[1] L. Dubois, J.-P. Sozanski, V. Tessier, J.-C. Camart, J.-J. Fabre, J. Pribetich, M. Chive, Temperature control and thermal dosimetry by microwave radiometry in hyperthermia, IEEE Transactions on Microwave Theory and Techniques, 44(10) (1996) 1755-1761.
[2] D. Dunn, C.M. Rappaport, A. Terzuoli, FDTD verification of deep-set brain tumor hyperthermia using a spherical microwave source distribution, IEEE transactions on microwave theory and techniques, 44(10) (1996) 1769-1777.
[3] C. Rappaport, F. Morgenthaler, Optimal source distribution for hyperthermia at the center of a sphere of muscle tissue, IEEE transactions on microwave theory and techniques, 35(12) (1987) 1322-1327.
[4] C. Rappaport, J. Pereira, Optimal microwave source distributions for heating off-center tumors in spheres of high water content tissue, IEEE transactions on microwave theory and techniques, 40(10) (1992) 1979-1982.
[5] D. Sullivan, Three-dimensional computer simulation in deep regional hyperthermia using the finite-difference time-domain method, IEEE transactions on microwave theory and techniques, 38(2) (1990) 204-211.
[6] A. Vander Vorst, F. Duhamel, 1990-1995 Advances in investigating the interaction of microwave fields with the nervous system, IEEE transactions on microwave theory and techniques, 44(10) (1996) 1898-1909.
[7] F. Apollonio, G. d’Inzeo, L. Tarricone, Theoretical analysis of voltage-gated membrane channels under GSM and DECT exposure, in: Microwave Symposium Digest, 1997., IEEE MTT-S International, IEEE, 1997, pp. 103-106.
[8] J.C. Lin, S.M. Michaelson, Biological effects and health implications of radiofrequency radiation, Springer Science & Business Media, 2013.
[9] Y. Sefidbakht, S. Hosseinkhani, M. Mortazavi, I. Tavakkolnia, M.R. Khellat, M. Shakiba.Herfeh, M. Saviz, R. Faraji.Dana, A.A. Saboury, N. Sheibani, Effects of 940 MHz EMF on luciferase solution: Structure, function, and dielectric studies, Bioelectromagnetics, 34(6) (2013) 489-498.
[10] O. Grigore, O. Calborean, G. Cojocaru, R. Ungureanu, M. Mernea, M. Dinca, S. Avram, D. Mihailescu, T. Dascalu, High-intensity THz pulses application to protein conformational changes, Romanian Reports in Physics, 67(4) (2015) 1251-1260.
[11] F. Belloni, D. Doria, A. Lorusso, V. Nassisi, L. Velardi, P. Alifano, C. Monaco, A. Talà, M. Tredici, A. Rainò, Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields, Journal of Physics D: Applied Physics, 39(13) (2006) 2856.
[12] J.K. Dhont, K. Kang, Electric-field-induced polarization of the layer of condensed ions on cylindrical colloids, The European Physical Journal E, 34(4) (2011) 40.
[13] S. Fischer, R. Netz, Low-frequency collective exchange mode in the dielectric spectrum of salt-free dilute polyelectrolyte solutions, The European Physical Journal E, 36(10) (2013) 117.
[14] R. Gan, W. Yan-Ting, Saturated sodium chloride solution under an external static electric field: A molecular dynamics study, Chinese Physics B, 24(12) (2015) 126402.
[15] J. Hand, Modelling the interaction of electromagnetic fields (10 MHz–10 GHz) with the human body: methods and applications, Physics in Medicine & Biology, 53(16) (2008) R243.
[16] F.X. Hart, Cytoskeletal forces produced by extremely low.frequency electric fields acting on extracellular glycoproteins, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 31(1) (2010) 77-84.
[17] S. Takashima, C. Gabriel, R. Sheppard, E. Grant, Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C), Biophysical journal, 46(1) (1984) 29-34.
[18] T. Vreugdenhil, F. Van der Touw, M. Mandel, Electric permittivity and dielectric dispersion of low-molecular weight DNA at low ionic strength, Biophysical chemistry, 10(1) (1979) 67-80.
[19] M.N. Sadiku, A simple introduction to finite element analysis of electromagnetic problems, IEEE Transactions on Education, 32(2) (1989) 85-93.
[20] A. Deshkovski, S. Obukhov, M. Rubinstein, Counterion phase transitions in dilute polyelectrolyte solutions, Physical review letters, 86(11) (2001) 2341.
[21] R. Morrow, D. McKenzie, M. Bilek, The time-dependent development of electric double-layers in saline solutions, Journal of Physics D: Applied Physics, 39(5) (2006) 937.
[22] V.P. Andreev, Cytoplasmic electric fields and electroosmosis: possible solution for the paradoxes of the intracellular transport of biomolecules, PloS one, 8(4) (2013) e61884.
[23] R. Hossain, K. Adamiak, Dynamic properties of the electric double layer in electrolytes, Journal of Electrostatics, 71(5) (2013) 829-838.
[24] P.J. Roache, Computational fluid dynamics, Hermosa publishers, 1972.
[25] D.J. Griffiths, Electrodynamics, Introduction to Electrodynamics, 3rd ed., Prentice Hall, Upper Saddle River, New Jersey, (1999) 301-306.
[26] J.D. Jackson, Classical electrodynamics, John Wiley & Sons, 2012.
[27] A. Adamson, A textbook of physical chemistry, Elsevier, 2012.
[28] P. Atkins, J. De Paula, J. Keeler, Atkins’ physical chemistry, Oxford university press, 2018.
[29] M. Yoshida, K. Kikuchi, T. Maekawa, H. Watanabe, Electric polarization of rodlike polyions investigated by Monte Carlo simulations, The Journal of Physical Chemistry, 96(5) (1992) 2365-2371.
[30] M.L. Bret, B.H. Zimm, Distribution of counterions around a cylindrical polyelectrolyte and Manning’s condensation theory, Biopolymers: Original Research on Biomolecules, 23(2) (1984) 287-312.
[31] E. Grant, The dielectric method of investigating bound water in biological material: An appraisal of the technique, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 3(1) (1982) 17-24.
[32] S. Gekle, R.R. Netz, Nanometer-resolved radio-frequency absorption and heating in biomembrane hydration layers, The Journal of Physical Chemistry B, 118(18) (2014) 4963-4969.
[33] A. Peyman, C. Gabriel, E. Grant, Complex permittivity of sodium chloride solutions at microwave frequencies, Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 28(4) (2007) 264-274.
[34] F. Bordi, C. Cametti, R. Colby, Dielectric spectroscopy and conductivity of polyelectrolyte solutions, Journal of Physics: Condensed Matter, 16(49) (2004) R1423.
[35] H.P. Schwan, Interaction of microwave and radio frequency radiation with biological systems, IEEE Transactions on microwave theory and techniques, 16(2) (1971) 146-152.
[36] S. Nikzad, H. Noshad, Electrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory, AUT Journal of Electrical Engineering, 48(1) (2016) 11-17.
[37] S. Nikzad, H. Noshad, E. Motevali, Study of nonlinear Poisson-Boltzmann equation for a rodlike macromolecule using the pseudo-spectral method, Results in physics, 7 (2017) 3938-3945.
[38] S. Nikzad, H. Noshad, M. Saviz, Steady state behavior of a finite rodlike macromolecule in salt free solution, Results in physics, 7 (2017) 2658-2662.
[39] H.-J. Butt, H.-J.B. Butt, K. Graf, M. Kappl, Physics and chemistry of interfaces, John Wiley & Sons, 2003.
[40] A. Majee, M. Bier, S. Dietrich, Poisson-Boltzmann study of the effective electrostatic interaction between colloids at an electrolyte interface, The Journal of Chemical Physics, 145(6) (2016) 064707.
[41] D. Murray, A. Arbuzova, G. Hangyás-Mihályné, A. Gambhir, N. Ben-Tal, B. Honig, S. McLaughlin, Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment, Biophysical Journal, 77(6) (1999) 3176-3188.
[42] R.M. Peitzsch, M. Eisenberg, K.A. Sharp, S. McLaughlin, Calculations of the electrostatic potential adjacent to model phospholipid bilayers, Biophysical journal, 68(3) (1995) 729-738.