation. As 

a consequence, when the rate of exploration, g, is large, 

the exploitation rate decreases and vice versa. To achieve 

this goal, a function, p, calculating the probability of 

merging is defined. Therefore, ARO can adaptively shrink 

or widen the search space.    

1

1 ( )
p

Ln g



   (5) 

It is obvious that when g increases, p decreases and 

vice versa.  

D.  ARO strength and weakness points 

ARO has several advantages completely making it 

different from other algorithms. First of all, as we 

discussed, ARO is an individual-based algorithm; hence 

despite population-based algorithms taking a lot of energy 

(i.e. time) to evolve, ARO consumes a little energy 

resulting a remarkable fast convergence time. This 

property of ARO make it very appropriate for real time 

applications especially for real time control and filtering, 

signal processing, data mining and etc. 

Secondly, due to the lack of optimum parameters 

setting, the existing algorithms like GAs, PSO, CGA, TS 

and SA might get in trouble. For example, consider the 

PSO algorithm. If essential parameters of PSO are not 

well set, it cannot properly work [30]. 

Furthermore, any selection mechanism is not necessary 

in ARO. Selection mechanisms have been argued for more 

than two decades [31]. Choice of poor selection 

mechanisms, Roulette-Wheel for example, causes some 

problems like the premature convergence and the selective 

pressure. 

Finally, in contrast with a number of bio-inspired 

algorithms applicable for some particular optimization 

problems like ACO, limited to discrete optimization 

problems [32], ARO is a model free algorithm which is 

able to be applied for a variety of optimization problems. 

Therefore, it can be exploited for graph optimization, 

combinatorial optimization, constrained optimization, 

integer optimization and a lot more. 

In contrast, a predictable weakness point of ARO is 

perhaps its adaptation with the turbulent environment and 

genetic diversity as there is in its corresponding biological 

model. Even if existing, the aforementioned problems can 

be resolved by implementing particular reproduction 

operators as we did to explore throughout the search space 

in this paper. 

5.  ARO ALGORITHM FOR BN STRUCTURE LEARNING 

This section describes how ARO method can be 

applied to the structure learning of the BNs. In the ARO, 

the connectivity matrix is assumed to be upper triangular, 

and it is the same as that of the GA method. Thus, the 

entire solution space is searched for the fittest structure of 

the BN. 

In order to encode all of the information related to the 

structure learning of the BN into a chromosome and 

search the entire solution space for the fittest structure, an 

ARO representation is proposed. 

The BN structure with n variables is represented by an 

n × n connectivity matrix C = ( ci, j ), where 

  
1

( , )
0

C i j


 


 (6) 

and each individual of the population is encoded as a 

chromosome, 

  
1,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,... ... ... ...n n n n n nc c c c c c c c c  (7) 

With this representation, the plain mutation operator 

and reproduction system would produce illegal BN 

structures. In the previous method, to overcome this 

problem, the connectivity matrix was assumed to be upper 

triangular and the connectivity matrix, 

    

  

1,2 1,3 1, 1 1,

2,3 2, 1 2,

1,

0 ...

0 0 ...

0 0 0 ... 0

0 0 0 ... 0 0

n n

n n

n n

c c c c

c c c

c







 
 
 
 
 
 
 
 

 
(8) 

was encoded as a chromosome, 

 

1,2 1, 2,3 2, 2, 1 2, 1,... ... ...n n n n n n n nX c c c c c c c     
(9) 

In other words, the ordering among the variables of the 

BN was fixed and a node Ai was allowed to have another 

node Aj as a parent node only if the node Aj comes before 

the node Ai in the ordering. This scheme restricts the 

values of ci, j(i ≥ j) to 0 and narrows the search space.  

6.  ARO CONVERGENCE ANALYSIS 

In this section, the ARO convergence is analyzed. 

Firstly state and state space are defined:  

State: a state is defined as follows in which the 

algorithm inaugurates the search from an initial parent 

denoted by
0X , consequently two sequences 

 ,...,, 210 XXX and  ,...,, 210 YYY are created. As stated 

before, ARO starts with an initial parent and frequently 

generates new buds using reproduction operator till one of 

these buds excel the parent. In other words, acquiring 

better an objective function value, the bud is replaced with 

its parent so becoming new parent. In the search process a 
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finite sequence 
mkkk XXX ,...,,

21

  is used for all buds 

generated by exploiting the k
-th

 parent. It means that 
tkX is 

the t
-th

 bud produced by using the k
-th

 parent. Similarly, in 

the finite sequence KYYY ,...,, 10
, kY  is the k

-th
 parent 

generated by the algorithm. 

State Space:  state space of random variables 

 Ttk KkX
t

,  includes all possible values for 

tkX denoted by  . As well, state space of random 

variables  KkYk ,
 

indicated by   is all possible 

values of kY . 

We state three conditions that will be shown to be 

sufficient to guarantee the ARO convergence.   

C1. We assume that the state space S  is a bounded 

and closed subset of 
n and there exists an 

X such that
 

   XfXfSX   . 

C2. For every, the set      XffSXS :   is 

defined as the optimum set and members of this set 

symbolized by X which is an optimal set with   value 

of error. When finding an 
XX  , the algorithm stops. 

C3. In the proposed algorithm, each offspring is 

reproduced by using a function H  entitled reproduction 

function ,i.e.  kk YHX
t


1
. Reproduction function is 

delineated by mutation and merging. This function is 

continues and its image H is a sub set of S, SH  . 

H  is able to produce all points of S  and adaptively 

explore and exploit. If the algorithm is stuck in a local 

optimum, H increases exploration to expand the search 

space and narrows it by exploitation when needed. 

To analyze the ARO convergence, some lemmas are 

required which are described as follows.  

Lemma 1. The stochastic sequence   KkYf k , is a 

non-increasing sequence. 

It is required to show whether the sequence 

 Ttk KkX
t

,  is finite or not. The following lemma 

deals with this question and states that the number of 

required iterations to achieve a local optimum is limited. 

Lemma 2. For each
 SYk  , the sequence   

 

 Ttk KkX
t

,  will be a finite stochastic sequence  

Lemma 3. The sequence of stochastic variables 

 KkYk ,  is a stochastic sequence modeled by Markov 

chain. 

Lemma 4. For every SX 0 and 0 there exists 

an integer N such that for any 0 : 

   NnXSYP n   00|    (10) 

Lemma 5. In the aforementioned Markov chain, all kY  

and 
mkX represent transient states. 

Theorem 1. State i is recurrent if we have 1i , and 

it becomes transient if 1i  [18]. 

Now we proceed as follows: 

For any state kY
, 

we can easily have the following: 

 

 

 

1

1

(1)

(2)

(3)

( )

0

1

0

.

.

1

0

.

.

k

k k k k km m

k

k k k km m

k

Y

Y Y X X Y

Y

n

n Y X X Y
Y

P Pa

P Pa n E

n O















 



  
  
 

   

(11) 

And finally obtain:  

 

 

 

 

1

1

1

( )

1

2

1

1

... 1 ...

k k k k k km m

k k k km m

k k k km m

n

Y Y Y X X Y

n

Y X X Y

n

Y X X Y

P Pa

P Pa

P Pa

 










  

  
 

    
 


   (12) 

kY  indicates a geometric series with 

  11
1


kmkmkk YXXY PaP . As a consequence, the sum of 

this series is equal to:  

 
 
 

1

1

( )

1

1

1 1

k k k km m

k k

k k k km m

Y X X Y
n

Y Y

n
Y X X Y
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According to lemma 4, 1lim
1


 kmk YX
Mt

Pa
 
and hence 

0
kY  implying that kY  is a transient state. For 

mkX , if 

   kk YfXf
m
  then it will be accepted as a new parent 

else it will be discarded; hence the return probability to 

this state in long term equals zero and the proof is 

completed. 

Lemma 6. In the abovementioned Markov chain, X  

is a recurrent state.     

To conclude this section, the following theorem that 

theoretically demonstrates the ARO convergence to a 

global optimum in a finite time based on aforementioned 

lemmas is stated.   

Theorem 2. Let f  be a function defined on a subset 

nS  and  ,...,, 321 YYY  be the sequence of states 

generated by ARO. Assume that conditions C1 to C3 hold. 
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Then for every initial state 0X  , the sequence of function 

values   KkYf k ,  for finite values of K converges  

to f . 

Proof: 

As stated by the above lemmas, if the algorithm begins 

from any random solution SX 0 , after a finite number 

of iterations as indicated by lemma 2 and lemma 4, it will 

get to X and stays there forever due to lemma 5 and 

lemma 6 stating that all sates are transient excluding
 

X which is an absorbing state. In other words, after a 

finite number of iterations the algorithm converges to X . 

The proof of theorem 1 is consequently accomplished. 

7.  SIMULATIONS 

In this section, the proposed method is applied to two 

real world problems and the validity of this method is 

demonstrated through computer simulation.  

A.  Car Diagnosis Problems 

The car diagnosis problem introduced by Norsys is a 

simple example of belief network. The reason why a car 

does not move is presumed, based on spark plugs, 

headlights, main fuse, etc [33]. Eighteen nodes are used in 

this BN and all nodes of the network take discrete values. 

Some of them can take on three discrete states and the 

others can take on two states. A database of two thousand 

cases is utilized to train the BN. The database was 

generated from Netica tool [33]. Figure 5 shows the 

structure of the car diagnosis problem depicted by Netica 

from which the sample cases were collected. Note that, 

Fig. 5 depicts the desired BN structure and the goal of the 

structure learning for BN is to obtain the structures which 

are close to this desired one. 

B.  ALARM Network 

ALARM (A Logical Alarm Reduction Mechanism) is a 

medical diagnostic system for patient monitoring. It is a 

complex belief network with eight diagnoses, sixteen 

findings, and thirteen intermediate variables [35]. A 

database of two thousand cases is utilized to train the BN. 

As in the previous example, the database is generated 

from Netica tool [35]. Figure 6 shows the structure of the 

ALARM network depicted by Netica from which the 

sample cases are collected. Note that, Figure 6 depicts the 

desired BN structure and the goal of the structure learning 

for BN is to obtain the structures which are close to this 

desired one. 

C.  Simulation Results 

Using these databases, the BNs were built to represent 

the probabilistic relationships between the variables. 

Theorem in [10] was utilized to apply the proposed 

algorithms and evaluate the validity of the structure of the 

given BN. 

The simulation was run ten times for each problem and 

the parameters of the simulations were as follows: the 

population size of ARO was 50 and the mutation rate was 

0.05. The formula in Theorem 3 was used, as an objective 

function to be maximized. The algorithms were stopped 

when 5,000 structures had been evaluated, which means 

that 100 generations have been evaluated. 

In this simulation, we assume that there is no prior 

knowledge about the node ordering or the casual 

relationship between the nodes. Therefore, we randomly 

select the order of the nodes in the conventional method. 

Figures 7 and 8 show the learning result of the first run for 

the car diagnosis, and ALARM problems, respectively, 

and Figures 9 and 10 show the learning result of the five 

run for them. In these Figures the dashed lines represent 

the result of the conventional method and the solid lines 

represent the result of the proposed method.  

As BN attempts to approximate the entire database, the 

vertical axis approaches zero, since the probability of one 

corresponds to zero on the negative logarithm axis. In the 

car diagnostic systems, it can be seen that the GA initially 

outperforms the ARO but after some iterations ARO 

outperforms the GA and continues to outperform the 

conventional method for the fifty generations, as shown in 

Figure 9. In This case ARO shows good performance for 

less than fifty generations and it outperforms the GA 

method. 

In the ALARM network, as shown in Figure 10, it can 

be seen that the ARO initially outperforms the GA and 

continues to outperform the conventional method for the 

hundred generations. 

Statistical results are summarized in Table 2. In this 

table, the learned structures are compared with the target 

structure from which the sample data are taken. 

For further evaluation, we compare the structure results 

from ARO with the target network in the terms of number 

of arcs correctly added between the same nodes as those in 

the target network, the number of missed arcs of the target 

network, or the number of extra arcs added wrongly. The 

results are depicted in Table3. 
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Figure 5. The structure of Car diagnosis problem network 

 

 
 

Figure 6: The structure of ALARM network 

 

 
Figure 7:  Performance of ARO and GA for one run 

(CAR diagnosis problem) 

 
Figure 8:  Performance of ARO and GA for one run 

(ALARM network) 
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Figure 9: Mean performance of ARO and GA for 5 runs (CAR 

diagnosis problem) 

 

 
Figure 10: Mean performance of ARO and GA for 5 runs 

(ALARM network) 

 

 

 

 

TABLE 2 

 STATISTICAL RESULTS FOR CAR DIAGNOSIS PROBLEM AND 

ALARM NETWORK 

Application Algorithm Best Mean variance Target 

Car 

Diagnosis 

Problem 

GA 38101 38489 161136 37821 

ARO 38005 38129 16810 

ALARM  

Network 

GA 74703 77496 1290145 73401 

ARO 74624 75327 499296 

 

TABLE 3 

COMPARISONS WITH THE TARGET STRUCTURE 
Application Trial Time Missed 

Arcs 

Wrongly 

Added Arcs 

 

Car Diagnosis 

Problem 

1 1 1 

2 1 0 

3 0 1 

4 2 0 

5 1 0 

 

Alarm 

Network 

1 2 1 

2 3 0 

3 2 1 

4 2 0 

5 1 1 

8.  CONCLUSIONS 

In this paper, ARO, a new structure learning approach 

for BNs has been proposed. ARO as a new individual 

based optimization algorithm is inspired by asexual 

reproduction. Fast convergence time to the best solution, 

no parameter setting, being model free, evolutionary 

foundations and biological bases are ARO advantages 

making it very appropriate for real time applications. The 

ARO convergence was comprehensively analyzed. 

The proposed method is applied to two real-world and 

benchmark problems. Simulations reveal improved 

performance over the GA method for these case studies, 

according to the rate of convergence. Indeed the ARO 

algorithm is faster than GA because ARO has simpler 

operators. 
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