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ABSTRACT: In this paper, a simple but effective method for compensation of the quadrature error in 
MEMS vibratory gyroscope is provided. The proposed method does not require any change in the sensor 
structure, or additional circuit in the feedback path. The mathematical relations of the proposed feedback 
readout system were analyzed and the proposed solution assures good rejection capabilities. Based on 
the simulation results, the proposed  method increases the dynamic range of the readout circuit by about 
19dB for the quadrature error with 10  times higher amplitude than the Coriolis signal. Furthermore, the 
feedback path reduces the effect of the 1  degree LO mixer phase error in the output path by about 95% , 
which causes our system to be less sensitive to this error. In addition, the 2nd harmonic component at the 
output of the proposed feedback readout is much lower than that of the conventional readout. As a result, 
proposed feedback readout can relax the requirement of the output lowpass filter.
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1. INTRODUCTION
In the last decades, the micro-electro-mechanical 

systems (MEMS) are one of the most interesting subjects 
for researching and technical works. In addition to the high 
accuracy of MEMS gyroscope and its aerospace application, 
the ultra-low cost and small area are other advantages of the 
MEMS gyroscope. For these reasons, they have extensive 
applications in numerous fields, such as automotive, 
mechanical, military and electronics fields  [1-2]. The 
operation of the Micromachined gyroscopes are based on the 
Coriolis force [3]. 

Most vibrating gyroscopes use angular velocity to measure 
the amplitude of vibration induced by the Coriolis force. 
Gyroscopes consist of two axes in the name of driving and 
sensing axis that are perpendicular to each other. Generally, 
the proof mass is stimulated alternately, and when it is affected 
by the angular velocity, a secondary vibration is generated by 
the Coriolis force. The secondary vibration amplitude is used 
to determine the speed. The perspective view of a MEMS 
gyroscope structure is shown in Fig 1.

Because of non-ideal factors in the gyroscope 
manufacturing process such as mechanical imbalances and 
misalignments, the oscillation amplitude of the driving axis is 
several times larger than the amplitude of the sensing axis [2, 
5-7]. For this reason, these non-ideal factors give rise to cause 
a significant error called quadrature error. The amplitude of 
this error may be up to 10 times larger than the Coriolis signal 
and on the other hand, there is a 90 degree phase difference 

between the Coriolis signal and the quadrature signal [2]. 
Because of the large quadrature error and its problems, there 
are several methods to eliminate the quadrature error. Fig 2 
demonstrates some common ways to remove this error. One 
of these methods is the use of improved drive decoupled 
beam. In other words, improving the sensor causes to reduce 
this leak between two axes and improve the sensitivity of the 
suspension flexures [8].

Another method is the use of a 90 degree phase 
difference between the error signal and the Coriolis signal 
for separating these two signals. As be mentioned before, 
by using a synchronous demodulator, the quadrature signal 
and the Coriolis signal can be separated. In the following, 
by performing the necessary processing on the output signal 
the error will be eliminated. However, according to the large 
amplitude of the error signal, the most important problem in 
this case is the possibility of saturation of the readout circuit 
(capacitance to voltage converter). For this reason, the most 
attempting has been done for  eliminating or minimizing 
this error before reaching to the readout circuit. In Fig. 2(a), 
the quadrature error is eliminated by applying differential 
DC potentials on the mechanical electrodes of the sensor. 
In Fig. 2(b), the gyroscope signal converted into the digital 
domain and the quadrature error control value applied on 
the compensations electrodes of the sensor [10, 12-13]. In 
Fig. 2(c), after converting the gyroscope signal to the digital 
domain, closed-loop control structure with force-feedback 
will be used. In Fig. 2(d), after separating the quadrature 
signal by a synchronous demodulator, the compensation 
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signal will be applied to the feedback electrodes and eventually 
the error signal before applying to the sensor readout circuit 
will be eliminated. In all of these methods, in addition to 
using the controller and digital converter in the feedback 
path, the sensor structure also becomes more complex and 
consequently, the cost of manufacturing the sensor increases. 

In this paper, by using a connected feedback path to the 
input of readout circuit (instead of connecting to the sensor) 
the quadrature error is eliminated. Consequently, by using 
this method and needless to design a specific structure for 
the sensor, the dynamic range of the readout circuit will be 
increased. It should be noted that, unlike other past performed 

works, the effects of various factors of the feedback loop is 
investigated by analyzing the mathematical relations of the 
system.

2. QUADRATURE ERROR EFFECT IN THE CONVEN-
TIONAL READOUT

Fig. 3 shows the conventional block diagram of the 
gyroscope readout. As mentioned before, compared to 
Coriolis signal, mechanical imbalances and misalignments 
can generate large quadrature error signal at the input of the 
capacitance to voltage (C/V) convertor. Defining 
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Fig 2. (a) Block diagram of the quadrature control electrodes [9]. (b) Electro-mechanical ΣΔ modulator with the proposed 
quadrature compensation [10]. (c) Closed-loop control structure with force-feedback and quadrature compensation [11]. (d) 
Force rebalance control schematic for the quadrature error [12]. 
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Fig 1. Perspective view of a MEMS gyroscope structure [4].

Fig 2. (a) Block diagram of the quadrature control electrodes [9]. (b) Electro-mechanical ΣΔ modulator with the proposed quadrature 
compensation [10]. (c) Closed-loop control structure with force-feedback and quadrature compensation [11]. (d) Force rebalance control 

schematic for the quadrature error [12].
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where, CVk is the gain of the C/V convertor circuit. 

Fig. 4 shows the normalized error versus eθ  for Δ /Δ 10iq isC C . As it can be seen, a one degree phase 

variation in the LO signal of the mixer can cause about 17% error in the output voltage. 
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where, CVk is the gain of the C/V convertor circuit. 

Fig. 4 shows the normalized error versus eθ  for Δ /Δ 10iq isC C . As it can be seen, a one degree phase 

variation in the LO signal of the mixer can cause about 17% error in the output voltage. 
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sufficiently eliminated by a simple lowpass filter.
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Now, by substituting (9) into (7) and neglecting 3rd harmonic component, the input voltage of the C/V 

convertor can be estimated as 
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 as can been seen, both coefficients β  and CVk  are multiplied together, therefore, to simplify the feedback 

path, we can assume that 1β ,and assuming that the attenuation of 2nd harmonic by lowpass filter is much 

higher than amplification in the capacitance to voltage converter (i.e. CVα k ), (10) can be rewritten as 
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Comparing (11) and (1) indicates that the proposed feedback loop does not affect the desired Coriolis signal 

while the undesired quadrature error signal is attenuated by a factor of (1 0.5 CVk ). Assuming

Δ /Δ 10iq isC C  and 40CVk , the input voltage of the C/V convertor with and without the feedback path 

are shown in Fig. 6. As it can be seen, due to the feedback path, the undesired signal at the input is 

sufficiently attenuated.  
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Comparing (11) and (1) indicates that the proposed feedback loop does not affect the desired Coriolis signal 

while the undesired quadrature error signal is attenuated by a factor of (1 0.5 CVk ). Assuming
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Fig 8. Normalized gain of the proposed feedback readout in terms of CVk for different values ofα . 
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the 2nd harmonic component at the output voltage should be 
reduced. Using (7), this component can be expressed as

 

According to (10), the output Coriolis voltage of the proposed readout can also be calculated as 

, (12)
4 Δ4 2

CV
os DC CV is

CV

α kV k C
α k  

which reveals that for CVα k , the desired output Coriolis voltage does not affected by the proposed 

feedback loop. Fig. 8 shows the normalized gain of the proposed feedback readout ( , / ( Δ )N os DC CV isA V k C

) in terms of capacitance to voltage converter gain ( CVk ) for different values of 2nd harmonic attenuation of 

the lowpass filter (α ). As it can be seen, the normalized gain of the proposed feedback readout has 

negligible change for 20α dB  and CVk . 

10 20 30 40 500 60

1.00

1.05

1.10

1.15

1.20

0.95

1.25

CVk

N
or

m
al

iz
ed

G
ai

n 10α dB
15α dB
20α dB
25α dB

 
Fig 8. Normalized gain of the proposed feedback readout in terms of CVk for different values ofα . 

 

Due to quadrature error reduction, it can be expected that the 2nd harmonic component at the output voltage 

should be reduced. Using (7), this component can be expressed as 

,2 (13)
4(2 )Δ cos(2 ) Δ cos(2 )4 ( 2) ( 4)

CV
os CV is o iq o

CV CV CV

α kV k C ω t C ω t
α k k k  

and assuming CVα k , the magnitude of the 2nd harmonic can be simplified as 

2 2 2
,2 (14)

1Δ Δ ( )1 0.5
CV

os is iq
CV

kV C C
α k  

 � (13)

 

According to (10), the output Coriolis voltage of the proposed readout can also be calculated as 

, (12)
4 Δ4 2

CV
os DC CV is

CV

α kV k C
α k  

which reveals that for CVα k , the desired output Coriolis voltage does not affected by the proposed 

feedback loop. Fig. 8 shows the normalized gain of the proposed feedback readout ( , / ( Δ )N os DC CV isA V k C

) in terms of capacitance to voltage converter gain ( CVk ) for different values of 2nd harmonic attenuation of 

the lowpass filter (α ). As it can be seen, the normalized gain of the proposed feedback readout has 

negligible change for 20α dB  and CVk . 

10 20 30 40 500 60

1.00

1.05

1.10

1.15

1.20

0.95

1.25

CVk

N
or

m
al

iz
ed

G
ai

n 10α dB
15α dB
20α dB
25α dB

 
Fig 8. Normalized gain of the proposed feedback readout in terms of CVk for different values ofα . 

 

Due to quadrature error reduction, it can be expected that the 2nd harmonic component at the output voltage 

should be reduced. Using (7), this component can be expressed as 

,2 (13)
4(2 )Δ cos(2 ) Δ cos(2 )4 ( 2) ( 4)

CV
os CV is o iq o

CV CV CV

α kV k C ω t C ω t
α k k k  

and assuming CVα k , the magnitude of the 2nd harmonic can be simplified as 

2 2 2
,2 (14)

1Δ Δ ( )1 0.5
CV

os is iq
CV

kV C C
α k  

and assuming 

 

According to (10), the output Coriolis voltage of the proposed readout can also be calculated as 

, (12)
4 Δ4 2

CV
os DC CV is

CV

α kV k C
α k  

which reveals that for CVα k , the desired output Coriolis voltage does not affected by the proposed 

feedback loop. Fig. 8 shows the normalized gain of the proposed feedback readout ( , / ( Δ )N os DC CV isA V k C

) in terms of capacitance to voltage converter gain ( CVk ) for different values of 2nd harmonic attenuation of 

the lowpass filter (α ). As it can be seen, the normalized gain of the proposed feedback readout has 

negligible change for 20α dB  and CVk . 

10 20 30 40 500 60

1.00

1.05

1.10

1.15

1.20

0.95

1.25

CVk

N
or

m
al

iz
ed

G
ai

n 10α dB
15α dB
20α dB
25α dB

 
Fig 8. Normalized gain of the proposed feedback readout in terms of CVk for different values ofα . 

 

Due to quadrature error reduction, it can be expected that the 2nd harmonic component at the output voltage 

should be reduced. Using (7), this component can be expressed as 

,2 (13)
4(2 )Δ cos(2 ) Δ cos(2 )4 ( 2) ( 4)

CV
os CV is o iq o

CV CV CV

α kV k C ω t C ω t
α k k k  

and assuming CVα k , the magnitude of the 2nd harmonic can be simplified as 

2 2 2
,2 (14)

1Δ Δ ( )1 0.5
CV

os is iq
CV

kV C C
α k  

, the magnitude of the 2nd 
harmonic can be simplified as

 

According to (10), the output Coriolis voltage of the proposed readout can also be calculated as 

, (12)
4 Δ4 2

CV
os DC CV is

CV

α kV k C
α k  

which reveals that for CVα k , the desired output Coriolis voltage does not affected by the proposed 

feedback loop. Fig. 8 shows the normalized gain of the proposed feedback readout ( , / ( Δ )N os DC CV isA V k C

) in terms of capacitance to voltage converter gain ( CVk ) for different values of 2nd harmonic attenuation of 

the lowpass filter (α ). As it can be seen, the normalized gain of the proposed feedback readout has 

negligible change for 20α dB  and CVk . 

10 20 30 40 500 60

1.00

1.05

1.10

1.15

1.20

0.95

1.25

CVk

N
or

m
al

iz
ed

G
ai

n 10α dB
15α dB
20α dB
25α dB

 
Fig 8. Normalized gain of the proposed feedback readout in terms of CVk for different values ofα . 

 

Due to quadrature error reduction, it can be expected that the 2nd harmonic component at the output voltage 

should be reduced. Using (7), this component can be expressed as 

,2 (13)
4(2 )Δ cos(2 ) Δ cos(2 )4 ( 2) ( 4)

CV
os CV is o iq o

CV CV CV

α kV k C ω t C ω t
α k k k  

and assuming CVα k , the magnitude of the 2nd harmonic can be simplified as 

2 2 2
,2 (14)

1Δ Δ ( )1 0.5
CV

os is iq
CV

kV C C
α k  

�
(14)

Comparing (4) and  (13) reveals that the proposed 
feedback path can relax the requirement of the output lowpass 
filter. Fig. 9 compares the output voltage of the proposed 
and conventional readout for 40CVk =  . As it can be seen, 
the 2nd harmonic component at the output of the proposed 

feedback readout is much lower than that of the conventional 
readout. The simulation results shows a 17.5dB  harmonic 
attenuation.
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Fig 3. Conventional block diagram of the gyroscope readout. 

Moreover, due to the large amplitude of the quadrature error signal, the phase error in the LO (local 

oscillaor) signal of the mixer can cause a significant error at the output voltage. In the vibratory gyroscopes, 

the cosine signal for the output path modulator is usually generated from the sinusoidal signal in the 
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where, CVk is the gain of the C/V convertor circuit. 

Fig. 4 shows the normalized error versus eθ  for Δ /Δ 10iq isC C . As it can be seen, a one degree phase 

variation in the LO signal of the mixer can cause about 17% error in the output voltage. 
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Equation (15b) indicates that the normalized error will be attenuated by a factor of ( 1 0.5 CVk ). The 

comparison of the normalized error for the proposed and conventional readout is shown in Fig. 10 for
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In order to evaluate the desired output voltage ( osV ), assuming the input voltage as explained in (1), let us 

consider the quadrature output ( oqV ) as 
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where, ,oq DCV is the DC component of the quadrature output. ,2oqV and ,2oqθ are the amplitude and the phase 

of the 2nd harmonic component of the quadrature output, respectively. 

Using (5), the feedback signal ( Δ FC ) can be calculated as 
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According to (7) and assuming the lowpass filter attenuates the 2nd harmonic by a factor of α , the 

quadrature output can be rewritten as 

.

0.5 1.0 1.5 2.0 2.50.0 3.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.6

2.2

With Feedback
Without Feedback

( , )Time m sec

,
O

S
D

C
C

V
V

k

 
Fig 9. The effect of the 2nd harmonic component at the output voltage of the proposed and conventional readout circuit.

Δ Δ( / 10, 40, 25 )iq is CVC C k α dB  
  

Fig 9. The effect of the 2nd harmonic component at the output voltage of the proposed and conventional readout circuit.

0.5 1.0 1.5 2.0 2.50.0 3.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.6

2.2

With Feedback
Without Feedback

( , )Time m sec

,
O

S
D

C
C

V
V

k

 
Fig 9. The effect of the 2nd harmonic component at the output voltage of the proposed and conventional readout circuit.

Δ Δ( / 10, 40, 25 )iq is CVC C k α dB  
  



87

S. Zargari and M. Moezzi, AUT J. Elec. Eng., 52(1) (2020) 81-88, DOI: ﻿ 10.22060/eej.2020.16024.5275

Equation (15b) indicates that the normalized error will be 
attenuated by a factor of (1 0.5 CVk+ ). The comparison of the 
normalized error for the proposed and conventional readout 
is shown in Fig. 10 for 40CVk = . As it can be seen, the feedback 
path reduce this error by about 95%  for 1 degree phase error.

3. CONCLUSION
In this paper, the closed-loop system for rejecting the 

quadrature error in the MEMS gyroscope was presented and 
the mathematical relations were evaluated. With the help of 
this feedback path, needless to use an additional controller 
or extra circuitry, the quadrature error was nearly eliminated 
and as a result, the dynamic range of the readout circuit will 
be increased. Also, this added feedback path cause to reduce 
the sensitivity of the LO mixer in the output path to the phase 
error,  and moreover, due to the reduction of the amplitude 
of 2nd harmonic component  at the output, the required 
specifications for lowpass filter structure became simpler. 
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