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 Analyzing the internal resonances and energy exchange between modes of power system 
considering Frequency – Energy dependence using Pseudo-Arclength and shooting algorithm
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ABSTRACT:  The power system nonlinearity and its profound impact on the individual states of power 
system is first evaluated and the interaction between their constituent modes during the occurrence of 
internal mode resonance (IMR) is discussed in this paper. A typical dynamical feature of nonlinear 
systems is the frequency-energy dependence of their states and their corresponding constituent modes 
which is also underlined in this paper. At first predominant state is identified which is defined as the one 
with highest energy level and the internal mode resonances and energy exchange between its constituent 
modes are explored accordingly. However, Perturbation Techniques such as Normal Form (NF) or 
Modal Series (MS) and several polynomial approximation are explored and it is demonstrated that such 
methodologies do not lead to the acceptable results and does not work well in near-resonant conditions. 
For this reason, the integrated algorithm consists of Shooting and Pseudo-Arclength is employed for 
obtaining Frequency-Energy Plot (FEP) to estimate and evaluate the involved modes behavior during 
the resonance and the energy level at which the internal resonance occurs. The studies are performed on 
39-bus New England test power System and the final results prove the accuracy and effectiveness of the 
proposed methodology and algorithm.
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1. INTRODUCTION
Nowadays, Large-scale interconnected power systems 

are being operated under heavy loading conditions close to 
their stability margin and thermal rating of the equipment 
particularly in peak load implying that the power system owner 
would rather exploit all the capacity of the system equipment 
in peak load scenarios than expand the transmission lines 
and substations which are so cost-intensive in terms of 
environmental and financial issues. This phenomena would 
result in the so-called stressed power system during the peak 
load which exhibits the strong nonlinearity and complex 
dynamic behavior [1]. In the other side, the growing increase 
of inverter-based renewable power plants and FACTS devices 
and nonlinear loads in power systems have increased the 
system nonlinearity and exacerbated the problem [2]. 
However, when a highly nonlinear and stressed power 
system is subject to a perturbation, the resonance among the 
constituent modes of the states in the linear system might 
occur at high energy level due to their frequency-energy 
dependence and therefore the frequency response function 
(FRF) of the nonlinear system is no longer invariant which is 
in contrast to the traditional linear analysis and then the linear 
framework must be abandoned in favor of a nonlinear modal 
analysis [3-5]. The interaction between modes in stressed 
power system due to nonlinearities have been vastly dealt 

with in several papers [4-15] wherein, different techniques 
for nonlinear modal analysis have been presented which are 
briefly described in the following. Normal Form (NF), Modal 
Series (MS) and Polynomial Approximation are the most 
renowned methods applied for nonlinear modal analysis. 
The method of normal form was first employed by Lamarque 
and Jezequel and Nayfeh using a complex formulation [4-
5]. The NF method is regarded with a nonlinear change 
of coordinates to turn the equations of motion into the 
simplest possible form by eliminating as many as possible of 
the nonlinear terms from the governing equations. Several 
paper have recently employed the Normal Form theory to 
account for the nonlinear terms in decoupling the governing 
equations of motion in power system to model the impact of 
system nonlinearity on the interaction between modes [5-
14]. In The MS method, a nonlinear system is presented as 
a rather straightforward generalization of the linear case and 
the Taylor Series are used [15-17]. The fundamental drawback 
of the NF and MS methods are as follows. 
- They are quite analytically involved and require a careful 

treatment in the presence of internal resonances
- The resultant dynamics are only accurate for small amplitude 

motions
- The upper bound for these motions is not known a prior
- They are limited to systems with low dimensionality and 

restricted to polynomial nonlinearity
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- Due to Mode bifurcation in higher energy levels, the 
nonlinear modes cannot be regarded as nonlinear 
continuation of the modes of linear system 
Furthermore, several papers proposed the numerical or 

semi-analytical techniques [18-22]. Numerical techniques 
rely on the extensive numerical simulations and are 
computationally intensive. Semi-analytical techniques such 
as Harmonic Balance Method (HBM) and Galerkin-based 
approach fail to give accurate response when the turning 
point is encountered (Bifurcation) [23-28]. To resolve the 
mentioned drawbacks, the contribution and novelty of the 
paper is to identify the predominant states and its constituent 
modes using energy of the modes and then represent an 
integrated method including Pseudo-Arclength and shooting 
algorithm which is a hybrid numerical and sequential 
continuation method to estimate the energy level at which 
the resonance is more likely to occur. The nonlinear mode 
trajectory is estimated through the Pseudo-Arclength and 
also the shooting algorithm enables us to follow the trajectory 
[23-24]. For further clarification, the main objective is divided 
into two following parts.

1-The predominant state is identified through Frequency-
Energy analysis of its constituent modes in highly stressed 
condition (it should be noted that the energy of the state is 
defined as the sum of the energy of its constituent modes), 
2- The Frequency – Energy Plot (FEP) of the predominant 
mode (obtained from previous part) is computed through the 
proposed integrated method and the critical energy level at 
which the internal resonance might occur, is computed and 
presented.

 The remainder of the paper is organized as follows. 
The integrated approach (Shooting and Pseudo-Arclength 
methods) is described in Section II. Section III studies the 
methodology and the frameworks. The case study and the 
simulation results considering aforementioned methods 
under different operation scenarios is presented in section IV 
and finally the conclusion is given in section V.

2.	 AN INTEGRATED APPROACH FOR TRACING 
THE NONLINEAR MODE TRAJECTORY (SHOOTING 
AND PSEUDO-ARCLENGTH METHODS)

To follow the mode trajectory for the change of energy 
level in a strongly nonlinear power system, a shooting 
procedure combined with the so-called Pseudo-Arclength 
continuation method is employed in this paper. In this section 
a brief review of the mentioned methods is carried out and the 
integrated method is finally characterized by an algorithm.

2-1- Shooting Method
Consider the following swing equation of the SMIB power 

system in the classical model.
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Where M   is the inertia matrix; D  is the damping 
constant, 0ω  is the synchronous frequency,δ  is the rotor 
angle and 

sδ  is the angle at SEP (Stable Equilibrium Point).   
mP  , eP  represent the mechanical power and electrical power 

of the machines respectively.   nlf  is the nonlinear function in 
a strong nonlinear power system. The equation of motion in 
(1) can be recast into state space form.
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and star implicates the transpose operation and thus
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It is assumed that the inertia matrix is invertible and
* * *(0) [ ]0 0 0z z δ δ= =  is the initial condition of the dynamical system. 

Assume that T is the minimal period of the periodic solution 
of the autonomous system (2) then it can be exhibited that 

( , ) ( , )0 0z t z z t T z= +  . It is to be noted that periodic solution of 
the governing nonlinear equation of motion (2) is key to 
estimating the nonlinear mode trajectory. To pursue the 
aim, a numerical technique called “shooting algorithm” is 
exploited. The boundary-value problem is solved numerically 
through the shooting algorithm. The shooting function H is 
defined as following.

0 0 0( , ) ( , ) - 0H z T z T z z= =                �                 (4)

According to (4), the shooting function is defined as the 
difference between the system response at time T and the 
initial condition. The function is solved by a continuation 
method (Pseudo-Arclength method) which is described later. 
The next step is to expand the nonlinear function in Taylor 
series (6) considering the corrections 

0 0( , )z T∆ ∆  based on (5), 
whereas the higher order term (H.O.T) is neglected.
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The periodic solution is featured by the initial conditions 
( ) and the period (T ) which are computed by means of an 
iterative procedure.
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K is the shooting iteration index. To achieve the 
convergence together with desired accuracy, the constraints 

0( , ) 0H z T ≈  and  must be fulfilled where, 
0( )h z  is 

the phase condition. In summary, the nonlinear computation 
is carried out by solving (9).
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By derivation of (4), H T∂ ∂  is presented by
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In (11), I is the identity matrix. As described previously, 
the nonlinear mode trajectory must be evaluated through 
numerical continuation of periodic motions. Newton-
Raphson method due to its strong dependence on the initial 
guess and the fixed value of the period, is unable to represent 
the turning points in the mode trajectory and for this reason 
Pseudo-Arclength continuation method is employed in this 
paper as a continuation method to avoid the mentioned 
drawbacks of the Newton-Raphson method.

2-2- Pseudo-Arclength Method
Pseudo-Arclength is a continuation method which enables 

us to consider the predictions and correction of the period 
simultaneously in the shooting process. However, predictor 
and corrector steps are considered to find the next periodic 
solution 0,( 1) ( 1)( , )j jz T+ +  from the known solution

0,( ) ( )( , )j jz T  . 
At step j, assume that 
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
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Where ( )js  is the predictor stepsize and , ( )
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vector to the branch according to (9). Finally, the solution 

to the problem is achieved as follows.
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The general flowchart of the Pseudo-Arclength method 

is illustrated in Fig.1 and the hierarchy of Pseudo-Arclength 
Continuation method is illustrated in Fig 2. It is to be 
noted that the predictor step is tangent to the branch and 
the corrector step is perpendicular to the predictor step. 
According to Fig.1 and Fig 2, the flowchart is set based on 
the sequence and continuation. When the mode amplitude 
versus frequency (Fig.2) becomes closer to the turning point, 
the proposed algorithm can detect the bifurcation which is 
defined as the internal resonance between modes of interest. 
It should be mentioned that the linear modal analysis doesn’t 
work well near to the turning point.

3. METHODOLOGY AND FRAMEWORK
The FFT method (Fast Fourier Transform) has been 

commonly known for frequency analysis of the oscillation 
whilst it is restricted to discrete and predefined frequencies 
and is applicable for linear power system considering natural 
frequencies of the power system. In this paper, a given 
signal in nonlinear scenarios is decomposed into damped 
sinusoidal oscillations (so-called nonlinear normal modes 
of a signal) over a predefined time range in order to detect 
and quantify harmonic wave trends in time and analyze 
interharmonic oscillations. This objective is achieved through 
finding a sum of exponentials which fits best to a given 
series. However, Energy of a signal is described as the sum 
of the energy contents of the constituent individual modes 
while frequency of oscillation of a given signal strongly 
depends on its conserved energy. When the power system is 
highly nonlinear or is subject to a perturbation and during 
the power system transient, Energy between the individual 
modes involved is exchanged and this phenomenon may be 
interpreted as internal mode resonance (IMR). Thus, Modes 
of higher energy are regarded as predominant modes while 
those of lower energy are ignored in the computation process 
of internal resonances. 

Let’s consider that  is a given signal. To perform the 
frequency analysis, ( )y t  could be represented as sum of 
individual modes. Thus

1

0
( ) mode ( )

n

k
k

y t t
−

=

≈∑                                                                     (14)

Where

.( )

i.( 2 . ).

mode magnitude
e

k
i phase

damping frequency te π+

=

×

×

                                                (15)

The energy of the mode which has no complex conjugate 
in the representation of  ( )y t  is represented in (16).

2
Energy Re(mode (t)) dtk k= ∫      �            (16)

The energy of the mode which has complex conjugate in 
the representation of  ( )y t  is written as in (17).

2
Energy 2Re(mode (t)) dtk k= ∫       �        (17)
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Fig. 1. Algorithm for nonlinear mode computation (integrated method) 

  

Fig. 1. Algorithm for nonlinear mode computation (integrated method)
 

 

Fig. 2. Pseudo-Arclength Continuation Schematic 

  

Fig. 2. Pseudo-Arclength Continuation Schematic

Predominant modes are selected from all the constituent 
modes of a signal by sorting all the modes according to the 
energy impact. As a result, mode 0 will be the most dominant 
one and then mode 1 and so on.

For several scenarios including no-fault and faulty 
condition the frequency analysis is performed and the 

predominant modes are identified based on the Frequency 
and Energy Plot of the specified modes. The operating 
conditions where nonlinear modes are close to the resonance 
(Bifurcation) are focused and the exact resonant frequency and 
the modes involved are computed via Pseudo-Arclength and 
Shooting algorithm. Due to Frequency-Energy dependence 
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of nonlinear modes, a mode can be represented by a point 
in Frequency-Energy Plot (FEP) where the frequency of the 
mode corresponds with the minimal period of the periodic 
motion and energy indicates the total conserved energy 
during the periodic motion.

4. CASE STUDIES AND SIMULATION RESULTS
The frequency and energy of the constituent modes are 

firstly plotted versus time and analyzed for several effective 
scenarios considering fault. The mode with higher energy 
impact is described as predominant mode. In the next step, 
the frequency of the predominant mode is monitored and 
plotted versus energy which is called FEP (Frequency-Energy 
Plot) using the integrated method (Shooting and Pseudo-
Arclength algorithm) and it is demonstrated that in the strong 
nonlinear power system, following a perturbation the energy 
exchange between modes occur which is due to the internal 
mode resonance (IMR) and the frequency of oscillation will 
undergo abrupt changes. The simulations are carried out on 

the 39-Bus New England Test system (Fig 3) in which detailed 
generator model and constant impedance loads are taken into 
account. In this section, the operation scenarios according 
to Table 1 are applied to the power grid and the proposed 
Nonlinear Modal Analysis are carried out separately and 
finally the energy level at which the resonances might occur, is 
identified. However, modes of power system is listed in Table 
2 and it is assumed that the power grid is heavily loaded and 
the stability is retained through protective actions following 
the fault. 

4.1- Scenario a – Linear Modal Analysis
It is a common occurrence in the power system that during 

the system linear operation, the predominant mode oscillates 
at virtually constant frequency whereas other modes have 
small magnitude of energy (close to zero) and can be excluded 
from the computation. The frequency of the other modes is 
variable and Due to their low energy, they have no noticeable 
effect on the oscillation frequency of the rotor angle and the 

 

Fig. 3. 39 Bus New England Test System 

  

 

 

Fig. 3. 39 Bus New England Test System

Table 1. operation scenarios under study

 




1d

1q

2q

fd

 

Table 2. Modes of Power System
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rotor angle is mostly affected by the predominant mode. The 
key point is that, in linear state, the energy of the predominant 
mode is constant and the mode can be referred to as Linear 
Normal Mode (LNM). Thus, in such scenarios, the traditional 
LNM studies (Modal Analysis) is viable.

4-2 - Scenario b – Nonlinear Modal Analysis
According to what mentioned before, in case of stressed 

power system (heavily loaded) or in the presence of nonlinear 
phenomena and especially beyond a specified energy level, 
the traditional linear analysis must be abandoned in favor of 
nonlinear modal analysis even though it depends on the type 
of nonlinearity and the excitation level. In this section, it is 
revealed that when the power system undergoes a nonlinear 
phenomenon, the oscillation frequency of the rotor angle will 
change in accordance with the total conserved energy in its 

 

Fig. 4. The Rotor Angle of 10 Generators Following the Fault 

  

constituent modes. For this reason, the normal modes are no 
longer invariant and a trajectory of normal modes is formed. 
Not to be mentioned that the Frequency-Energy Plot (FEP) 
of the predominant modes could be computed through the 
proposed integrated method which exhibits the predominant 
modes behavior. This facilitates the control process which 
must be exerted on the power system during the heavy 
loading and in case of fault occurrence in order to die down 
the resonances.

Rotor angle of all generators are depicted in Fig 4. The total 
energy content of each signal is computed through (14) to 
(17) and the results are presented in Fig 4. According to Fig 5, 
at some time intervals, the energy deviation in the individual 
signals occur implying that energy is being exchanged among 
the constituent modes of the signals. Total energy in the rotor 
angle signals of the generators is computed and depicted in 

 

Fig. 5. Total Energy of each Generators’ Rotor Angle signal 

  

Fig. 4. The Rotor Angle of 10 Generators Following the Fault

Fig. 5. Total Energy of each Generators’ Rotor Angle signal

 

 
Fig. 6. Total Energy of all Generators’ Rotor Angle signal 

  

Fig. 6. Total Energy of all Generators’ Rotor Angle signal
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Fig 5 which could be described as the sum of the total energy 
of each signal. According to Fig 6, the time of interest is the 
interval when the energy deviation is abruptly changed which 
can be observed as the points 1 to 4.

To further illustrate the resonance point especially in term 
of frequency behavior, the points 1 to 4 in Fig 7 which are 
the same as the points in Fig 6, are shown. According to Fig 
7, as the fault occurs the frequency of oscillations increases 
and after the fault clearance, it retains its normal value. As it 
is observed, during some time intervals, the frequency of the 
constituent modes are nearly commensurate which leads to 
the energy exchange among the modes and subsequently the 
abrupt changes in the total conserved energy of the signal. 
Fig. 7a to Fig. 7d exhibit the closer viewpoint of the resonance 
points (points 1 to 4).  In Fig 7, the resonant modes for each 
part is detected and listed according to Table 3.

The constituent modes of a signal in nonlinear state of 

the system are called nonlinear normal mode (NNM). The 
Frequency-Energy Plot (FEP) is the oscillation frequency 
of NNM for different energy levels. It should be mentioned 
that each point in the FEP is analyzed and computed through 
predefined proposed integrated method including Pseudo-
Arclength and Shooting algorithm. The points in FEP is 
computed sequentially and continuously so that abrupt 
changes are detectable.

Frequency Energy Plot of Mode 0, 1 ( ) is presented in 
Fig 8a, b and the Frequency Energy Plot of individual Modes 
are illustrated in Figs 9a. It is observable that the critical 
energy levels at which the frequency of oscillation undergoes 
sudden changes, must be focused and highlighted as shown in 
Figs 9b and 9c. However, according to critical energy range, 
the proper control process must be adopted.

As mentioned previously, the FEP could be drawn based 
on the proposed integrated algorithm as follows.

 

Fig. 7. The Oscillation Frequency and its closer viewpoints during the Internal Resonance 

(Points 1, 2, 3, 4) 

  

 Table 3. The resonant modes of power system

Fig. 7. The Oscillation Frequency and its closer viewpoints during the Internal Resonance (Points 1, 2, 3, 4) 
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Fig. 8a. The Oscillation Frequency of the predominant modes (0, 1) of δ2 

  

Fig. 8a. The Oscillation Frequency of the predominant modes (0, 1) of δ2

 

 
Fig. 8b. The Energy of the predominant modes (0, 1) of δ2 

  

Fig. 8b. The Energy of the predominant modes (0, 1) of δ2

 

Fig. 9a. Frequency Energy Plot (FEP) of predominant modes of δ2 

  

Fig. 9a. Frequency Energy Plot (FEP) of predominant modes of δ2

 

 
Fig. 9b. FEP of mode 1 of δ2 

  

Fig. 9b. FEP of mode 1 of δ2
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Fig. 9c. FEP of mode 0 of δ2 

 

Fig. 9c. FEP of mode 0 of δ2

5. CONCLUSION
The center of attention in this paper was on the highly 

stressed and nonlinear power system where abrupt change 
in signal behavior might take place. The Pseudo Arclength 
together with shooting algorithm as a sequential continuation 
method was applied in this paper to identify and examine the 
nonlinear normal mode (NNM) behavior and their internal 
resonances for a highly stressed power system. Analysis was 
carried out to exhibit the frequency-energy dependence 
of the modes and estimate the energy range during which 
this phenomenon might occur. In this way, at first the most 
influential signals in the power system in terms of energy 
were identified and secondly, the critical energy range for 
those signals was computed sequentially using the proposed 
algorithm. The obtained results explain that for linear state 
of the system, the linear modal analysis works well but for a 
predefined fault scenario, in the nonlinear state of the power 
system, the linear studies must be abandoned in favor of 
nonlinear modal analysis. Finally, the results demonstrates 
the accuracy and efficiency of the proposed algorithm.
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