
Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

1 

Developing Reliable yet Flexible Software through          

If-Then Model Transformation Rules 

Abbas Rasoolzadegan
i
 * and Ahmad Abdollahzadeh Barforoush

ii
 

Developing reliable yet flexible software is a hard problem. Although modeling methods enjoy a lot of 

advantages, the exclusive use of just one of them, in many cases, may not guarantee the development of 

reliable and flexible software. Formal modeling methods ensure reliability because they use a rigorous 

approach to software development. However, lack of knowledge and high cost practically force developers 

to use semi-formal methods instead. Semi-formal (visual) modeling methods, which are widely used in 

practical large-scale software development, are not good enough for reliable software development. This 

paper proposes a new approach to the development of reliable yet flexible software by transforming formal 

and semi-formal models into each other. In this way, the advantages of both methods are incorporated in to 

the software development process. The structured rules, proposed in this paper, transform formal and visual 

models into each other through the iterative and evolutionary process. The feasibility as well as the 

effectiveness of the proposed approach is demonstrated using the multi-lift system as a test case.  

Keywords 

Model transformation, flexibility, design patterns, UML, reliability, Object-Z 

 

                                                           
i * Corresponding Author, A. Rasoolzadegan is with the department of Information Technology and Computer Engineering, Amirkabir University 

of Technology, Tehran, Iran (e-mail: rasoolzadegan, @aut.ac.ir). 
ii A. Abdollahzadeh Barforoush is with the department of Information Technology and Computer Engineering, Amirkabir University of 

Technology, Tehran, Iran (e-mail: ahmad@aut.ac.ir). 

1.  INTRODUCTION 

Studies show that the major causes of software failure 

are vague and incomplete elicitation, specification, 

analysis, validation, and verification of customer 

requirements [9], [11-12]. All activities during 

Requirements Engineering (RE) are expected to address 

the aforementioned causes in the software development 

life cycle. Moreover, in practice, software development 

suffers from premature emphasis on code which is not at 

the right level of abstraction to encourage thinking about 

problems and the design of their solutions. Contemporary 

literature recognizes the vital role of reliability and 

flexibility in software development [8-9]. Modeling plays 

a crucial role to develop reliable and flexible software 

through presenting the appropriate level of abstraction 

during the different phases of software development, 

ranging from RE to detailed design. Models are used to 

specify, analyze, validate, and verify the artifacts 

developed throughout the development cycle [9-10]. This 

is the idea behind Model-Driven Software Engineering 

(MDSE), an approach that advocates models, rather than 

code, as the primary artifacts of software development. 

The focus of MDSE is on modeling. In MDSE models are 

systematically transformed into code. MDSE is supported 

by two broad groups of modeling methods called formal 

modeling methods (FMMs) and semi-formal modeling 

methods (SFMMs). 

 

FMMs are broadly defined as notations with accurate 

and unambiguous semantics and are supported by various 

tools. FMMs mathematically prove the consistency and 

completeness of activities during software development. 

Such proofs help detect all errors before they turn into 

defects. In addition, the correctness insured by proof is 

more comprehensive and reliable than the correctness 

guaranteed by test. These advantages facilitate the 

development of correct and reliable software. 

Despite the above-mentioned advantages of FMMs, 

lack of knowledge and high cost restrict their use to the 

development of critical and high integrity software [9], 

[14]. The flexibility of software depends on the use of 

software engineering (SE) principles that are largely 

heuristic and are more akin to developers’ innovation, 

experience, and tacit (implicit) knowledge than their 

formal (explicit) knowledge [13]. In order to develop 

high-quality software, in general, and flexible software, in 

particular, the direct involvement of stakeholders, 

particularly designers, is needed. The review and analysis 

of formal models proves to be a difficult task for the 

stakeholders who are not familiar with the concepts of 

formal methods. This reduces the flexibility of software 

being developed.  

Semi-formal modeling methods (SFMMs), which use 

semi-formal languages, have a pragmatic approach to 

software development. SFMMs have emerged from a need 

to abstract away from the details of code and visualize the 

overall structure and behavior of software. There are three 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
2 

main strengths of SFMMs: 1) intuitive and widely known 

notations, which strengthen and promote the interactions 

among project stakeholders such as analyzers and 

designers, 2) methodological support emphasizing 

problem decomposition, and 3) making it possible to 

exploit the heuristic and narrative principles of SE during 

the software development process, which increases the 

flexibility. However, their syntax and semantics are not 

enough for an effective verification of a software 

application. This weakness, in turn, causes some side 

effects such as lack of automated analysis and lower 

reliability.  

A detailed report of the advantages and limitations of 

FMMs and SFMMs has been presented in [7]. A 

significant case study, called the multi-lift system, has also 

been taken as a test bed [4-5]. This system is a commonly 

used test bed which demonstrates the expressive power of 

different modeling languages in specifying concurrent, 

reactive systems. The significance of this case study lies in 

the complexity caused by inherent concurrent interactions 

in the system. The advantages and shortcomings of semi-

formal and formal modeling methods have been 

investigated by surveying the literature [7] and specifying 

the multi-lift system case study in an empirical manner [4]. 

This investigation shows that a combination of both 

methods would be required for the correct and complete 

specification, validation, and verification of requirements 

as well as the flexible and reliable design of solutions. 

Achieving high-quality software through such a 

combination seems sound. Although some valuable 

attempts have been made to integrate these methods to 

exploit the advantages of both formal and semi-formal 

modeling methods, there is a long way ahead to reach the 

promised goals [9-10], [59-60].  

The problem to be addressed in this paper is to develop 

reliable yet flexible software [6]. Figure 1 illustrates the 

formal software development process, using FMMs. This 

process starts with an initial formal specification which 

abstractly states the stakeholders’ requirements. Then, the 

details of design are added to the initial specification 

through a gradual process ( T ), using formal refinement 

[9]. This process contains several intermediate artifacts 

refined by transformations and continues until producing 

the final product. 

If the initial formal specification accurately represents 

the informal functional requirements of the stakeholders, 

using FMMs as the sole approach to software 

development guarantees high reliability as a non-

functional requirement. However, FMMs do not 

necessarily help meet other non-functional requirements 

such as flexibility with a desired quality. The heuristic and 

narrative techniques of SE, such as design patterns, 

directly affect the flexibility of software. Effective use of 

these techniques entails developers’ innovation, 

experience, and tacit knowledge. Therefore, designers 

should have an effective and direct involvement in the 

interval T  indicated in Figure 1. In many cases, this 

involvement may not be possible due to designers’ lack of 

familiarity with formal languages. This problem reduces 

the flexibility of software during the formal software 

development process. All issues relating to FMMs have 

been discussed in [7]. 

A detailed report of the problem domain, the key terms 

that are required to communicate the scope, the 

contributions of this work, and the motivation are fully 

elaborated in [6-7]. This paper presents a new approach to 

solving the problem of the development of reliable yet 

flexible software. This approach enables the construction 

of formal models from semi-formal ones and vice versa in 

an iterative and evolutionary manner. The former is called 

formalization, and the latter is called visualization. We 

evaluate the proposed approach via the multi-lift system. 

The rest of this paper is organized as follows: Section 2 

describes the proposed approach. This approach utilizes a 

new bidirectional rule-based mechanism for model 

transformation between Object-Z and UML as well as 

some heuristic techniques of SE to ensure the desired 

reliability and flexibility. The proposed transformation 

mechanism is elaborated in this section. The process of 

developing a reliable and flexible multi-lift system through 

the proposed approach is presented in section 3. Section 4 

investigates compares the related studies. Finally, section 

5 draws conclusions and discusses future works. 

 

2.  THE PROPOSED APPROACH 

This work presents a new approach to the development 

of reliable yet flexible software through model 

transformation between Object-Z and UML. Figure 2 

illustrates a schematic view of the proposed approach 

which consists of the following phases: 

1. Reliability Assurance Phase (RAP) which supports 

formal specification and refinement in Object-Z. 

2. Visualization Phase (VP) which transforms Object-Z 

models into UML ones. 

3. Flexibility Assurance Phase (FAP) which revises UML 

models from the viewpoints of design patterns and 

polymorphism. 

4. Formalization Phase (FP) which transforms UML 

models into Object-Z ones. 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

3 

 
Figure 1:  Formal Software Development Process 

In RAP, according to stakeholders’ requirements, the 

initial formal specification is produced as the first 

artifact, using Object-Z. The RAP contains several 

intermediate artifacts referred to as refined artifacts. The 
thi )1(   artifact contains more details of design than the thi  

artifact. The details of design are gradually added to the 

artifacts through a process which involves several formal 

refinement steps. Formal refinement ensures the 

correctness of the produced artifacts. The newly refined 

formal artifact is passed to VP, as soon as the artifact 

needs to be reviewed by some SE heuristic techniques. 

In VP, the input formal model is visualized in UML by 

a set of rules. More specifically, the input Object-Z 

specification is transformed into a UML class diagram. 

Class diagrams facilitate the process of reviewing the 

structure and the behavior of the software from the 

viewpoints of design patterns and polymorphism. The 

produced visual model is then passed to FAP. 

In FAP, the initial visual model is gradually revised, 

using some heuristic techniques, i.e. some behavioral 

design patterns and polymorphism. This review improves 

the flexibility of the visual models [13]. Model 

refactoring is an appropriate way of preserving the 

behavior between the successive versions of the 

visualized models [60]. The last revised visual model is 

subsequently passed to FP. 

In FP, the input class diagram is transformed into 

Object-Z specification using a set of rules. The produced 

formal model is passed to RAP, where the required details 

of design are gradually added to the input formal model, 

using formal refinement. This iterative and evolutionary 

process continues until a final product with a desired 

quality is achieved. 

As illustrated in Figure 2, the proposed approach 

contains four transformation processes, namely formal 

refinement, visualization, model revision, and 

formalization. A model transformation in MDSE 

transforms an input model which conforms to a given 

meta-model into an output model that similarly conforms 

to a given meta-model. Based on the definition of model 

transformation, there are four kinds of transformation: 1) 

endogenous: the source and target meta-models are 

identical, 2) exogenous: the source and target meta-

models are different, 3) horizontal: the level of 

abstraction does not change, and 4) vertical: the level of 

abstraction changes. Formal refinement is an endogenous 

vertical transformation. Visualization and formalization 

are exogenous horizontal transformations. Model revision 

is an endogenous horizontal transformation.  

Several rules in the phases FP and VP transform 

Object-Z specification into UML class diagram and vice 

versa. These rules cover all shared features of UML class 

diagrams and Object-Z specifications. These features are 

primary attributes, derived attributes, constants, 

operations, visibility, user-defined types, multiplicities, 

and initialization which constitute class, inheritance, 

generic inheritance, unidirectional association, 

bidirectional association, aggregation, composition, and 

dependency which are different kinds of relationships, 

and association class and polymorphism. Since UML and 

Object-Z share basic object-oriented concepts, creating a 

systematic transformation between the two languages 

seems reasonable. Table 1 presents a detailed description 

of the proposed rules. 

During FAP, design patterns are used to increase the 

flexibility and reusability of the structure and behavior of 

the software being developed. Behavioral design patterns, 

rather than structural and creational ones [13], are used in 

this phase. Among all behavioral design patterns, the 

focus is on Mediator, Observer, and Strategy.  

The Mediator pattern defines an object named 

mediator. A mediator encapsulates how a set of objects, 

referred to as colleagues, interact. The Mediator pattern 

has the following benefits [13]: 

 Behavior is localized within a mediator rather than 

distributed among its several colleagues. Thus, 

behavior can be simply changed through subclassing a 

mediator without changing its colleagues.    

 A mediator decreases the coupling between its 

colleagues. Therefore, the mediator and its colleagues 

can be varied and reused independently. 

 Many-to-many interactions among the colleagues of a 

mediator are replaced with one-to-many interactions 

between the mediator and its colleagues. 

Understanding and extension of one-to-many 

relationships are easier than many-to-many ones. 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
4 

 
 

Figure 2: A schematic view of the proposed approach 

 
 

TABLE 1 

BIDIRECTIONAL TRANSFORMATION RULES BETWEEN OBJECT-Z SPECIFICATION AND UML CLASS DIAGRAM 

UML Object-Z 

Class 

 

Comments: 

 In Object-Z, a class contains state schema and operation schemas used to 

define state variables (primary and derived attributes) and operations, 

respectively. 

 In Object-Z, a class contains an INIT schema used to initialize state 

variables.  

 A constant, marked with {frozen} in UML, is represented in Object-Z as 

an axiomatic definition where its predicate expresses constraints on the 

constant introduced in its declaration. 

 Derived attributes, marked with / in UML, are distinguished from primary 

variables within Object-Z state schema through the Δ separator. 

 In UML and Object-Z, user-defined types such as T  can be used.  

 In Object-Z, the input and output variables of an operation are marked 

with (?) and (!), respectively.   

 

 

Initial State Schema 

User-defined Type 

Operation Schemas 

State Invariant 

(Predicate) 

Operation

s 

Attributes 

State 

Schema 

State Variables 

(Declaration) 

Constant 

Derived 

Attribute 

Primary 

Attribute 

Visibility List 

Constant 

Definition 

Declaratio

n Predicate 

Attributes 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

5 

Transformation Rules from UML into Object-Z: 

 If there is a UML class, then there is an Object-Z class with the same 

name.   

 If there is a feature (attribute or operation) marked with public (+) in a 

UML class, then the feature is added to the visibility list of the 

corresponding Object-Z class. 

 If there is a feature marked with private (-) or unadorned in a UML class, 

then the feature is not added to the visibility list of the corresponding 

Object-Z class.  

 If there is a primary attribute in a UML class, then a variable is declared 

with the same name within the state schema of the corresponding Object-

Z class, above the   separator (if any). 

 If there is a derived attribute in a UML class, then a variable is declared 

with the same name within the state schema of the corresponding Object-

Z class, below the   separator. 

 If there is a constant in a UML class, then a constant is declared with the 

same name within a separate constant definition schema of the 

corresponding Object-Z class. 

 If there is an attribute such as attribute2 with the multiplicity greater than 

one in a UML class, then a variable is declared as a finite sequence of the 

same UML type, along with a cardinality predicate in the corresponding 

Object-Z class. 

 If there is an initial value such as 1t  assigned to an attribute such as 

attribute3 in a UML class, then the statement attribute3= 1t  is added to 

the INIT schema of the corresponding Object-Z class.  

 If there is an operation in a UML class, then an operation is declared as 

an individual Object-Z operation schema with the same name, parameters, 

and return values within the corresponding Object-Z class.  

 If there is a user-defined type such as T  declared as a finite set of values 

({ 1t , 2t }) in a UML class, then the statement 21:: ttT   is defined as a 

free type within the corresponding Object-Z specification.  

Transformation Rules from Object-Z into UML: 

 If there is an Object-Z class, then there is a UML class with the same 

name.   

 If there is a feature (attribute or operation) within the visibility list of a 

class in Object-Z, then the feature is marked with public (+) within the 

corresponding UML class.  

 If there is a feature, that is not in the visibility list of an Object-Z class 

then the feature is marked with private (-) within the corresponding 

UML class.  

 If there is a variable within the state schema of an Object-Z class, 

above the   separator (if any), then a primary attribute is defined with 

the same name within the corresponding UML class.  

 If there is a variable within the state schema of an Object-Z class, 

below the   separator, then a derived attribute with the same name is 

defined within the corresponding UML class.  

 If there is a constant declared within a constant definition schema of an 

Object-Z class, then a constant is defined with the same name within 

the corresponding UML class.  

 If there is an attribute as a finite sequence of a basic or user-defined 

type within Object-Z specification, then an attribute is defined with the 

same name and cardinality as an array of the same type within the 

corresponding UML class. 

 If there is a statement such as attribute3= 1t  within the INIT schema of 

a class such as ClassA in Object-Z, then the initial value 1t  is assigned 

to the attribute3 of ClassA in UML.  

 If there is an operation schema within Object-Z specification, then an 

operation is added to the corresponding UML class with the same 

name, parameters, and return values. 

 If there is a free type such as T  with some distinct constants ( 21tt ) 

within Object-Z specification, then a user-defined type is declared as 

T { 1t , 2t } in UML. 

Inheritance 

 

 

Comments: 

 In Object-Z, overridden operations such as Operation1 are marked with 

redef. 

 In UML, a subclass implicitly inherits all structural and behavioral 

features from its superclass. 

 In Object-Z, a subclass doesn't inherit the visibility list from its 

superclass. This enables a new interface to be defined. 

Bidirectional Rules between UML and Object-Z: 

 If there is an inheritance relation between a subclass such as SubClass and a superclass such as SuperClass in a UML class diagram, then the name of 

the superclass ) SuperClass ( is stated immediately after the visibility list of the subclass )SubClass( in the corresponding Object-Z specification and 

vice versa. 

 If there is an overridden operation such as Operation1 in a subclass such as SubClass within a UML class diagram, then the statement [redef 

Operation1]  is stated immediately after the visibility list of the subclass )SubClass( in the corresponding Object-Z specification and vice versa. 

Overriding 

Inheritance 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
6 

Generic Inheritance 

 

 

 

 

Comment: 

 Generic inheritance is a mechanism for developing general-purpose 

structures.  

Bidirectional Rule between UML and Object-Z: 

 If there is a generic inheritance within a UML class diagram between a superclass such as SuperClass with a generic type (T ) and a subclass such as 

SubClass with a different type (T  ) then the statement  SuperClass [T  ]   is stated immediately after the visibility list of the subclass )SubClass( in 

the corresponding Object-Z specification and vice versa. 

Association 

Unidirectional Association: 

  

Bidirectional Association: 

  

Comments: 

 In UML, an association relationship is represented as a line with an optional arrowhead which indicates the association direction in unidirectional 

relationships.  

 A UML association relationship may also include a notation at each end which indicates the multiplicity of the instances of the class attached to that 

end. 

 In a UML class diagram, an association relationship between two classes allows the objects of each of the two classes to have access to the objects of 

the other class depending on the association direction. Access may be: "sending a message", "invoking a method", or "calling a member function". 

Bidirectional Rules between UML and Object-Z: 

 If there is a unidirectional association between two classes such as ClassA (at the arrowhead) and ClassB (at the tail of the arrow) in a UML class 

diagram, then in the state schema of ClassB, a variable is declared to identify an object of ClassA in the corresponding Object-Z specification and vice 

versa. 

 If there is a bidirectional association between two classes such as ClassA, with the multiplicity MA and the role as, and ClassB, with the multiplicity MB 

and the role bs in a UML class diagram, then the state schemas of two corresponding Object-Z classes consists of 1) an attribute declared as a power set 

( ) of the other class, 2) a constraint ensured actual links between instances of the two classes, and 3) a multiplicity constraint and vice versa. 

 

Parameterized Classes 

Generic Type Parameter 

http://en.wikipedia.org/wiki/Message
http://en.wikipedia.org/wiki/Method_%28computer_science%29
http://en.wikipedia.org/wiki/Member_function


Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

7 

Aggregation 

 
 

Comments: 

 In a UML class diagram, an aggregation relationship is a kind of association which models "whole/parts" relationships.  

 In a UML class diagram, aggregation is represented as a hollow diamond on the side of the whole with a line that connects the whole to its parts. 

 In an aggregation relationship, objects can exist independently. 

 The Object-Z notation for modeling an aggregation relationship is . 

Bidirectional Rule between UML and Object-Z: 

 If there is an aggregation relationship between two UML classes such as ClassA (as the whole) referred to as  a  and ClassB (as the part) referred to as 

bs, then the statements  and  is added to the state schema of the whole class (ClassA), respectively, as a 

declaration and a predicate in the corresponding Object-Z specification and vice versa. 

Composition 

 

 

Comments: 

 In a UML class diagram, a composition relationship is a kind of an aggregation relationship, represented as a black diamond.  

 In a composition relationship, the existence of each of its parts depends on the existence of its whole.  

 The Object-Z notation for modeling a composition relationship is ©. 

Bidirectional Rule between UML and Object-Z: 

 If there is a composition relationship between two UML classes such as ClassA (as the whole) referred to as  a  and ClassB (as the part) referred to as 

bs, then the statements  and  are added to the state schema of the whole class (ClassA), respectively, as a 

declaration and a predicate in the corresponding Object-Z specification and vice versa. 

Polymorphism 

 
 

Comments: 

 Polymorphism is one of the basic principles of object-orientation which allows a variable to be declared whose value can be an object from any one of a 

given set of concrete classes that inherit from some abstract class.  

 The statement declares the object b to be of the class AbstractClassB or any concrete class that inherits from AbstractClassB. 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
8 

Bidirectional Rule between UML and Object-Z: 

 If the relation of a UML class such as ClassA (referred to as a) with a hierarchy of classes such as AbstractClassB (referred to as b) and its children is 

based on polymorphism, then the statements  and  are added to the state schema of ClassA, respectively, as a 

declaration and a predicate within the corresponding Object-Z specification and vice versa. 

Association Class 

 

Comments: 

 In UML, an association class is attached to the corresponding association 

by a dashed line. 

 An association class contains information regarding the corresponding 

association relationship. 

 In UML and Object-Z, an association class is represented as a normal 

class.  

 An association class is often used for a many-to-one or many-to-many (*-

*) association where the association itself has some attributes.  

  

 

Bidirectional Rule between UML and Object-Z: 

 If there is an association class such as AssociationClassC attached to a primary association which connects two UML classes such as ClassA (referred 

to as a) and ClassB (referred to as b), then 

1) the declaration  and the predicate  are added to the state schema of ClassA,  

2) the declaration  and the predicate  are added to the state schema of ClassB, and 

3) the declarations a: ClassA and b: ClassB and the predicates baself . and abself .  are added to the state schema of AssociationClassC 

within the corresponding Object-Z specification 

and vice versa. 

Dependency 

 
 

Comments: 

 In UML, dependency is used to show that a class Client depends on another class (Supplier) for doing an operation Operation1. 

 The class Client, placed at the tail of the arrow, depends on the class Supplier, placed at the arrowhead. 

Transformation Rule from UML into Object-Z: 

 If a UML class (Client) includes an operation (such as Operation1) that 

depends on another class (Supplier), then in the corresponding Object-Z 

specification within Operation1 of Client, a variable is declared to 

identify an object of the class Supplier. 

Transformation Rule from Object-Z into UML: 

 If there is a variable of Supplier type within Operation1 of Client in 

Object-Z, then a dependency relation is defined between Supplier and 

Client in the corresponding class diagram such that Client is at the tail 

of the arrow. 

 
The Observer pattern defines a one-to-many 

dependency between one object named subject and its 

dependent objects (observers). All observers are notified 

and updated automatically once the state of the subject 

changes. The benefits of the Observer pattern are as 

follows [13]: 

 It minimizes the coupling between a subject and its 

observers. A subject has the list of its observers. These 

observers conform to the interface of an abstract class 

named Observer. The subject knows only Observer, 

not all concrete classes of Observer.  

Association Class 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

9 

 It provides broadcast communication. A subject 

automatically broadcasts notifications to all its 

observers. The subject does not know how many 

dependent objects exist. It is only responsible for 

broadcasting notifications. Therefore, observers can be 

added or removed at any time in a flexible way.  

The Strategy pattern configures a class named context 

with one of several behaviors. The Strategy pattern has the 

following benefits [13]: 

 It provides a family of algorithms and behaviors as 

hierarchies of strategy classes for contexts to increase 

reusability.  

 It provides an alternative for subclassing. It 

encapsulates various algorithms in distinct strategy 

classes. This makes the algorithms have the ability to 

change or extend independently of the contexts easily.    

 It eliminates conditional statements that are used for the 

selection of the desired behavior by encapsulating 

behavior in discrete strategy classes.  

The proposed rule-based mechanism makes the use of 

formal refinement and SE heuristic techniques easy for 

developers to develop reliable yet flexible software. 

3.  CASE STUDY: MULTI-LIFT SYSTEM 

We have been evaluated the proposed approach, using 

a non-trivial case study named multi-lift system. This 

section presents the results of this empirical evaluation 

[10]. The multi-lift system is controlled by a parallel, 

distributed, embedded, and real-time software. The 

software continuously processes the received information 

about passengers’ requests and lifts to move the lifts 

correct amount in the right direction. The multi-lift 

system, as a concurrent, reactive system, is a commonly 

test bed used for demonstrating the expressive power of 

modeling languages. 

The multi-lift system that has been defined in this study 

consists of multiple lifts used in a building with multi-

floors numbered from 1 to MaxFloor. Each floor has two 

direction buttons (except the top floor and the lobby). 

Passengers may press each of these buttons to go up or 

down. The top floor has only one down button. The lobby 

has only one up button. There is a panel of buttons named 

lift buttons inside each elevator each of which indicates a 

target floor. The door of an elevator is opened to allow 

passengers to enter or leave the car once the elevator stops 

in a floor. Each floor has an arrival sensor. Once an 

elevator reaches a floor, this sensor detects the elevator 

and stops the car. Each button can be pressed at any time. 

When a direction button is pressed in a floor, the button is 

turned on. Once an elevator with the same direction stops 

at the desired floor and opens the door, the button is 

turned off. Any pressed lift button is turned off when the 

lift visits the corresponding floor. This multi-lift system 

has all basic functions such as moving up and down, open 

and close doors, and pick up passengers. The central 

controller of the system is responsible for controlling the 

lifts through their local controllers. Passengers interact 

with the lift system by pressing direction buttons (hall 

calls) or lift buttons (car calls).  

Initially, all lifts stay on the standby floor. If a 

passenger enters a lift and presses the button that 

corresponds to the k-th floor, information about the 

request is sent to the central controller. Then the local 

controller of the lift moves the lift up to the k-th floor 

according to its dispatching strategy that has already been 

determined by the central controller. The dispatching 

strategy is determined for each lift according to some 

criteria such as manager policies and traffic mode [5]. 

When the lift arrives at the destination, the local controller 

opens the door for a certain period M seconds of time, 

then, closes it again, and the lift becomes idle or moves to 

the standby floor according to its strategy. Moreover, 

when a passenger on the m-th floor calls a lift by pressing 

the up or down button, the most suitable lift is moved to 

the m-th floor by the central controller and the door is 

opened on arrival. The passenger may press a lift button to 

reach his destination. If there is no passenger interaction 

on the control panel within M seconds, the lift will close 

the door and become idle on that floor.  

The most suitable lift is selected by the central 

controller to respond to each of the external requests 

according to some criteria such as the current position and 

motion direction of the lifts. The central controller is 

evaluated according to various criteria such as average 

response time of passengers, percentage of passengers 

waiting more than 60 seconds, and power consumption. 

The central controller attempts to minimize the evaluation 

criteria; it is, however, difficult to satisfy all criteria at the 

same time. Therefore, the central controller is designed to 

meet each criterion at certain levels.  

It is difficult to determine the most suitable elevator for 

the following reasons. First, the central controller is 

extremely complex; if a central controller manages n 

elevators and assigns p hall calls to the elevators, the 

controller considers pn  cases. Second, the controller must 

consider hall calls generated in the near future. Third, it 

must consider many uncertain factors, such as the number 

of passengers at the floors where hall calls and car calls 

are generated. Fourth, it must be possible for a system 

manager to change the control strategy. Some managers 

need to operate the system to minimize passenger waiting 

time while others want to reduce the power consumption. 

These factors increase the necessity of designing a flexible 

controller having the potential to change the control 

strategy dynamically. 

The evaluation criteria of the proposed approach are 1) 

the correspondence ratio of the models transformed from 

Object-Z into UML and vice versa, 2) the increase amount 

of the quality of software being developed (in terms of 

both flexibility and reliability), using the proposed 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
10 

approach in comparison with the case that only one of the 

aforementioned modeling methods (either formal or semi-

formal) is used.  

To meet the first criteria, initially, the Object-Z 

specification (
ZObjectM 
) and UML class diagram (

UMLM ) of 

the multi-lift system has been produced. By applying the 

proposed transformation rules to 
ZObjectM 
 and 

UMLM , '

UMLM  

and '

ZObjectM 
 are respectively produced. Then 

ZObjectM 
 and 

UMLM  are respectively compared with '

ZObjectM 
 and '

UMLM . 

The results of this comparison show that the 

correspondence ratio of these models is close to 1. The 

produced models have been presented, in detail, in [5]. 

The rest of this section evaluates the proposed 

approach from the viewpoint of the second criteria. 

Developing a reliable yet flexible multi-lift system using 

the proposed approach consists of the following steps: 

1. The multi-lift system is initially specified using Object-

Z according to the given informal requirements. The 

initial formal specification is then refined formally to 

produce successive formal artifacts (in phase RAP).  

2. At the time of reviewing the produced artifacts from the 

viewpoints of some SE heuristic techniques, the last 

formal artifact is visualized in UML, using the proposed 

transformation rules (in phase VP). 

3. Some SE techniques, i.e. some behavioral design 

patterns and polymorphism are used to revise the 

visualized model until achieving the desired flexibility 

(in phase FAP).  

4. The last visual model is formalized, using the proposed 

transformation rules (in phase FP).  

5. The formalized model is refined formally further until 

developing the final product (in phase RAP).  

The simplified version of the models produced during 

these five steps is presented shortly. The fully-described 

version of the produced models has been comprehensively 

presented in [5]. The simplified version of the final artifact 

produced as the output of the first step is presented in 

Appendix A.  

Appendix B illustrates the initial class diagram of the 

multi-lift system which corresponds to the above formal 

specification. Applying the proposed transformation rules 

to the above formal specification in the phase VP (the 

second step) results in the development of the initial class 

diagram. In order to show the amount of simplification 

made in the models presented in this section, as an 

instance, the full version of the initial class diagram is 

shown in Appendix C. 

In the third step, by applying some SE techniques, i.e. 

the Observer, Strategy, and Mediator patterns and 

polymorphism to the initial class diagram of the multi-lift 

system, we discover which part is appropriate for revision 

by which technique. Figures 3 to 6 depict these parts 

before and after the revision.  

As  illustrated in the left column of Figure 3 (before 

the revision), there are three dependencies between the 

objects of this part: 

1. Whenever the traffic information (trafficinfo) managed 

by TrafficManager changes, the value of traffic 

features (objects of TrafficFeature) should be updated, 

using the method MeasureFeature. 

2. Whenever the value of a traffic feature is updated, the 

suitability percentage of traffic modes (objects of 

TrafficMode) should be updated by the method 

CalculateSuitabilityPercentage. 

3. Once the suitability percentage of a traffic mode is 

updated, the method CalculateCurrentTrafficMode of 

the class ControlStrategyGenerator determines the 

current traffic mode.  

According to the application of the Observer pattern, 

this part is a suitable candidate for revision, using the 

Observer pattern. The right column of Figure 3 illustrates 

the revised version. In the Observer pattern, subjects 

implicitly know their observers. Any number of objects 

can observe a subject. Observers can be attached to 

subjects or be detached from them through the interface of 

subjects. Each subject sends a notification to its observers 

through calling their Update method whenever a change 

occurs to make the state of its observers consistent with its 

own. Moreover, an observer may ask the subject for 

information to reconcile its state with the state of the 

subject. 

Figure 4 illustrates that the central controller (the class 

CentralController) contains an external request allocator 

(the class ExternalRequestAllocator). The role of such an 

allocator is to select the most suitable lift to respond to the 

current external request according to some parameters 

such as current values of the evaluation criteria (the 

objects of the class EvaluationCreteria). There are 

different strategies to respond to external requests 

according to various parameters such as managers’ 

policies (the association class ManagerPolicy) and the 

current traffic mode. These strategies need to change at 

run time according to values of the above-mentioned 

parameters. In order to meet the required flexibility for 

changing these strategies at run time, this part of the class 

diagram has been revised based on the Strategy pattern. 

The diagram illustrated in the left column of Figure 5 

has already been revised using the Observer pattern (in 

Figure 3). The flexibility of this part is improved further, 

using the Mediator pattern. An object named 

ChangeManager is introduced when the coupling between 

subjects and observers is complex. This object, as an 

instance of the Mediator pattern, is to keep these complex 

relationships. The main responsibilities of this object are 

1) it defines an interface to connect a subject to its 

observers and manages this relationship, this omits the 

need for subjects to know their observers explicitly and 

vice versa, 2) it defines a straightforward update strategy 

and 3) it notifies and updates all related observers at the 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

11 

request of corresponding subject. The right column of 

Figure 5 illustrates the newly revised version of this part 

after applying the Mediator pattern. 

Figure 6 shows the use of polymorphism in decreasing 

the coupling among objects which gives us the ultimate 

flexibility in extensibility. In polymorphism, more specific 

behaviors and structures are derived from less specific 

ones. Polymorphism allows us to define a common 

interface of operations for objects of various types. This 

makes it possible to ask different objects to perform the 

same actions. In this revision, overriding has been used to 

realize the concept of polymorphism (the method press). 

Method overriding is where a subclass (such as LiftButton 

and AirButton) overrides the implementation of one or 

more of its parent's methods (the method press of the class 

Button). 

Before Revision 

 

After Revision 

 
Figure 3: First revision of the class diagram using the Observer pattern 

 

 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
12 

Before Revision 

 

After Revision 

 

Figure 4: Second revision of the class diagram using the Strategy pattern 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

13 

  Before Revision 

 

After Revision 

 
Figure 5: Third revision of the class diagram using the Mediator pattern 

Figure 7 shows the final class diagram of the multi-lift 

system in a simplified form after applying the given 

behavioral design patterns and polymorphism to the initial 

one. The full version of the final class diagram is depicted 

in Appendix D. It is worth mentioning that all middle 

revisions of the multi-lift system's class diagram are fully 

described in [5].  

In the fourth step, the final formal specification of the 

multi-lift system is produced according to the final class 

diagram using the proposed transformation rules. The 

simplified version of the final formal specification of the 

multi-lift system is presented in Appendix E 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
14 

Before Revision After Revision 

 

 

Figure 6: Fourth revision of the class diagram using Polymorphism 

 

 

 

Figure 7: Final class diagram of the multi-lift system (Simplified Version) 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

15 

In the fifth step, the new formal specification has been 

refined further. The last refined formal specification of the 

multi-lift system has been presented in Appendix 4 in [5]. 

Thus, a flexible yet reliable multi-lift system has been 

specified using the proposed approach.     

4.  RELATED STUDIES 

This work mainly focuses on the roles of modeling and 

model transformation in developing reliable yet flexible 

software. There have been several attempts in the area of 

model transformation with different purposes such as 

increasing the usability of formal models and increasing 

the accuracy of the semi-formal ones.  

The work of Tilley [15] attempts to increase the 

usability of Z via line diagrams which represent Formal 

Concept Analysis (FCA). In response to the continued 

demand for tool support [10], [20-21], [62], as an 

alternative to increasing the usability of formal methods, 

this work develop a prototype tool for visualizing Z 

specifications based on FCA. 

There have also been a number of approaches used to 

introduce graphical representations of Z specifications via 

UML [10]. The work of Sun, Dong, Liu, and Wang [62] 

provides an XML representation for the Z family of 

languages called ZML. ZML can be transformed into 

UML. A representative example is the work of Carrington 

and Kim [16]. Many approaches focus on the structural 

aspects of the specification. Kim and Carrington argue 

that, beyond the static structure of the specification, the 

dynamic nature and complex constraints must also be 

visualized for a full understanding of a specification. To 

do so, they propose two other graphical representations in 

addition to UML, one for the complex constraints and 

another for the operation schemas. 

The use of formal methods has evolved over time. 

Initially, they were used with the aims of accuracy and 

well-defined semantics. When the tool support of formal 

methods was improved, approaches started to focus more 

and more on the use of formal methods for analysis and 

consistency-checking of semi-formal models. The studies 

by Evans and Clark [17] and Miao, Liu, and Li [18] 

combine Z and UML. However, these approaches focus 

on providing a formal basis for various aspects of UML in 

Z rather than visualizing Z specifications via UML. 

“Alloy” is a Z-related lightweight formal method with 

both textual and graphical components. Alloy offers a 

straightforward mapping from UML into a formal notation 

[19]. Lightweight formal methods provide “less than 

perfectly formal” or partial approaches for specification, 

validation, and testing [19]. Typically they make a trade-

off between completeness and language functionality for 

efficiency. None of the approaches has achieved a full 

UML formalization. Instead, they focus on a restricted 

subset of the language. Most approaches do not even try to 

formalize all features of a diagram. They only focus on 

those features that are necessary for achieving their 

purposes. 

Studies in the area of method integration accompanied 

the evolution of SFMMs and FMMs. Initially, they 

focused on structured methods, then object-oriented ones 

and most recently on UML. There are several approaches 

to integrate structured methods (Yourdon, SSADM, etc.) 

with formal modeling languages such as VDM [22-23], Z 

[24-25], B [26], CCS [27], and algebraic-languages [28]. 

A more detailed study is given in [29]. The integrated 

approaches of structured methods try to do too much at 

once. They propose both the formalization of 

diagrammatic concepts and integration with structured 

methods. This affects the quality of formalization which 

is, in many cases, superficial. Integrated approaches of 

Object Oriented (OO) methods try to formalize the 

underlying concepts of object-orientation. There are some 

approaches to integrate OO methods with Z [30-35], 

Object-Z, B [36-42], [51], and CSP [43-46]. At this point, 

according to the goal of this work in transforming Object-

Z specifications and UML class diagrams into each other, 

the already successful attempts to visualize the Object-Z 

specifications or to formalize models in Object-Z are 

discussed in more detail:  

 Metamorphosis is a method that integrates Object-Z 

with common features of OO methods [47]. It includes 

some translation rules for static and dynamic models. 

 The method of Achatz and Schulte combines Fusion 

with Object-Z [48]. 

 Dupuy formalizes OO class models and state diagrams 

in Object-Z [49]. 

 Chen and Miao visualize abstract Object-Z 

specification in UML diagrams [61]. 

 Kim and Carrington formalized UML class [3] and state 

diagrams [16], [50] in Object-Z; the mapping is also 

formally defined. However, this work does not 

formalize all features of class and state diagrams. 

Table 2 presents the related works that have been cited 

widely and are more relevant to the proposed approach. 

This table divides these studies into two categories: 1) the 

studies that transform formal models in B, Z, and Object-Z 

into semi-formal ones in FCA and UML, and 2) the 

studies that transform semi-formal models in OMT and 

UML into formal ones in B, Z, and Object-Z. In Table 2, 

the related studies have been identified by their source 

model, target model, transformation direction 

(unidirectional or bidirectional), and purpose(s). 

Unidirectional transformations are able to do 

transformation just in one direction. This means that a 

source model can be transformed into a target model 

though it cannot be transformed into a source model. 

Bidirectional transformations are executed in both 

directions.  

As mentioned in section 2, in visualizing formal 

models, we aim to improve the process of gradual adding 

design decisions to formal specification by facilitating the 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
16 

use of the SE heuristic principles during the design 

process. There are also some attempts to integrate formal 

methods with design patterns [52-59]. All of these studies 

attempt to formalize some patterns of [13], but none of 

them suggests the appropriate time and place for using the 

formalized behavioral patterns within the formal 

specification because of the heuristic nature of these 

patterns.  

TABLE 2 

 IMPORTANT RELATED STUDIES IN THE AREA OF MODEL TRANSFORMATION 

5.  CONCLUSION AND FUTURE WORK  

The widespread use of SFMMs helps use the heuristic 

techniques to develop highly flexible software. Despite all 

advantages of SFMMs, due to lack of well-defined 

semantics, SFMMs are not good enough for reliable 

software development. High-reliable software can be 

developed, using FMMs, which specify and verify 

software based on mathematical logic. Precise semantics 

allow FMMs to design the accurate models of software. 

However, their use has not been widely adopted due to 

lack of expertise and high cost.  

The combination of both FMMs and SFMMs is 

necessary to develop reliable yet flexible software. FMMs 

and SFMMs can coexist within the same development and 

complement each other during the development process of 

software models. This coexistence is useful and provides 

many benefits. The formalization of diagrammatic 

languages like UML and visualization of formal models 

like Object-Z specifications are far from trivial. The 

contributions of this paper are summarized as follows: 

 This work proposes a new approach to the development 

of reliable yet flexible software through model 

transformation. The proposed approach uses both 

formal (Object-Z specifications) and semi-formal 

(UML class diagrams) models throughout the software 

development cycle. Object-Z specifications, using 

formal refinement ensure the reliability of the artifacts 

being developed. UML class diagram makes the use of 

design patterns and polymorphism easy for designers to 

develop high-flexible artifacts. 

 Among all model transformation mechanisms, the 

proposed mechanism is the first approach which 

addresses all common features of Object-Z 

specifications and UML class diagrams.  

 This paper also presents a case study, which 

demonstrates the proposed approach. A reliable yet 

flexible multi-lift system, as a non-trivial case study, 

has been developed using the proposed approach.   

Table 3 compares the proposed approach with three 

most similar methods according to ten evaluation criteria. 

The first seven evaluation criteria are source model, target 

model, transformation direction, transformation 

mechanism, evaluation method, features supported, and 

purpose(s). The last three evaluation criteria respectively 

show which approach suggests some guidance to 

recognize 1) when to start or end each transformation, 2) 

what to do with each produced model, and 3) how to 

refine or revise each produced model.  

In this work, the proposed approach is manually 

practiced during software development. In addition, the 

feasibility of the new approach is evaluated empirically, 

using the multi-lift case study according to the defined 

criteria. In the future, we will automate the proposed 

Purpose(s) 
Transformation 

Direction 
Target Model Source Model 

                    Characteristics 

Studies 

Increasing the precision of Statecharts Unidirectional Statecharts B Specification [41] 

T
r
a

n
sf

o
r
m

a
ti

o
n

 f
r
o

m
 F

o
r
m

a
l 

M
o

d
e
ls

 t
o

 S
e
m

i-
fo

r
m

a
l 

O
n

e
s 

Increasing the usability of Z Unidirectional 
Formal Concept 

Analysis 
Z Specification [15] 

Increasing the usability of Z Unidirectional UML Diagrams Z Specification [10], [16] 

Design of safety-critical control systems Bidirectional Statecharts Z Specification [31] 

Specification and design of the essential 

functionalities of the web environment using 

Object-Z & visualization in UML to increase the 

usability of Object-Z 

Unidirectional 

UML Diagrams 

(Class Diagram & 

Statechart) 

Object-Z 

Specification 
[62] 

Increasing the precision of OMT diagrams Unidirectional B Specification OMT Diagrams [36-37] 

T
r
a

n
sf

o
r
m

a
ti

o
n

 f
r
o

m
 S

e
m

i-
fo

r
m

a
l 

M
o

d
e
ls

 t
o

 F
o

r
m

a
l 

O
n

e
s Developing a precise and understandable 

specification 
Bidirectional Object-Z Specification OMT Diagrams [49] 

Increasing the precision of UML & supporting 

traceability in the rigorous information system 

development 

Unidirectional B Specification UML Diagrams [39-40], [42], [51] 

Providing a formal basis for various aspects of 

UML in Z 
Unidirectional Z Specification UML Diagrams [17], [19], [33] 

Increasing the precision of UML Unidirectional Object-Z Specification UML Diagrams 
[3], [16], [18], 

[50], [61] 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

17 

approach and prove its correctness and performance. To 

do so, we should establish formal transformation rules 

between the meta-models of Object-Z and UML based on 

[16], [50]. We should also formalize the review process of 

class diagrams during applying the design patterns, using 

graph transformation [60].   

TABLE 3 

 COMPARISON OF THE PROPOSED APPROACH WITH THE THREE MOST SIMILAR METHODS 

6.   REFERENCES 

[1] Y. Chen and H. Miao, “From an Abstract Object-Z Specification 

to UML Diagram,” Information & Computational Science, vol. 1 

(2), pp. 319-324, 2004. 

[2] D. Roe, K. Broda, and A. Russo, A. “Mapping UML models 

incorporating OCL constraints into object-z,” Tech. Rep., Dept. 

Computing, Imperial College London, 2003. 

[3] S. Kim and D. Carrington, “A Formal Mapping between UML 

Models and Object-Z Specifications,” in Proc. Formal 

Specification and Development in Z and B, UK, Lecture Notes in 

Computer Science, vol. 1878, Springer, 2000. 

[4] A. Rasoolzadegan and A. Abdollahzadeh, “Empirical Evaluation 

of Modeling Languages Using Multi-Lift System Case Study,” in 

Proc. 8th annual Int. Conf. on Modeling, Simulation and 

Visualization Methods, Nevada, USA, 2011. 

[5] A. Rasoolzadegan and A. Abdollahzadeh. (2011). Specifying a 

Parallel, Distributed, Real-Time, and Embedded System: Multi-

Lift System Case Study, Tech. Rep., Information Technology and 

Computer Eng. Faculty, Amirkabir Univ. Technology, Tehran, 

Iran. [Online]. Available: 

http://ceit.aut.ac.ir/~86131901/Publications.htm 

[6] A. Rasoolzadegan and A. Abdollahzadeh, “A New Approach to 

Reliable yet Flexible Software,” in Proc. 18th CAiSE Doctoral 

Consortium, London, United Kingdom. 

[7] A. Rasoolzadegan and A. Abdollahzadeh, “A New Approach to 

Software Development Process With Formal Modeling of 

Behavior Based on Visualization,” in Proc. 6th Int. Conf. on 

Softw. Eng. Advances (ICSEA), Barcelona, Spain, 2011. 

[8] R. N. Charette, “Why software fails,” IEEE Spectrum, vol. 42 (9), 

pp. 42-49, 2005. 

[9] D. Bjørner, Software Engineering III: Domains, Requirements, 

and Software Design, Springer, 2006. 

[10] J. R. Williams, “Automatic Formalization of UML to Z,” MSc. 

thesis, Dept. Computer Science, Univ. York, 2009. 

[11] R. Pressman, Software Engineering: A Practitioner’s Approach, 

7th ed., McGraw Hill, 2009. 

[12] I. Somerville, Software Engineering, 8th ed., Addison Wesley, 

2006. 

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattern: 

Elements of Reusable Object-Oriented Software, Addison-Wesley 

Publishing Company, Fifth printing, 1995. 

[14] J. Bowen, M. Hinchey, “Seven more myths of formal methods,” 

IEEE Software, vol. 12 (4), pp. 34–41, 1995. 

[15] T. Tilley, “Formal Concept Analysis Applications To 

Requirements Engineering And Design,” Ph.D. dissertation, The 

Univ. Queensland, Australia, 2004. 

[16] S. Kim and D. Carrington, “A formal meta-modeling approach to 

a transformation between the UML state machine and Object-Z,” 

in Proc. ICFEM 2002: Int. Conf. Formal Eng. Methods, vol. 2495 

of LNCS, Springer, pp. 548-560, 2002. 

[17] A. Evans, R. France, K. Lano, and B. Rumpe, “The UML as a 

Methods 

Evaluation 

Criteria 

[61] [62] [3] The Proposed Approach 

Source Model Object-Z Specification Object-Z Specification Object-Z Specification Object-Z Specification 

Target Model UML Class Diagram UML Class Diagram UML Class Diagram UML Class Diagram 

Transformation 

Direction 
Unidirectional Unidirectional Unidirectional Bidirectional 

Transformation 

Mechanism 

Informal & Imprecise 

Rules 

Informal & Imprecise 

Rules 
Formal Mapping Structured Rules 

Evaluation Method Trivial Case Study Trivial Case Study N/A Non-trivial Case Study 

Features Supported 

Primary attributes, derived 

attributes, constants, 

operations, and 

initialization within the 

class, inheritance, 

unidirectional & 

bidirectional association, 

and aggregation 

Attributes and operations  

within the class and 

inheritance 

All common features of 

Object-Z specification and 

UML class diagram except 

constants, user-defined types, 

and initialization within the 

class, generic inheritance, 

aggregation, dependency, and 

polymorphism 

All common features of Object-Z 

specification and UML class 

diagram enumerated in section 2, 

page 4 

Purpose(s) 
Increasing the usability of 

Object-Z 

Specification and design 

of the essential 

functionalities of the web 

environment 

Increasing the precision of 

UML 

Developing reliable yet flexible 

software 

Helps to know when to 

start or stop each 

transformation 

N/A N/A N/A 
Propose a systematic process 

elaborated on in section 2 

Helps to know what to 

do with each produced 

model 

N/A N/A N/A 

Refinement of Object-Z 

specifications & revision of UML 

class diagrams through a 

systematic process 

Helps to know how to 

refine or revise each 

produced model 

N/A N/A N/A 

Formal refinement of Object-Z 

specification & revision of UML 

class diagrams, using design 

patterns and polymorphism during 

the defined phases 

http://ceit.aut.ac.ir/~86131901/Publications.htm


Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
18 

formal modeling notation,” in Proc. UML'98: Beyond the 

Notation, France, vol. 1618 of LNCS, pp. 336-348, 1998. 

[18] H. Miao, L. Liu, and L. Li, “Formalizing UML models with 

Object-Z,” in Proc. ICFEM2002: Conf. on Formal Eng. Methods, 

Springer-Verlag, pp. 523–534, 2002. 

[19] D. Jackson, I. Schechter, and I. Shlyakhter, “Alcoa: the Alloy 

constraint analyzer,” in Proc. the International Conf. on Softw. 

Eng., Limerick, Ireland, pp. 730–733, 2000. 

[20] J. Bowen. (2003). The world wide web virtual library: The Z 

notation. [Online]. Available: http://www.zuser.org/z 

[21] J. Sun, J. S. Dong, J. Liu, and H. Wang, “A formal object 

approach to the design of ZML,” Annals of Software Engineering, 

vol. 13, pp. 329–356, 2002. 

[22] N. Plat, J. V. Karwijk, and K. Pronk, “A case for structured 

analysis/formal design,” in Proc. Formal Software Development 

Methods, vol. 552 of LNCS, pp: 81-105, 1991. 

[23] J. Dick and J. Loubersac, “Integrating structured and formal 

methods: A visual approach to VDM,” in Proc. European Softw. 

Eng. Conf., vol. 550 of LNCS, pp. 37-59, 1991. 

[24] F. Polack, “SAZ: SSADM version 4 and Z,” in Proc. Softw. 

Specification Methods: an overview using a case study, Springer, 

pp. 21-38, 2001. 

[25] K. C. Mander, F. Polack, “Rigorous specification using structured 

systems analysis and Z,” Information and Software Technology, 

vol. 37 (5), pp. 285-291, 1995. 

[26] N. Nagui-Raïss, “A formal software specification tool using the 

entity-relationship model,” in Proc. Entity-Relationship Approach, 

vol. 881 of LNCS, pp. 316-332, Springer, 1994. 

[27] A. Galloway, “Integrated Formal Methods with Richer 

Methodological Profiles for the Development of Multi-Perspective 

Systems,” PhD thesis, Univ. Teesside, School of Computing and 

Mathematics, 1996. 

[28] France, R.B. (1992) “Semantically extended data flow diagrams: 

A formal specification tool,” IEEE Trans. on Softw. Eng., vol. 18 

(4), pp. 329-346. 

[29] L. Semmens, R. B. France, and T. W. G. Docker, “Integrated 

structured analysis and formal specification techniques,” The 

Computer Journal, vol. 35 (6), 1992. 

[30] A. Hall, “Using Z as a specification calculus for object-oriented 

systems,” in Proc. VDM '90, vol. 428 of LNCS, pp. 290-318, 

Springer, 1990. 

[31] M. Weber, “Combining statecharts and Z for the design of safety-

critical control systems,” in Proc. FME'96: 3rd Int. Symposium of 

Formal Methods Europe, vol. 1051 of LNCS, Springer, pp. 307-

326, 1996. 

[32] R. B. France, M. M. Larrondo-Petrie, “An integrated object-

oriented and formal model environment,” Journal of Object-

Oriented Programming, vol. 10 (7), pp. 25-34, 1997. 

[33] R. B. France, E. Grant, and J. M. Bruel, “UMLtranZ: A UML-

based rigorous requirements modeling technique,” Tech. Rep., 

Colorado State Univ., 2000. 

[34] R. B. France, J. M. Bruel, M. M. Larrondo-Petrie, and E. Grant, 

“Rigorous object-oriented modeling: Integrating formal and 

informal notations,” in Proc. Algebraic Methodology and Softw. 

Technology, Berlin, vol. 1349 of LNCS, Springer, 1997. 

[35] J. M. Bruel and R. B. France, “Transforming UML models to 

formal specifications,” in Proc. UML'98: Beyond the Notation, 

France, vol. 1618 of LNCS, Springer, 1998. 

[36] E. Meyer and J. Souquiµeres, “Systematic approach to transform 

OMT diagrams to a B specification,” in Proc. FM'99, France, vol. 

1708 of LNCS, pp. 875-895, 1999. 

[37] P. Facon, R. Laleau, and H. P. Nguyen, “From OMT diagrams to 

B specifications,” in Proc. Softw. Spec. Methods: an overview 

using a case study, Springer, pp. 57-77, 2001. 

[38] R. Laleau and F. Polack, “A rigorous metamodel for UML static 

conceptual modeling of information systems,” in Proc. CAiSE 

2001: Advanced Information Systems Eng., vol. 2068 of LNCS, 

pp. 402-416, Springer, 2001. 

[39] R. Laleau and F. Polack, “Coming and going from UML to B: a 

proposal to support traceability in rigorous IS development,” in 

Proc. ZB 2002: Formal Specification and Development in Z and 

B, Grenoble, vol. 2272 of LNCS, Springer, pp. 517-534, 2002. 

[40] H. Treharne, “Supplementing a UML development process with 

B,” in Proc. FME 2002: Formal Methods - Getting it Right, vol. 

2391 of LNCS, Springer, pp. 568-586, 2002. 

[41] A. Hammad, B. Tatibouët, J. Voisinet, and W. Weiping, “From B 

specification to UML statechart diagrams,” in Proc. ICFEM 2002: 

Int. Conf. of Formal Engineering Methods, vol. 2495 of LNCS, 

Springer, pp. 511-522, 2001. 

[42] C. Snook and M. Butler, “UML-B: Formal modeling and design 

aided by UML,” ACM Trans. Softw. Eng. Methodol, vol. 15 (1), 

pp. 92-122, 2006. 

[43] B. Selic and J. Rumbaugh, “Using UML for modeling complex 

real-time systems,” Tech. Rep., ObjecTime, 1998. 

[44] C. Fischer, E. Olderog, and H. Wehrheim, “A CSP view on UML-

RT structure diagrams,” in Proc. Fundamental Approaches to 

Softw. Eng., vol. 2029 of LNCS, Springer, pp. 91-108, 2001. 

[45] G. Engels, J. M. Küster, and R. Heckel, “A methodology for 

specifying and analyzing consistency of object-oriented 

behavioral models,” in Proc. 9th ACM SIGSOFT Symposium on 

Foundations of Softw. Eng., pp. 186-195, 2001. 

[46] J. Davies and C. Crichton, “Concurrency and refinement in the 

UML,” in Proc. Refine 2002: the BCS FACS Refinement 

Workshop, vol. 70 (3) of Electronic Notes in Theoretical 

Computer Science. Elsevier Science, 2002. 

[47] J. Araújo, “Metamorphosis: An Integrated Object-Oriented 

Requirements Analysis and Specification Method,” PhD thesis, 

Dept. of Computing, Univ. Lancaster, 1996. 

[48] K. Achatz and W. Schulte, “A formal OO method inspired by 

Fusion and Object-Z,” in Proc. ZUM'97: The Z Formal 

Specification Notation, vol. 1212 of LNCS, pp. 91-111, 1997. 

[49] S. Dupuy, Y. Ledru, and M. Chabre-Peccoud, “Integrating OMT 

and Object-Z”, in Proc. of BCS FACS/EROS ROOM Workshop, 

1997. 

[50] S. Kim and D. Carrington, “A formal model of the UML meta-

model: The UML state machine and its integrity constraints,” In 

Proc. ZB 2002, Grenoble, vol. 2272 of LNCS, Springer, pp. 497-

516, 2002. 

[51] F. Bouquet, F. Dadeau, and J. Groslambert, “Checking JML 

specifications with B machines,” in Proc. ZB 2005, vol. 3455 of 

LNCS, Springer, pp. 434-453, 2005. 

[52] A. Eden, “Precise specification of design patterns and tool support 

in their application,” PhD thesis, Dept. Comp Science, Tel Aviv 

University, 2000. 

[53] A. Eden, “Formal specification of object oriented design,” in Proc. 

Int. Conf. on Multidisciplinary Design in Engineering, CSME-

MDE, 2001. 

[54] R. Raje and S. Chinnasamy, “elelepus - a language for 

specification of software design patterns,” in Proc. ACM 

symposium on Applied computing, pp. 600-604, 2001. 

[55] A. Flores, R. Moore, and L. Reynoso, “A formal model of object-

oriented design and GoF design patterns,” in Proc. FME 2001: Int. 

Symposium of Formal Methods Europe, vol. 2021 of LNCS, pp. 

223-241, Springer, 2001. 

[56] L. Reynoso and R. Moore, “GoF behavioral patterns: a formal 

specification,” Tech. Rep., The United Nations Univ., 2000. 

[57] S. Blazy, F. Gervais, and R. Laleau, “Reuse of specification 

patterns with the B method,” in Proc. ZB 2003: Formal 

Specification and Development in Z and B, Turku, Finland, vol. 

2651 of LNCS, Springer, pp. 40-57, 2003. 

[58] S. Kim and D. Carrington “A rigorous foundation for pattern-

based design models,” in Proc. ZB 2005: Int. Conf. of B and Z 

users, vol. 3455 of LNCS, Springer, pp. 242-261, 2005. 

[59] T. Taibi, Design Pattern Formalization Techniques, UAE, IGI 

Publishing, Hershey, New York, 2007. 

[60] J. Kong, K. Zhang, J. Dong, and D. Xu, “Specifying behavioral 

semantics of UML diagrams through graph transformations,” The 

Journal of Systems and Softw., vol. 82, pp. 292-306, 2009. 

[61] Y. Chen and H. Miao, “From an Abstract Object-Z Specification 

to UML Diagram,” Journal of Information & Computational 

Science, vol. 1 (2), pp.319-324, 2004. 

[62] J. Sun, J. S. Dong, J. Liu, and H. Wang, “Object-Z web 

environment and projections to UML,” in Proc. 10th Int. WWW 

Conf., New York, ACM, pp. 725–734, 2001. 

http://www.zuser.org/z


Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012   

 

19 

Appendix A: Initial formal specification of the multi-lift system (Simplified Version) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
20 

 

 

 

 

 

 
 

Appendix B: Initial class diagram of the multi-lift system (Simplified Version) 

 
 

 
 
 

 

 



 

Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012  

 

21 

Appendix C: Initial class diagram of the multi-lift system (Full Version) 

 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
22 

Appendix D: Final class diagram of the multi-lift system revised using patterns and polymorphism (Full Version) 

 



 

Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012  

 

23 

Appendix E: Final formal specification of the multi-lift system (Simplified Version) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Amirkabir / Electrical & Electronics Engineering / Vol . 44 / No.1 / Spring 2012 

 
24 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are some deleted items in comparison with the initial 

formal specification. 

There are some new items in comparison with the initial 

formal specification. 

There are some items changed in comparison with the initial 

version. 


