

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

17

A Solution to View Management to Build a Data
Warehouse

N. Daneshpour i ٭and A. Abdollahzadeh Barfourosh ii

ABSTRACT

Several techniques exist to select and materialize a proper set of data in a suitable structure that manage
the queries submitted to the online analytical processing systems. These techniques are called view
management techniques, which consist of three research areas: 1) view selection to materialize, 2) query
processing and rewriting using the materialized views, and 3) maintaining materialized views. There are
several parameters should be considered in order to find the most important algorithm for view management.
As various researches have been done to propose view selection algorithms, we should select and modify the
most suitable algorithm for view materialization based on the properties of the applications. In this paper, we
investigate and find relevant parameters to view selection algorithms and classify them based on these
parameters. We also present a system to evaluate algorithms and compare them with respect to the values of
the evaluation parameters. Based on the results of these activities, we propose a roadmap that helps us
choose the most efficient view selection algorithm concerning application types.

KEYWORDS

Algorithm classification, data warehousing, view management, view materialization, view selection.

i * Corresponding Author, N. Daneshpour is a PhD candidate of the Department of Computer Engineering & Information Technology, Amirkabir

University of Technology, Tehran, Iran (email: daneshpour@aut.ac.ir).
ii A. Abdollahzadeh Barfourosh is with the Department of Computer Engineering & Information Technology, Amirkabir University of

Technology, Tehran, Iran (e-mail: ahmad@ce.aut.ac.ir).

1. INTRODUCTION

OLAP is defined as online analytical processing
system to answer the multidimensional queries to
managerial decisions in decision support systems (DSS)
and data mining. Multidimensional queries are complex
and operate on huge amount of data. To decrease query
response time, we have to have the multidimensional
structure to store data. Data cube is the structure of the
Data warehouses to represent data sources. Data
warehouse is a new representation of data sources to meet
online analytical needs of users, within a
multidimensional structure. To achieve analytical process
of queries, data cubes store data in different
summarization degree related to the aggregation function
type. With multidimensional data, the lattice of cuboids
will be made, which contains data in different level of
summarization. In this structure, data are summarized
with respect to the different dimensions related to the type
of the aggregate function.

Data cube computation is time and money consuming
because it requires costly query processing. Various
researches have been done to improve the query response

time [1]-[3], [9] based on both index and view selection.
We focus on view selection techniques which are the
main issue to construct data warehouses [5], [7]-[8], [10]-
[13], [16]-[19], [22]-[29], [31]-[32], [34]-[49].

Data cubes are usually pre-computed and stored in data
warehouses in the form of materialized views. As various
types of aggregate functions and various dimensions exist,
there are several views which should be materialized.
Consequently, it requires huge amount of space.
Moreover these data should be refreshed periodically,
which is a time consuming process. Therefore, it is
important to select the best subset of views by considering
the cost of their materialization. Selection of a proper
subset of cubes to store depends on the query types, query
frequency, and the cost of responding the query, which is
the time consumed to answer the query through past
materialized views.

User requirements may change through time.
Materialized views should be changed to respond these
queries through time. Indeed, unnecessary views should
be removed and required views should be materialized
from time to time. The time consumed to do these
changes is important too.

View management, as an important issue to build data

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

18

warehouses, consists of three activities which are: 1)
proper views selection to materialize, 2) query processing
and rewriting using the materialized views, and 3)
materialized views maintenance. To apply these type of
activities, many systems with different parameters namely
algorithm, benefit function, algorithm’s input type, the
time of calling view selection algorithms, the metadata
required to calculate the benefit function, the metadata
required to select old materialized views, and architecture
type are involved. Among these parameters, “algorithm”
is the very crucial and important issue.

In this paper, several recently developed view selection
algorithms have been investigated and the important
parameters have been recognized and based on them
classification has been done. The main issue in this regard
was the properties of algorithms and their effectiveness on
applications. We compare algorithms with respect to the
values of evaluation parameters and propose a roadmap
based on the results of this activity which shows how to
select the most efficient view materialization algorithms
concerning the type of applications. We surveyed several
algorithms presented in literature during 1996 – 2009 [4]-
[8], [10]-[13], [16]-[19], [21]-[32], [34]-[49]. These
algorithms have been published in well-known journals
and conferences. In this paper, the frequently used
algorithms were identified and compared in a table and
classified based on their properties.

The remainder of this paper is organized as follows.
The next section introduces important parameters of view
selection systems. Section 3 presents the main steps to
select proper view selection algorithms. These steps are
described in sections 4, 5, and 6. Section 4, firstly
introduce 15 view selection algorithms as instances, and
then presents the properties of them in a table to compare
and classify them based on various parameters. Section 5
presents different parameters which are important to
identify the type of applications. Section 6 presents the
roadmap to select the most suitable view selection
algorithm for applications. In Section 7, we test and then
evaluate the roadmap. Conclusions of this work are
presented in Section 8.

2. IMPORTANT PARAMETERS OF VIEW SELECTION
SYSTEMS

There are different view selection systems. These
systems include several parameters extracted from their
original references and introduced in details in our
previous work [15]. We define view selection systems in
the form of a function with inputs and outputs as:

() MVarsmbmetitbfalVS →,,,,,, (1)

In this function, VS is a view selection system, and MV
is a set of selected views through VS to materialize. The
parameters of view selection systems which are the inputs
of this function are described below.

• al: It means an algorithm and is a step by step
process. It consists of conditions and solves the
problem. It should be converted to the
programming code directly [33]. In view
selection systems, algorithms are used to select
views to materialize.

• fb: It is a benefit function and is an indicator to
select views to materialize. Views with the
highest benefit functions are selected as
candidates for materialization.

• ti: It means an algorithm's input type. View
selection algorithms process different input
types. Some of the most important inputs are
lattice of cuboids and and-or view graph of input
queries.

• te: It is the time of calling view selection
algorithms to execute. Some of the algorithms
are executed before any query arrival and others
are executed during run time.

• mb: It means the metadata required to calculate
the benefit function, and their extraction
methods. Benefit functions consist of some
parameters that should be collected to calculate
these functions. Some of these parameters are the
number of rows in the view, the frequency of a
query, the frequency of an update statement, the
cost of answering the query using old
materialized views, and the cost of refreshing
views.

• ms: It means the metadata required to select old
materialized views for answering the current
query, and their extraction methods. To decrease
query response time, the most proper
materialized views should be selected to execute
queries. Therefore, the information about some
parameters such as the attributes of each view
and each query, the range of each attribute, and
the number of rows in view should be collected.

• ar: It is the architecture of a view selection
system. This architecture should contain various
units such as an information repository to store
materialized results, a process unit to determine
whether or not already materialized results can
be efficiently used to respond the query, a
process unit to search in information repository
to find candidate materialized results, and a
process unit to decide about the materialization
of query results in the information repository.

“Algorithm” is the most important parameter of view
selection systems because it affects the other parameters.
Several algorithms have been presented for view
selections [4]-[8], [10]-[13], [16]-[19], [21]-[32], [34]-
[49]. We classify these algorithms based on 4 parameters
which are: Type, Input, Benefit function, Time
Complexity, and Constraining Factor. Table 1 shows
algorithms classification based on these parameters .The
search strategy of these algorithms such as depth first and

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

19

best first is not the issue for classification.
TABLE 1

VIEW SELECTION ALGORITHMS’ CLASSIFICATION PARAMETERS

Type Input Benefit
Function

Time
Complexity

Constraining
Factor

Static /
Dynamic

Data
cube

lattice /
DAG/
query

Query
processin
g cost /

materiali
zed

view's
refreshm
ent cost

Suitable for
applications

with 8
dimensions in

maximum /
executable for
applications
with more

than 8
dimensions

Space
limitation /

Maintenance
time

restriction

Types as defined below are divided into two main

groups.
1. Static algorithms: In these algorithms, views are

selected and materialized before processing the
first query. These views are maintained until
processing the last query. This type of algorithms
is called to execute (te) before processing the first
query.

2. Dynamic algorithms: In these algorithms, views
are selected and materialized during query
processing time. These algorithms are called to
execute (te) repeatedly during query processing.
We classify these algorithms into two groups. In
the first group, the queries and their order of
execution are known before processing the first
query. In the second group, queries are unknown
before execution. To materialize a proper set of
views, it is better to use a technique to predict
incoming queries in this group.

Dynamic algorithms are more complex than the static
ones, because finding proper checkpoints to materialize
each view is very time consuming and it needs heavy
competitions and experimental jobs. These algorithms are
more beneficial than static algorithms because they
provide the flexibility to change materialized views
through runtime. Moreover, in these algorithms
unnecessary old materialized views are deleted during run
time and their space and maintenance costs are decreased.
Static algorithms are suitable when there is less
dimensionality which makes less candidate views.

Both dynamic and static algorithms operate on two
approaches to select proper set of views to materialize. In
one approach, they select the answer of costly queries to
materialize which is the part of the data cube. They
usually use the data cube lattice as input which contains
cuboids' dependencies. In this approach, dynamic
algorithms use input queries as inputs too. In the other
approach, algorithms select common sub queries to
materialize. They use Directed Acyclic Graphs (DAGs) to
represent queries as inputs and then extract common sub
queries. Common sub queries can be used to answer more
than one query, but it is required to join more than one of

them to answer a query, which is a costly process.
Some algorithms use benefit functions [13], [18]-[19],

[22], [24]-[26], [28], [32], [34]-[37], [45], [49] and some
others use cost functions [5], [17], [23], [31], [35]-[36],
[47] to select views for materialization. In this paper, cost
functions are converted to benefit functions. Different
algorithms use different benefit functions to select views.
These functions mostly depend on the query processing
cost and the cost of updating materialized views leading
to better results.

The time complexity of different view selection
algorithms should be considered as a key parameter for
being executable on high dimensional applications.

Space limitation to store views and view maintenance
cost are two constraining factors for selecting views to be
materialized. Because of limitation in resources, space is a
constraining factor. Views are maintained when systems
are off-line. When the maintenance time is bigger than
offline time of the system, we should reduce this time by
discarding some materialized views. Some algorithms
consider both constraining factors while the others
consider either only one of the constraining factors, or
consider none of them.

3. FOUR STEPS TO SELECT THE SUITABLE ALGORITHM

Selecting the most suitable algorithm for view
selection is important and depends on application type. In
this section, we present 4 steps based on different types of
algorithms to select views to materialize data warehouses
for different types of applications. These steps are given
below.

1. Identifying different types of algorithms for view
selection and their properties. This step consists
of 2 stages: 1) identifying algorithms evaluation
parameters, 2) evaluating and classifying
algorithms based on these parameters.

2. Identifying different parameters which are
important to determine the type of applications in
this subject. These parameters are as follows:
1. Applications with known/unknown queries.
2. The number of dimensions in applications.
3. Applications with known/unknown

sequence of statements.
4. Whether the view maintenance cost is

important or not in application.
3. Creating a roadmap based on the above

parameters and an instance of each type of
algorithms for view selection.

4. Selecting the most suitable type of algorithms
through the roadmap.

In the following section, the instances of the
conventional view selection algorithms reported in the
literature during 1996-2009 are presented and classified
based on the presented parameters in section2.

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

20

4. VIEW SELECTION ALGORITHMS CLASSIFICATION

In this section, the first step to select the most suitable
algorithm is explained and different types of algorithms
for view selection and their properties should be
identified.

View selection algorithms depend on parameters
described in section 2 which are: type of algorithm, input
type, benefit function, time complexity, and constraining

factor. Different algorithms have different values for these
parameters and are suitable for different applications.

In this section, 15 important algorithms for view
selection are considered. We extract and analyze the
values of the view selection algorithms parameters for
these algorithms using their original references and
present them in a comparison table (Table 2) in a unified
format; and then classify them

TABLE 2
 ALGORITHMS COMPARISON BASED ON CLASSIFICATION PARAMETERS

Name Presen-
tation
year

Type Input
Type

Time
complexity

Benefit function Constr
ainig

Factor

Analysis

HRU 1996 Static Cube O(kn2) (Rows(A)-Rows(v))*NC Space Simple.
GM 1997 Static DAG O(km2) () ()vMGMG ∪− ,, ττ

() () ()∑∑
==

+=
m

i
iuq

k

i
iq MvUCfMqQfMG

ii
11

,,,τ

Space More complex than HRH to
implement.

PBS 1998 Static Cube O(n logn) -Sv/Nq Space The same performance as HRU,
advantages compared with

HRU:
lower time complexity, more

complete benefit function.
PGA 2002 Static DAG O(dk2l) (Rows(A)-Rows(v))*NC /Rows(v) Space Its performance is close to

HRU, advantages compared
with HRU: lower time

complexity, flexible, more
complete benefit function.

VRDS 2002 Static DAG O(km2) () ()∑ ∑−= MvUCfMvCfMvB iuqiqi ,*),(*,

Space Advantages compared with

GM: more suitable benefit
function, improved

performance.
Randomize

d
algorithms

2002 Static /
Dynamic

DAG O(hs logs) -T Update
cost
and

Space

Advantages compared with
HRU: lower time complexity,
the only applicable algorithms

when we have high
dimensional problems, its

performance are better than
DynaMat.

Drawback: in these algorithms
some parts of the space are not
extensively searched and good
local minima may be missed.

CSA 2006 Static DAG,
Query

O(kc2) () { }() ()∑ ∑ −− MvUCvMiqQMiqQ ,,, ∪

Space Advantages compared with
HRU: Search in smaller search

space.
MPL 2007 Static DAG O(kn2) () { }(){ }

v
SvMCostMCost /∪−

() () ()∑ ∑
= =

+=
n

i

m

j
juqiq MvUCfwMvQfMCost

ji
1 1

,,

Space Advantages compared with
HRU: Better results in less

time.

DynaMat 1999 Dynamic DAG,
Query

O(rk2) fq*C(v,M)/Sv Update
cost
and

Space

More suitable prediction
function is required.

ZYK 2003 Dynamic DAG,
Query

O(i) -c(x) - More complex than DynaMat
to implement.

DMP 2003 Dynamic DAG,
Query

O(P2) fP*SP Space It does not have various views,
because it partisions base

cuboid.

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

21

Hybrid 2006 Dynamic DAG,
Query

O(kn2) Max(a) Space It has better response time for
drill-down queries compared

with DynaMat.
XTZ 2007 Dynamic DAG,

Query ()2
nqO -Q(q,M) Update

cost
and

Space

The workload is already
definite, complex to implement.

CDA 2008 Dynamic DAG,
Query

()()cnLogcnO 2

 () ()
⎭
⎬
⎫

⎩
⎨
⎧

∑
∈

+−
Mv

MvUCMqQ ,,
Space Advantages compared with

DynaMat: Search in smaller
search space.

PL 2008 Dynamic DAG,
Query

O(rk2) -T Space Fewer complexes than XTZ to
implement.

based on each parameter. These algorithms have been

extracted from well-known journals and conferences
presented in ten recent years. We also present three
reference algorithms (HRU, GM, and DynaMat). Details
of these algorithms were presented in our previous work
[15].

These algorithms are given below.
1. The algorithm presented by Harinarayan and et

al. (HRU Algorithm) [22].
2. The algorithm presented by Gupta and et al. (GM

Algorithm) [18]-[19].
3. Pick By Size Algorithm (PBS Algorithm) [37].
4. Polynomial Greedy Algorithm (PGA Algorithm)

[32].
5. View Relevance Driven Selection Algorithm

(VRDS Algorithm) [45].
6. Randomized Algorithm [24], [28].
7. The algorithm presented by Aouiche and et al.

(CSA Algorithm) [5], [31].
8. Mid Point Locating Algorithm (MPL Algorithm)

[23].
9. DynaMat Algorithm [25]-[26].
10. Dynamic Materialized View Management Based

on Predicates (DMP Algorithm) [13].
11. The algorithm presented by Zhang and et al.

(ZYK Algorithm) [49].
12. Hybrid Algorithm [35]-[36].
13. The algorithm presented by Gong and et al.

(CDA Algorithm) [17].
14. The Algorithm presented by Xu and et al. (XTZ

Algorithm) [47].
15. The algorithm presented by Phan and et al. (PL

Algorithm) [34].
The comparisons of these algorithms are presented in

Table 2. This table contains 7 static algorithms, 7 dynamic
algorithms, and a randomized algorithm which has static
and dynamic versions. All of the algorithms are evaluated
based on five parameters extracted from their evaluations
according to their reports on the reference papers. These
parameters are the type of algorithm, the type of their
input, time complexity, benefit function, and constraining
factors. Therefore, Table2 has 8 columns which are
algorithm’s name, presentation year, 5 columns related to
the parameters, and an analysis column containing
algorithms’ analysis based on their techniques and the

results of accomplished experiments. Static algorithms,
which use DAG (Directed Acyclic Graph) of cuboids as
input, are compared with HRU algorithms and the other
static algorithms are compared with the GM algorithm.
Dynamic algorithms are compared with DynamMat. In
the upper rows static algorithms and in the lower rows
dynamic algorithms are presented. These two types have
been ordered by time.

We can classify algorithms through various
parameters. These classifications are listed below.

1. Algorithms classification based on their types:
Static algorithms, and Dynamic algorithms.

2. Algorithms classification based on input types:
algorithms which use and/or graph of input
queries as input, algorithms which use DAG of
cuboids as input, and algorithms which use input
queries as input.

3. Algorithms classification based on constraining
factors: algorithms which are based on restricted
space, algorithms which are based on restricted
time to refresh materialized views, and
algorithms which are based on the above-
mentioned constraining factors.

4. Algorithms classification based on time
complexity: algorithms, which have exponential
time complexity, and algorithms, which have
polynomial time complexity.

5. Algorithms classification based on the
parameters required to calculate their benefit
functions: the benefit function of algorithms is
based on parameters which are: update
frequency, query processing cost, update cost,
query frequency, the space required to
materialize a view, the number of queries which
can be answered through a materialized view
with improved response time.

6. Dynamic algorithms classification based on their
queries: algorithms with unknown input queries,
and algorithms with known sequence of
incoming queries.

Classifications of algorithms based on the above
parameters were presented in detail in our technical report
[15]. Different algorithms which have different values for
each parameter can be used for suitable applications
types. The next section presents applications types.

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

22

5. THE TYPE OF APPLICATIONS IDENTIFICATION

The second step to select the suitable algorithm for
view selection is the type of application identification. We
define the data structure of the type of application
identification process in the form of a function with inputs
and outputs as:

CAvUCqsdqAC →⎟
⎠
⎞⎜

⎝
⎛ ,,, (2)

In this function, AC is a function to specify application
type, and CA is an application with the specified type. In
this step, we should identify different parameters which
are important to identify the type of applications. These
parameters are the inputs of this function and extracted
through investigation of data mining applications and
decision support systems applications [20], [43] and are
described as follows.

1. q: stands for query type in applications. In some
applications, the queries are known before
arriving [14].

2. d: stands for the number of dimensions in
applications.

3. sq: stands for the type of sequence of statements.
In some applications, the sequence of statements
is known and in other applications, they are
unknown. Sequence of statements contains
queries, updating, and their order of execution.

4. UCv: stands for view maintenance cost. Some
applications have limited time to update and
refresh materialized views and in the others it is
not an important issue. There are different
algorithms for these two types.

Based on the value of the above parameters, the most
suitable algorithm for view selection in different
applications can be selected.

6. THE ROADMAP TO SELECT THE MOST SUITABLE VIEW
SELECTION ALGORITHM FOR APPLICATIONS

Creating roadmap as a third step is defined in this
section. The roadmap is created based on two factors: the

parameters of applications, and the algorithms’ properties.
The other factors such as data distribution is not directly
affect the algorithm selection. These can be used as
parameters in the state of preprocessing to achieve the
roadmap.

Fig.1 presents the proposed roadmap to select the
suitable algorithm based on application parameters. The
proposed roadmap is created based on 15 available
algorithms and can be generalized. To add new algorithm
to this roadmap, it is necessary to recognize the properties
of each of them.

In this roadmap, the type of queries is first checked. If
they are unknown, all of the dynamic algorithms except
XTZ and PL algorithms should be used. Therefore, there
are six choices: DynaMat, Randomized, CDA, Hybrid,
DMP, and ZYK. Then, the number of dimensions in the
application should be checked. If this number is at most 8,
CDA is the most suitable algorithm because it searches in
the smallest search space and selects suitable views in a
reasonable time. If the number of dimensions is more than
8, other algorithms should be used. In this type, Hybrid
algorithm is the best one when there are drill-down
queries.

If the queries are known before arrival, all of the static
algorithms, Randomized, XTZ, and PL algorithms can be
used. If the number of dimensions is more than 8, fast
algorithms such as PGA, CSA, or Randomized algorithms
should be used.

If the queries of applications are known before their
arrival and an application has at most 8 dimensions, HRU,
GM, PBS, PGA, VRDS, CSA, MPL, PL, and XTZ
algorithms can be used. If an application has known
sequence of statements, XTZ and PL are more suitable
algorithms. XTZ is more complex than PL to implement.
If the order of queries’ execution is changeable, PL
algorithm is more suitable than XTZ.

If the view maintenance cost is important and limited,
VRDS, MPL, and GM algorithms are more suitable.
However, GM has the lowest performance and is not
suggested.

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

23

Figure 1: The roadmap to select the best suitable view selection algorithm.

Figure 2: The used path in the roadmap to select the view selection algorithm for the Sell application.

If 1) the queries of application are known, 2) an

application has at most 8 dimensions, 3) the order of
queries’ execution is unknown, and 4) the view
maintenance cost is not important, HRU or PBS
algorithms should be used. PBS has lower time
complexity and more suitable benefit function. This
algorithm is recommended in this situation.

The roadmap can be used to select the most suitable
algorithm for each type of applications. For example,
assume there are sale queries in a data warehouse system.
It consists of five major dimensions: parts, suppliers,
customers, times, items. Suppose that the orders of

queries’ execution are known. Whereas queries are
known before arrival, HRU, GM, PBS, PGA, VRDS,
Randomized, CSA, MPL, PL, and XTZ algorithms can be
used. These queries have 5 dimensions, then HRU, GM,
PBS, VRDS, MPL, PL, and XTZ algorithms are more
suitable. As the order of queries’ execution is known,
XTZ and PL algorithms are more suitable algorithms for
this application. If the order of queries’ execution is
changeable, PL is more suitable than XTZ. However,
XTZ is more complex than PL to implement.

View maintenance
time is not limited

Lower time complexity,
more suitable benefit
function

Improved
performance

View maintenance
time is limited

unknown sequence
of statements

sequence of statements
are changeable Known sequence

of statements

at most 8
dimensions

drill-down queries

more than 8
dimensions

more than 8
dimensions

at most 8
dimensions

Known queries

Unknown
queries

DynaMat
Randomized
DMP
ZYK
Hybrid
CDA

HRU
GM
PBS
PGA
VRDS
Randomized
CSA
MPL
XTZ
PL

Application

CDA

DynaMat
Randomized
DMP
ZYK
Hybrid

Hybrid

PGA
Randomized
CSA

HRU
GM
PBS
VRDS
MPL
XTZ
PL

XTZ
PL

HRU
GM
PBS
VRDS
MPL

GM
VRDS
MPL

HRU
PBS

PL

VRDS
MPL

PBS

View maintenance
time is not limited

Lower time complexity,
more suitable benefit
function

Improved
performance

View maintenance
time is limited

unknown sequence
of statements

at most 8
dimensions

Known queries

HRU
GM
PBS
PGA
VRDS
Randomized
CSA
MPL
XTZ
PL

Application

HRU
GM
PBS
VRDS
MPL
XTZ
PL

HRU
GM
PBS
VRDS
MPL

GM
VRDS
MPL

HRU
PBS

VRDS
MPL

PBS

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

24

7. TEST AND EVALUATION OF THE PROPOSED ROADMAP

In this section, sale database is introduced to test and
evaluate the proposed roadmap. This database contains 5
main tables which are presented below.
Shop (shop_id int, name char(30), address char(120)) (2)
Customer (customer_id int, nationality char(30), birthdate
date, address char(120)) (3)
Seller (seller_id int, name char(30), birthdate date) (4)
Item (item_id int, name char(30), size char(30), producer
cahr(30), type char(30)) (5)
Sell (id int, selldate date, price int, customer_id int,
seller_id int, item_id int) (6)

Sell database contains the information about sells in 20
recent years from a chain store which contains 1000
branches in a country with 20 states. This shop has 10000
sellers and 1000000 customers which have 10
nationalities and ages between 20 and 80 years.
Moreover, this shop has 10000 different items in 7 sizes
and 10 types.

The input queries to this database are given in
Appendix 2. The execution order of these queries is not
definite. The Sell table is the main table of this database
and has been contained in the “from clause” of all queries.
These queries are divided in two groups:

1. Ten first queries require data extraction and
transformation to execute.

2. Ten last queries require join operation, data
extraction and transformation to execute.

Join operation is a time consuming operation. If sell
table has 2*107 records, 2.002*1026 records should be
joined to execute ten last queries. If views are created to
execute these queries, these records should be joined
again. If these views are materialized before query
processing to create a data warehouse, join operations are
removed during query processing leading to a query
processing improvement.

Concerning the above analysis, as there are
multidimensional aggregate queries, it should be created a
data warehouse to improve the query response time [14].
The aggregate function of these queries is “sum” and
dimensions are: Time, Item, Customer, Shop, and Seller.
The huge amount of space is required to store the related
cube without considering the hierarchies of dimensions
(2.103*1018 records). As the space is limited, the set of
more suitable views should be selected to materialize.
Therefore, a suitable view selection algorithm should be
used to select proper views. The proposed roadmap
should be used to select the most suitable algorithm.
Whereas there are predefined queries, HRU, GM, PBS,
PGA, VRDS, Randomized, CSA, MPL, XTZ, and PL
algorithms could be used. Since Sale data warehouse has
5 dimensions, HRU, GM, PBS, VRDS, MPL, XTZ, and
PL algorithms are more suitable. As the order of queries
execution is not predefined, HRU, GM, PBS, VRDS, and
MPL algorithms can be used. If there is limited time to
refresh views, VRDS and MPL algorithms should be

used; otherwise, the PBS algorithm is more suitable. The
used path in the roadmap to select these algorithms is
presented in Fig. 2.

The space required to materialize the views
corresponding input queries is 4.968*109 records. In this
paper, the equal space in average for each record is
assumed. The performance of the PBS algorithm is
considered with the assumption that the space allocated
for the materialized views is 10 percent of the required
space.

The PBS algorithm selects views in increasing size
until the space limitation is reached. If this algorithm is
executed, only the views related to the query8, query9,
and query10 cannot be materialized. The ratio of the
query processing cost in data warehouse (created through
PBS algorithm) to the database could be calculated
through formula 7. In this formula, the benefit of
removing join operations and the pre-process to extract
and transform some fields (such as customer age, seller
age, and the state of a shop) are relinquished.

the ratio of the query processing cost
∑

∑
=

i ic
i is

 (7)

In this formula, ci is the processing cost of the ith query
(qi) on the database and si is the processing cost of the ith
query (qi) on the data warehouse. The number of records
in each table, which is accessed to answer a query, has
direct effect on both ci and si. The numerator of this
formula is 4.28*108, and the denominator is 2.002*1026.
These two costs are incomparable. Therefore, the
proposed roadmap causes high improvement in
processing multidimensional aggregate queries.

If there is a limited time to refresh and maintain
materialized views, MPL, or VRDS algorithms should be
used and we reach to the similar results obtained through
PBS algorithm.

8. CONCLUSIONS

Multidimensional aggregate queries are the main
working units used in decision support systems. These
queries are complex, and operate on huge amount of data.
To improve query response time, the multidimensional
structure to store data are needed. Data cube is the
structure of the data warehouses to represent data sources
in a multidimensional structure. Several view selection
algorithms are available to materialize views to build
efficient data warehouses. These algorithms have various
parameters and are suitable for different applications. For
each application, it should be selected the efficient one to
have a quick query response.

In this paper, we introduced the parameters to classify
view selection algorithms, and then the algorithms were
classified based on these parameters. If a new algorithm is
presented, its class should be identified based on the
values of the introduced parameters. Then, we introduced

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

25

the parameters to classify applications, and presented the
roadmap to select the most suitable algorithm for view
selection based on both these parameters and different
types of algorithms. We tested and evaluated the proposed
roadmap for a database and its queries as instance and
calculated its improvement, and showed that this roadmap
is suitable to select the most suitable algorithm for
different applications.

9. APPENDIX

Appendix 1: List of Notation
a: the probability to access a materialized view.
A: the smallest father of view v in materialized views.
C: the number of clusters.
c(x): the actual benefit of materializing a view, when we
have a set of materialized views, minus the cost of re-
materialization.
C(v,M): the cost materialization a view v, when we have a
set M of materialized views.
d: the number of dimensions.
fq: the frequency of query q.
fuq: the frequency of the update statement.
fP: the frequency of the property P in input queries.
G: graph of input queries.
h: the depth of local minimum.
i: the number of iterations in a genetic algorithm.
k: the number of the selected views to materialize.
l: the number of layers in the lattice of cuboids and is
equal to d+1.
M: the set of materialized views.
m: the number of nodes in a graph of input queries.
n: the number of nodes in a lattice of cuboids and is equal
to 2d.
NC: the number of cuboids which can be used to calculate
a view v.
Nq: the number of queries that can be answered through v.
nc: the average number of views in clusters.
P: the total number of properties in all dimensions.
Q(q,M): the cost of answering query q through M.
qn: the number of input queries.
Rows(v): the number of rows in v.
r: the number of the materialized views which should be
deleted.
s: the number of combinations of views to materialize.
Sv: the size of view v.
SP: the space required to materialize the partitioned view
through property P.
T: the time required to execute all queries.
UC(v,M): the cost of updating view v when we have the
set M of materialized views.

Appendix 2: Input Queries to Sell Database
Select sum(price), year, item_id
from Sell
group by year, item_id (1)
Select sum(price), year, quarter, item_id
from Sell

group by year, quarter, item_id
where quarter=2 and item_id=40
(2)
Select sum(price), year, month, item_id, customer_age
from Sell
group by year, month, item_id, customer_age
where month=1 and item_id=40 (3)
Select sum(price), year, month, quarter, item_id
from Sell
group by year, month, item_id
(4)
Select sum(price), year, item_id, customer_age
from Sell
group by year, item_id, customer_age
(5)
Select sum(price), year, item_id, shop_id
from Sell
group by year, item_id, shop_id (6)
Select sum(price), item_id, seller_id
from Sell
group by item_id, seller_id (7)
Select sum(price), year, quarter, month, item_id, shop_id
from Sell
group by year, month, item_id, shop_id (8)
Select sum(price), year, quarter, item_id, shop_id
from Sell
group by year, quarter, item_id, shop_id
where quarter=2 (9)
Select sum(price), year, item_id, seller_id
from Sell
group by year, item_id, seller_id (10)
Select sum(price), year, month, type, region
from Sell,Item, Shop
group by year, month, type, region
where type=’clothes’ and month=12 (11)
Select sum(price), type, customer_age
from Sell, Item, Customer
group by type, customer_age
where type=’electric’ (12)
Select sum(price), year, month, quarter, item_id, region
from Sell, Shop
group by year, month, item_id, region
(13)
Select sum(price), year, item_id, nationality
from Sell, Customer
group by year, item_id, nationality (14)
Select sum(price), year, month, quarter, type, shop_id
from Sell, Item
group by year, month, type, shop_id (15)
Select sum(price), year, month, type, seller_age
from Sell, Item, Seller
group by year, month, type, seller_age (16)
Select sum(price), size, customer_age, region
from Sell, Item, Customer, Shop
group by size, customer_age, region (17)
Select sum(price), year, month, quarter, item_id,
seller_age

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

26

from Sell, Seller
group by year, month, item_id, seller_age (18)
Select sum(price), year, month, size, customer_age
from Sell, Item
group by year, month, size, customer_age (19)
Select sum(price), year, quarter, size, region
from Sell, Shop, Item

group by year, quarter, size, region (20)
10. ACKNOWLEDGMENT

We would like to thank Professor Mohammad Bagher
Menhaj for his helpful editorial comments.

This research has been supported partially by
Education & Research Institute for ICT (ERICT).

11. REFERENCES
[1] Agrawal S., Chaudhuri S., Narasayya V.; “Automated Selection of

Materialized Views and Indexes for SQL Databases”, 26th
International Conference on Very Large Databases, Cairo, Egypt,
pp. 496-505, 2000.

[2] Agrawal S., Chaudhuri S., Kollar L., Marathe A., Narasayya V.,
Syamala M.; “Database Tuning Advisor for Microsoft SQL Server
2005”, 30th VLDB Conference, Toronto, Canada, pp. 1110-1121,
2004.

[3] Agrawal S., Narasayya V., Yang B.; “Integrating Vertical and
Horizontal Partitioning into Automated Physical Database
Design”, SIGMOD 2004, Paris, France, pp. 359-370, 2004.

[4] Aouiche K., Darmont J.; “Data mining-based materialized view
and index selection in data warehouses”, Journal of Intelligent
Information System (2009) 33:65–93, 2009.

[5] Aouiche K., Jouve P. E., Darmont J.; “Clustering-Based
Materialized View Selection in Data Warehouses”, 10th East-
European Conference on Advances in Databases and Information
Systems (ADBIS06), Thessaloniki, Greece, 2006.

[6] Asgharzadeh Talebi Z., Chirkova R., Fathi Y., Stallmann M.;
“Exact and Inexact Methods for Selecting Views and Indexes for
OLAP Performance Improvement”, EDBT ’08, March 25-30,
2008, Nantes, France, pp. 311-322, 2008.

[7] Bellahsene Z., Marot P.; “Materializing a Set of Views: Dynamic
Strategies and Performance Evaluation”, 2000 International
Symposium on Database Engineering & Applications, IEEE , pp.
424-428, 2000.

[8] Chan G.K.Y., Li Q., Feng L.; “Design and Selection of
Materialized Views in a Data Warehousing Environment: A Case
Study”, DOLAP99, Kansas City MO USA, pp. 42-47, 1999.

[9] Chaudhuri S., Narasayya V.; “An Efficient, Cost-Driven Index
Selection Tool for Microsoft SQL Server”, 23rd VLDB Conference
Athens, Greece, pp. 146-155, 1997.

[10] Chirkova R., Halevy A.Y., Suciu D.; “A formal perspective on the
view selection problem”, The VLDB Journal (2002) 11, pp. 216–
237, 2002.

[11] Chirkova R., Li C.; “Answering queries using materialized views
with minimum size”, The VLDB Journal (2006) 15(3) pp. 191–210,
2006.

[12] Chirkova R., Li C.; “Materializing Views with Minimal Size to
Answer Queries”, PODS’03, San Diego, CA, pp. 38-48, 2003.

[13] Choi C. H., Yu J. X., Lu H.; “Dynamic Materialized View
Management Based on Predicates”, Springer, APWeb 2003,
LNCS, pp. 583-594, 2003.

[14] Daneshpour N., Abdollahzadeh Barfourosh A.; “AUT-QPM: The
New Framework to Query Evaluation for Data Warehouse
Creation”, Iranian Journal of Electrical and Computer Engineering
Vol. 6, N. 1, pp. 35-45, 2008.

[15] Daneshpour N., Abdollahzadeh Barfourosh A.; “View Selection
Algorithms to Build Data Warehouse”, Technical Report: AIS Lab,
IT & Computer Engineering Department, Amirkabir University of
Technology, CE/ TR.DS/ 86/ 01,
http://ceit.aut.ac.ir/~daneshpour/Publications.htm, 2008.

[16] Ezeife C.I.; “Selecting and materializing horizontally partitioned
warehouse Views”, Data & Knowledge Engineering 36, pp. 185-
210, 2001.

[17] Gong A., Zhao W.; “Clustering-based Dynamic Materialized View
Selection Algorithm”, Fifth International Conference on Fuzzy
Systems and Knowledge Discovery, IEEE, pp. 391-395, 2008.

[18] Gupta H.; “Selection of Views to Materialize in a Data
Warehouse”, In Intl. Conf. On Database Theory, Delphi, Greece,
pp. 98-112, 1997.

[19] Gupta H., Mumick I.S.; “Selection of Views to Materialize in a
Data Warehouse”. IEEE Trans. Knowledge and Data Engineering,
Volume 17, Issue 1, pp. 24 – 43, 2005.

[20] Han J., Kamber M.; Data Mining: Concepts and Techniques,
Second Edition, Morgan Kaufmann Publishers, 2006.

[21] Hanusse N., Maabout S., Tofan R.; “A view selection algorithm
with performance guarantee”, EDBT 2009, March 24–26, 2009,
Saint Petersburg, Russia. pp. 946-957, 2009.

[22] Harinarayan V., Rajaraman A., Ullman J.D.; “Implementing Data
Cubes Efficiently”, SIGMOD'96 6/96 Montreal, Canada, pp. 205-
216, 1996.

[23] Hung M.C., Huang M.L., Yang D.L., Hsueh N.L.; “Efficient
approaches for materialized views selection in a data warehouse”,
ELSEVIER Trans. Information Sciences 177, pp. 1333–1348,
2007.

[24] Kalnis P., Mamoulis N., Papadias D.; “View Selection Using
Randomized Search”, ELSEVIER Trans. Data & Knowledge
Engineering, vol. 42, pp. 89–111, 2002.

[25] Kotidis Y., Roussopoulos N.; “A Case for Dynamic View
Management”, ACM Transactions on Database Systems, Vol. 26,
No. 4, pp. 388–423, 2001.

[26] Kotidis Y., Roussopoulos N.; “DynaMat: A Dynamic View
Management System for Data Warehouses”, SIGMOD’99
Philadelphia PA, pp. 371-382, 1999.

[27] Lawrence M.; “Multiobjective Genetic Algorithms for Materialized
View Selection in OLAP Data Warehouses”, GECCO’06, Seattle,
Washington, USA, pp. 699-706, 2006.

[28] Lawrence M., Rau-Chaplin A.; “Dynamic View Selection for
OLAP”, DaWak 2006, LNCS 4081, Springer, pp. 34-44, 2006.

[29] Liang W., Wang H., Orlowska M.E.; “Materialized view selection
under the maintenance time constraint”, Data & Knowledge
Engineering 37, pp. 203-216, 2001.

[30] Liu Y. C., Hsu P. Y., Sheen G. J., Ku S., Chang K. W.;
“Simultaneous determination of view selection and update policy
with stochastic query and response time constraints”, Information
Sciences 178 (2008) 3491–3509, 2008.

[31] Mahboudi H., Aouiche K., Darmon J.; “Materialized View
Selection by Query Clustering in XML Data Warehouses”, 4th
International Multiconference on Computer Science and
Information Technology (STIC 06), Amman, Jordan, 2006.

[32] Nadeau T.P., Teorey T.J.; “Achieving Scalability in OLAP
Materialized View Selection”, DOLAP ’02, McLean, Virginia,
USA, pp. 28-34, 2002.

[33] Neapolitan R. “Fundamentals of Algorithms Using C++
Pseudocode”, Jones and Bartlett Publishers, Inc.; 3rd edition,
2003.

[34] Phan T., Li W. S.; “Dynamic Materialization of Query Views for
Data Warehouse Workloads”, ICDE 2008, IEEE, pp. 436-445,
2008.

[35] Ramachandran K., Shah B., Raghavan V.; “Access Pattern-Based
Dynamin Pre-fetching of Views in an OLAP System”, International
Conference on Enterprise Information Systems, 2005.

[36] Shah B., Ramachandran K., Raghavan V.; “A Hybrid Approach for
Data Warehouse View Selection”, International Journal of Data
Warehousing and Mining, Vol. 2, Issue 2, 2006.

[37] Shukla A., Deshpande P.M., Naughton J.F.; “Materialized View
Selection for Multidimensional Datasets”, VLDB, Morgan
Kaufmann, pp. 488-499, 1998.

[38] Souza M.F.D., Sampaio M.C.; “Efficient Materialization and Use
of Views in Data Warehouses”, SIGMOD Record, Vol. 28, No. 1,
pp. 78-83, 1999.

Amirkabir / Electrical & Electronics Engineering / Vol . 41 / No.2 / Fall 2009

27

[39] Theodoratos D., Sellis T.; “Designing Data Warehouses”, Data &
Knowledge Engineering 31, pp. 279-301, 1999.

[40] Theodoratos D., Bouzeghoub M.; “A General Framework for the
View Selection Problem for Data Warehouse Design and
Evolution”, DOLAP '00 11/00 McLean, VA, USA, pp. 1-8, 2000.

[41] Theodoratos D., Ligoudistianos S., Sellis T.; “View Selection for
Designing the Global Data Warehouse”, Data & Knowledge
Engineering 39, pp. 219-240, 2001.

[42] Theodoratos D., Xu W.; “Constructing Search Spaces for
Materialized View Selection”, DOLAP’04, Washington, DC, USA,
pp. 112-121, 2004.

[43] Turban E., Aronson J.E., Liang T.P., Sharda R.; Decision Support
and Business Intelligence Systems, 8nd Edition, Prentice Hall,
2006.

[44] Uchiyama H., Runapongsa K., Teorey T.J.; “A Progressive View
Materialization Algorithm”, DOLAP99, Kansas City MO USA,
pp. 36-41, 1999.

[45] Valluri S.R., Vadapalli S., Karlapalem K.; “View Relevance Driven
Materialized View Selection in Data Warehousing Environment”,
ADC2002, vol. 5, pp. 187-196, 2002.

[46] Xu W., Theodoratos D., Zuzarte C.; “Computing Closest Common
Subexpressions for View Selection Problems”, DOLAP’06,
Arlington, Virginia, USA, pp. 75-82, 2006.

[47] Xu W., Theodoratos D., Zuzarte C.; “A Dynamic View
Materialization Scheme for Sequences of Query and Update
Statements”, DaWaK 2007, LNCS 4654, pp. 55-65, 2007.

[48] Yu J.X., Yao X., Choi C.H., Goa G.; “Materialized View Selection
as Constrained Evolutionary Optimization”, IEEE Transactions on
Systems, Man and Cybernetics-Part C: Applications and Reviews,
vol. 33, no. 4, pp. 458-467, 2003.

[49] Zhang C., Yang J., Kalapalem K.; “Dynamic Materialized View
Selection in Data Warehouse Environment”, Informatica
(Slovenia), volume 27, number 1, pp. 451-460, 2003.

