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ABSTRACT 

The performance of many traffic control strategies depends on how much the traffic flow models are 

accurately calibrated. One of the most applicable traffic flow model in traffic control and management is 

LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and 

critical density, are parameterized using flow and speed measurements gathered by inductive loop detectors 

and Closed-Circuit TV.  The challenging problem here is continuous changes in these parameters due to 

traffic conditions (traffic composition, incidents) and environmental factors (dense fog, strong wind, snow) 

and missing data. In this paper Maximum Likelihood approaches are developed to the LWR model 

identification while inaccurate observations are available at the traffic control center. A Maximum 

Likelihood method is accomplished via the employment of an Expectation Maximization algorithm. To 

approximate first and second derivatives of optimal filter without sticking in analytical complexities, The 

EM algorithm is implemented based on particle filters and smoothers. Two convincing simulation results for 

two sets of field traffic data are used to demonstrate the effectiveness of the proposed approaches. 
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1- INTRODUCTION: TRAFFIC FLOW MODEL AND 

PROBLEM STATEMENT 

Many of traffic control systems are based on the use of 

a second-order macroscopic traffic flow model or LWR 

model [1], [2]. For a freeway which divided into N 

segments, discrete time state space LWR model is 

represented as: 
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In the above T is Time step size (hours) and  

)(),(),(),(),(,, kskrkqkvk iiiiiii    are length, number, 

mean speed (km/h), traffic density (veh/km/lane), traffic 

flow (veh/h), on-ramp inflow and off-ramp outflow of 

segment i at time kT, respectively. Also τ,υ,δ,κ are model 

parameters which have the same values for all segments, 

and )(ki  is exiting rates on off ramp of segment i at 

time kT. The model characteristics are most sensitive to 

variations of the three other parameters denoted by   in 

the stationary speed equation (i.e., equation 5) which are 

usually unknown and depend on the physical 

infrastructure [3]. Usually this model has to be calibrated 

as exact as possible regarding to infrastructures and 

environmental condition of each physical site to have 

better performance and optimal use of infrastructures in 

traffic mobility. So, we need to develop available 

approaches to a better estimation of key traffic parameters 

including the free flow speed,
fv , the critical density,

cr  

and the exponent α. As we usually have uncertainties and 

imperfectness in the traffic data set due to weather 

condition (rain, snow, fog and pollution) and link loss 

between sensors, here we develop statistical approaches 

to optimize the estimation results. Approaches used here 

are based on Maximum Likelihood (ML) parameter 

estimation accomplished via the employment of direct 

particle filtering and also via the employment of an 

Expectation Maximization (EM) algorithm. There is a 

little work which covers exactly the statistical estimation 

methods in traffic state estimation. The previous studies 

usually include classical estimation methods such as 

filtering methods (Extended Kalman Filters, Particle 

Filters) or regression models (Least Square Error 

Methods). Finding a proper ML estimation can help 

traffic user to interpolate missing data or nearest 

possibility to control or predict congestion or recurrent 

traffic phenomenon. In the first part of this paper, 

regarding to a given LWR model and using maximum 

likelihood estimation including a direct particle filtering 

routine, the traffic flow model parameters referred to by 
nR  are estimated based on the input and output 

observations and information gathered by geographically 

distributed loop detectors implemented in the on-ramp, 

off-ramp, cross section and some pre-determined places 

in the urban roads and traffic infrastructure. In the second 

part of this paper, an Expectation Maximization (EM) 

algorithm is used to solve the maximum likelihood 

problem. Here an offline and online parameter estimation 

using the EM algorithm is addressed for Gaussian 

nonlinear LWR traffic flow model.  

The rest of the paper is organized as follows: In 

Section 2, we describe the Maximum Likelihood 

estimation in a recursive and a batch manner. Section 3 

presents maximum likelihood estimation based on 

expectation maximization algorithm and sequential 

Monte Carlo approach. Online EM algorithm using Split-

Data Likelihood concept is reviewed in section 4. Test 

results of the algorithm by field data are shown in section 

5. Finally in Section 6, we discuss the results and provide 

some concluding remarks. 

2- RECURSIVE AND BATCH MAXIMUM LIKELIHOOD 

ML estimation is a nonlinear system identification 

problem [4] seeking an estimate of the parameter values 

nR̂ as: 

),...,(argˆ
1 NyypMAX 





  

(6) 

where ),...,( 1 Nyyp  denotes the joint likelihood of 

N output measurements, as postulated by model output 

equation. In ML estimation methods, we seek 
* based 

on  
0nnY . There are various earlier attempts in the 

literature [5] to solve the ML estimation problem based 

on particle filters. However, it still remains a challenging 

problem. Particle filter algorithm here used sequence of 

marginal distributions   nn yxp :0| to approximate 

the filter derivatives. Then a gradient ascent algorithm 

should be implemented to maximize likelihood function 

and compute the maximum likelihood estimates of the 

model parameters. Scaling the gradient components is 

based on estimates of the derivatives of the filter 

extracted via particle methods. The expression 

maximized in a standard Recursive ML (RML) 

estimation approach at iteration k 

 
is a summation of log-likelihood functions 

  
0:0log

kkYp as [6]: 
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k

n nnk YYpYp
0 1:0:0 |loglog   

 The expression  1:0| nn YYp  is known as the predictive 

likelihood and can be written as [6]: 
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Maximization is performed by updating parameter 

estimate at time n using a Stochastic Approximation (SA) 

algorithm formulated by the following recursion [7]: 

)|(log 11 1:0  
 nnnnn YYp

n  (8) 

where 
1n  is the parameter estimate at time 1n  and 

)|(log 11:0 
 nn YYp

n
 denotes the gradient of 

)|(log 11:0  nn YYp
n

. This recursion needs a numerical 

approximation from the expressions for  nn Yxp :0|
 and  

 nn Yxp :0|  starting from the recursion given below for 

the joint posterior density, we can derive the suitable 

formulation for the required gradient and Hessian matrix 

[8]:  
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One can improve Hessian matrix according to a 

recursive sample mean formulation such as [9]: 

)ˆ(
1

1
11  


 nnnn HH

n
HH  

(10) 

where: 

)|(ˆlogˆ
1:0

2

 nnn YYpH   

Hessian matrix is invertible according to its 

properties- see [9] and [10] for details- and The Newton-

type SA version of (8) is in the form of [10]: 

)|(ˆlog 1:0

1

1 1:0 
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(11) 

An offline type of Maximum Likelihood Estimation 

algorithm, namely BML, can be used when a batch or a 

set observations nY :0  is received in each time step. BML 

maximizes the log-likelihood )(log :0 nYp  using a 

modified Stochastic Approximation recursion at iteration 

m given by:  

)(ˆlog :01 1 nmmm Yp
m

    (12) 

To do so, one can modify RML as follows: 

considering the parameter fixed at the current estimated 

value 1m  , one runs RML during time step 0 to n and 

finally,  )(ˆlog :01 nYp
m

   can be computed using a Monte 

Carlo method as: 

)(ˆlog :01 nYp
m

   












 










n

k
N

j

j

k

N

j

j

k
n

k kk

kk

aYYp

YYp

m

m

0
1

)(

1

)(

0 1:0

1:0

)|(ˆ

)|(ˆ

1

1






 

Where 1:0Y  

3- EM-BASED MAXIMUM LIKELIHOOD PARAMETER 

ESTIMATION 

The iterative gradient-based search procedures in MLE 

requires calculations of the likelihood and the predictor 

gradient, which in turn requires the solution of a 

nonlinear filtering problem as shown in [11]. In non-

differentiable case (or in case it is non-trivial to extract), 

Expectation Maximization (EM) methods are considered 

as a well-known alternative for maximization of 

likelihood functions. Relaxation from computation of 

gradients is one of the remarkable advantages of EM 

method. Also this approach is well recognized as being 

particularly robust against trapping into local minima 

[12]. Getting the benefits of above comments, here an 

EM-based Maximum Likelihood estimation approach is 

developed for handling the LWR model calibration. The 

Expectation Maximization (EM) algorithm introduced in 

[13] demonstrates a non gradient-based approach to 

estimate the maximum likelihood postulated by (6) in a 

finite number of iterations. By introducing an extra data 

set, in applied statistics referred to as incomplete data or 

missing data,
nX , the EM approach extends (6) as given 

below such that the solution of new problem be 

straightforward. So the key parameter to design a suitable 

EM problem structure is the choice of missing data [14]: 

),(maxarg),(ˆ NNNN YXpYX 


   

Using Bayes’ rule for conditional probability and taking 

logarithm leads to [14]: 

)/(log),(log)(log NNNNN YXpYXpYp    

Given observation 
NY  setting    to a value ′ , taking 

conditional expectations of both sides of this equation 

with respect to  , we obtain[14]: 
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E-Step: Form the expected value of ),( YXL
 over the 

missing data X based on the current parameter estimate 

k   and the measurements Y via [15]: 
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(13) 

M-Step: Obtain a new estimate 
1k  by maximizing 

),(  Q  over    , i.e.: 

),(maxarg1 kk Q 



 (14) 
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Iterating between these expectation and maximization 

steps is known as the Expectation Maximization (EM) 

algorithm [14]. Clearly, its employment requires a 

mechanism for computing the expectation involved in 

),( kQ  , and also a means for maximizing ),( kQ   

over  . Here, Sequential Monte Carlo methods (also 

known as particle filter) has been employed to 

approximate the distribution )|( YXp
k

 in (13). With this 

software available, then we can maximize Q̂  using any 

practical gradient-based search procedure. Here, the 

Sequential Monte Carlo is presented to calculate the 

weights )(

|
~ i

Ntq  and the smoothed particles
)(

|

i

Ntx .  

4- TEST ON FIELD DATA 

Berkley Highway Laboratory: The field data used first 

is from the Berkeley Highway Laboratory. A schematic 

of BHL is shown in Figure 1. The data chosen in this 

study are from Westbound, station 3, lane 3. Speed and 

flow measurements from the dual loop detectors were 

aggregated and converted to a 15 second speed and 

density data for one day (24 hour) in August 2003 [16]. 

Data has been selected such that it includes both free flow 

states and congested states. The initial parameter 

estimates were selected as: 

,100)0(
h

km
v f   

lanekmvehcr //20)0(   

5.1)0( a  

],,[ av crf 

  

diiNqv ..),1,0(~,,   

 

The RML algorithm was implemented using the 

optimal importance density: 

)|()|(),|( 11   nnnnnnn xxfxYgxYxq   

and N=1000 particles. The analytical and 

numerical values of the score vector 

)|(log 1:0  nn YYp  and the Hessian matrix 

)|(log 1:0

2

 nn YYp  were compared up to n=10000. 

These were almost indistinguishable. An 

example of the comparison results obtained for 

the component
2

1:0

2 )|(log






 nn YYp  is shown in 

Figure 2. 

 

 

 

 
Fig.1. The segments of BHL, in this study 

As it can be seen for the results in Figure 

2, the estimate converged to a value ̂  in the 

neighborhood of the true parameter. We then 

applied the BML method to the traffic flow 

parameters. The parameter estimates for M=1000 

iterations using N=1000 particles are shown in 
Figure 3. Our results are consistent with 

those obtained by approaches in [1]. 
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Fig. 2. (a) Analytical and numerical results for second 

derivative using N = 1000 (b)-(c)-(d) Estimation results 

for RML and BML: solid line: Sequence of RML parameter 

estimates for ],,[ av crf    and N=1000.  Sequence of BML 

parameter estimates for ],,[ av crf    and  N=1000 

Parameter tracking: A unique advantage of the RML 

algorithm is its ability to track variations in . An 

example of the tracking performance of the RML 

algorithm based on the state space traffic flow model, 

having time-varying drift parameters, is shown in Figure 

3 and 4. For the same data set, the EM Algorithm has 

been used with M=50 particles. Figure 3 shows the 

filtered estimated free flow speed, critical density and the 

exponent, respectively. Different initial values of the 

parameters were also used in the estimation. Results show 

that the estimation algorithm was not sensitive to these 

factors. It took about 5 hours for the estimates to settle at 

the steady state values.  

 

 
Fig. 3. Data flow in a time varying parameter environment 
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Fig. 4. (a)-(b)-(c): RML algorithm tracking 

performance for time-varying parameters  using N = 

1000 particles. (d)-(e)-(f): Estimated parameters: 

Estimated free flow speed, Estimated critical density 

and  Estimated exponent, respectively.   

 
2) Metro Freeway (Twin Cities Freeway): Another test 

field data was chosen from Minnesota freeway network, 

I-494 highway, between TH101 Boulevard to TH95 

Street, Westbound (red light in Fig. 5). Speed and flow 

measurements from the 14 loop detectors, between 

detectors number 702 and 708 were aggregated and 

converted to 30 second speed and density data for 25 

hours in February 2009 (Fig 5). The initial parameter 

estimates were selected as: 

,100)0(
h

km
v f   

lanekmvehcr //10)0(   

5.1)0( a  

 And EM Algorithm has been used with M = 100 

particles. Figure 6 shows the filtered estimated free flow 

speed, critical density and the exponent, respectively. The 

steady state free flow speed is about 95 km/h, the steady 

state critical density is about 35 veh/km/lane and the 

mean exponent value is about 1.75.  
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(a) 

 

(b) 

Fig. 5: (a)Metro-Area  Freeway Map (b) Segments of Interstate-494 corridor of Metro Freeway Network, 

Minnesota 
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(a) 

 
(b) 

 
(c( 

 
(d) 

 

 

 
(e) 

 
(f) 

Fig. 6.  (a)Estimated free flow speed (b)Estimated critical 

density (c) Estimated exponent. (d)-(e)-(f) Parameter 

estimates for each of the simulation runs as they evolve over 

1000 iterations of the EM method. The true parameter 
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values are 

8.1)0(,//30)0(,120)0(  alanekmveh
h

km
v crf   

To address the issue of finding appropriate initial 

parameter values and to illustrate the inherent robustness 

of the EM-based approach, each of the simulation runs 

was initialized at a randomly chosen initial estimate

)0(fv  which itself was formed using perturbations from 

the true values. Using N=4000 data samples, and despite 

only using a very modest number of M=50 particles in 

the smoothing calculations, the empirical estimation 

results shown in Fig. 5 are encouraging. In particular, we 

should note that despite quite widely varying 

initializations, convergence to the true parameters 

occurred in most cases. Further simulations were 

conducted with M=100 and a higher number of particles, 

but without any significant performance benefit. This 

suggests a robustness of the EM-based approach to 

inaccuracies in computation in the E-step. In relation to 

this, note that the method requires )( 2NMO floating point 

operations per iteration. The computational load is 

sensitive to the number of particles chosen, but scales 

well with increasing observed data length. To provide a 

reference point for these scaling comments, each 

simulation is required to present the Monte–Carlo 

presentation in Fig. 6 (d)-(f) completed within 3 minutes 

on a Pentium IV running at 3GHz. By way of 

comparison, alternative methods, including Newton-

based gradient search were also tried, but proved very 

unsuccessful. Here, it is better to say these alternative 

methods: three different versions of gradient-based  

search Methods have been tried on the same platform, a 

Pentium IV running at 3GHz and the simulation for the 

same data base and initial condition completed in: 15 min 

(Quasi-Newton method ), 31 min (Gauss–Newton 

algorithm), 49 min (Gradient descent). The parameters 

estimated based on the data gathered in the first segment 

shown in Figure 7, However, It can be shown that other 

segment data produce near estimates with a little 

difference. In another word, the data generated by these 

parameters has less MSE in the first segment rather than 

other segments. But they can be accepted as an efficient 

estimates to provide data in another segment as illustrated 

in the Figure 7 for second segments. Apparently as we go 

far from the first segment the estimates will involve 

larger MSE. Finally, the Online EM algorithms were used 

for L =5 with a temperature 5.0nn  . The data was 

chosen from three different highway traffic conditions 

from 3 days. Figure 8 shows the filtered estimates and the 

tracking performance can be easily seen.   
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(d) 

 
(e) 

Fig.7. Real and Estimated data from the first segment (a) 

Speed )10*53.4( 4MSE  (b) Flow )10*20.6( 4MSE . 

the second segment:(a) Speed )10*6( 4MSE  (b) Flow 

)10*5.8( 4MSE  (c)Density 

5- CONCLUSION 

In this study, several types of recursive estimators 

based on particle methods have been designed and tested 

to estimate the three important parameters of a second-

order macroscopic traffic flow model. The particle 

methods to estimate the first and second derivative of the 

optimal filter in general state-space models have been 

presented. This allows the calculation of accurate 

approximations to the score vector and the Hessian matrix 

of the log-likelihood with respect to the model 

parameters. Based on this, a recursive and a batch 

algorithm to perform ML parameter estimation using a 

gradient ascent method were proposed. The Hessian 

estimate can be used as an adaptive step-size in the 

gradient ascent recursion to provide faster convergence of 

the algorithm. The computational cost of the used particle 

methods for the filter derivatives is quadratic in the 

number of particles. Fast computation methods can 

however be employed to address this issue. Then, in this 

study, an offline Maximum Likelihood estimator based 

on EM algorithm has been presented whose key 

distinguishing features include the use of expectation 

maximization methods as opposed to more traditional 

gradient-based search and the use of Monte Carlo based 

“particle” methods for the computation of required 

smoothed state estimates, and a capacity for simply 

encompassing multivariable problems. Simulation results 

justified that it would probably benefit from an improved 

expectation step. The plug-and-play nature of the 

proposed EM algorithm implies that it is straightforward 

to use it with a different smoothing and maximizing 

algorithm and in any highway with different 

infrastructure. Finally, three online estimators based on 

EM algorithm and Split-Data Likelihood contrast 

function type have been provided to estimate time 

varying traffic parameters in different conditions and the 

invariant distribution of the missing data. These 

algorithms are simple and their effectiveness were 

demonstrated using two traffic field data. 
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(b) 

 
(c) 

Fig. 8: (a) Convergence of the estimate of  free flow speed (b) 

Convergence of the estimate of critical density (c)  

Convergence of the estimate of exponent 
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