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ABSTRACT 

This paper presents developing an analytical model for flux switching motors. The motor is a class of 
variable reluctance motors that has two windings on stator; a field winding and an armature winding. Due to 
saliency of both stator and rotor poles, accurate modeling is difficult which arises from the nonlinear 
behavior of the machine. This paper presents a simple model which is able to predict the motor inductances. 
The advantage of this method is that it describes the parameters of motor based on its dimensions. The model 
predicts both the self and mutual inductances. In comparison with similar studies, the proposed model 
predicts the mutual-inductance of a flux switching motor very accurately. It should be noted that the mutual-
inductance has not previously been considered by others in their analytic modeling of variable reluctance 
motors. The predicted results computed by the proposed analytic model are compared to that obtained by the 
two-dimensional finite element analysis. 
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Symbols: 

AFN / : Number of field/armature winding turns 

rs /α : Stator/rotor pole arc 

l : Mean length of flux path in iron 
g : Air gap length 

stkl : Stack length of machine 

rsl / : Length of stator/rotor slot 

gR : Mean radius in air gap 

sP : Number of stator poles 

2/1fg : The length of fringing flux path in air, position 1/2 

sa : Area of rotor-stator pole overlap 

2/1ga : Area of fringing flux component 

ma : Effective area to compute mutual inductance 
T : Torque 

AFi / : Field/armature current 

AFL / : Field/armature self-inductance 

AFL : Mutual inductance between field and armature  
windings 

θ : Rotor angle (degrees) 

mFeH , : Main quantity of magnetic field intensity in iron 

mgH , : Main quantity of magnetic field intensity in air 

2/1, fFeH : Fringing quantities of magnetic field intensity in 
 iron 

2/1, fgH : Fringing quantities of magnetic field intensity in 
air 

mB : Main quantity of field 

fB : Fringing quantity of field 

mFλ : The main flux contribution to the total flux linked 
 by the field winding 
fFλ : The fringing flux contribution to the total flux linked  
by the field winding 
0µ : Permeability of free space 

rµ : Relative permeability of core 
µ : Permeability of core 
A : Vector potential 
J : Current density 

0L : Inductance at unaligned position 

1.  INTRODUCTION 

The flux switching motor (FSM) is a new class of 
electrical motors which was introduced by C. Pollock [1] 
in 1999 and is gradually emerging in power tools and 
household applications. It is a combination of the 
switched reluctance motor (SRM) and the inductor 
alternator [1]. Figure 1 shows a physical construction of a 
FSM. The lamination profile is very similar to that of a 
two-phase 4/2 switched reluctance motor, thus allowing 
its simple construction and inherent robustness to be 
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retained. Stator and rotor poles are both salient. FSM has 
two full-pitched windings located in opposite slots of 
stator. One winding is constantly excited with a unipolar 
current which is named field winding (F), whilst the other, 
named armature winding (A), should be supplied with a 
bipolar current. 

 
Figure 1: Physical construction of a FSM 

 
The principle of operation of FSMs is based on the 

variation of the reluctance such as in SRMs, and has been 
described in the literature [1- 4]. 

While reluctance machines have the simplest 
construction among the electrical machines, their 
modeling, simulation, and design are less straight 
forward. The saliency of poles, saturation of lamination in 
aligned position of rotor and localized saturation in pole 
tips make some difficulties in modeling of reluctance 
motors. In comparison with other electric motors such as 
disc type motors [5-6] or permanent magnet machines [7] 
developing an analytical model for SRMs is more 
complicated.  One encounters similar difficulties in the 
modeling of FSMs.  

Numerous authors have attempted to model SRMs [8-
9]. In a nutshell, the various methods of modeling SRMs 
in the literature are: flux-mmf-position or flux linkage-
current-position surfaces [3], mathematical modeling and 
curve fitting techniques [10], analytical approaches [11, 
12], magnetic circuit models [13], artificial intelligent 
methods [14], and finite element analysis. Each of those 
has its advantages and drawbacks [10-14]. 

The analytical modeling has the advantage of 
describing the motor parameters based on the geometry of 
machine. Radon [11] has developed an analytical model 
for SRMs. Two common assumptions in modeling of 
SRMs are: independence of flux linkages of phases, and 
negligible mutual inductance between phases.  The latter 
assumption is incorrect in the case of high-speed 
operations where the current-overlap of phases is 
considerable or in the case of full-pitched windings of 
FSMs. 

Pollock et al. have presented a simple model [1] and a 
dynamic simulation model [3] for FSMs. The former is 
not an accurate model and the latter needs pre-processing 
calculations by finite element analysis (FEA). 
In this paper, an analytical approach to model FSM is 

presented. The advantage of this method is that it 
describes the parameters of motor based on its 
dimensions. The model predicts both the self and mutual 
inductances. In comparison with similar studies, the 
proposed model predicts the mutual-inductance of a flux 
switching motor very accurately. It should be noted that 
the mutual-inductance has not previously been considered 
by others in their analytic modeling of variable reluctance 
motors. This model can be easily applied in controlling or 
designing FSMs. 

In the following sections, the idealized winding 
inductances are presented and then, an analytic model is 
introduced and the relevant relations are derived. Finally, 
the predicted results computed by the proposed analytic 
model are compared to that obtained by the two-
dimensional finite element analysis. 

2.  SELF- AND MUTUAL INDUCTANCE PROFILES OF AN 
IDEAL WINDING 

In this section it is assumed that the ideal inductances 
shown in figure 2 vary linearly with rotor position. As the 
rotor moves away from aligned position, the self 
inductances of field winding (F) and armature winding 
(A) decrease linearly to a minimum value due to the 
increase of reluctance. Because of similar path for the flux 
of F and A both windings have the same inductance 
profiles. 

L f
L a

L af

0

i

i f

-i

0 

i

rotor angle

i a

Figure 2: Idealized winding inductances and current waveforms 
 
When the self inductance reaches its minimum value, it 

remains fairly constant. With further rotation of the rotor, 
the self inductances increase linearly since the rotor poles 
are approaching alignment with the stator poles. The 
mutual inductance between the armature and the field 
windings decreases linearly from its maximum positive 
value as the rotor moves away from the aligned position 
to the position where the rotor poles are between adjacent 
stator poles. The value of the mutual inductance at this 
location is equal to zero. As the rotor continues to rotate 
toward the next alignment position, the resultant flux will 
switch between the poles linked by field winding, and 
thus the mutual inductance becomes negative. The value 
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of mutual inductance will decrease to its minimum 
negative value at the end of half cycle. Similarly, for the 
other half cycle, the mutual inductance increases linearly 
to its maximum positive value at the end of the cycle, as 
shown in figure 3. 

For positive torque production, the corresponding 
idealized winding currents are to be controlled, see figure 
2. Note that the zero-current intervals, between the 
positive and negative armature current are purposely 
provided to ensure successful current reversal. 
Meanwhile, as two windings are in series, during the zero-
current interval of armature current, the idealized field-
winding current will consequently decay to zero, it may 
be consequent fewer losses. The developed torque is 
given by: 

θθθ d
dLii

d
dLi

d
dLiT AF

FA
F

F
A

A ++= 22

2
1

2
1  (1) 

Clearly, for positive developed torque the following 
equations must be satisfied: 
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Figure 3: Flux patterns for various excitations and positions 
 

a) Fully aligned position )0,0,0( >>= AF iiθ  
b) Fully aligned position )0,0,90( <>= AF iiθ  
c) Fully unaligned position, at which the coupling 

between field and armature windings is zero 
)45( =θ , iA = 0 

d) Fully unaligned position )45( =θ , iF = 0 

3.  IDEALIZED INDUCTANCES OF FIELD WINDING 

A.  Self inductance 
Figure 4 shows the flux pattern after the excitation of 

field winding. When the rotor is in the aligned position 
with the stator poles, the flux goes through stator pole, air 
gap, rotor pole, and rotor yoke (figure 4-a). As the rotor 
begins to rotate the overlapped area between stator and 
rotor poles remains constant up to θ1. The overlapped area 

))(( 1 θa , decreases linearly with θ  after 1θθ = , where 
2/)(1 sr ααθ −=  (figure 4-b).  

Area 1a  becomes zero at 2/180 θθ += sP , and 
2/)/360(2 ssr P−+= ααθ . As the overlapped area of 

one rotor pole tip-pair ))(( 1 θa  decreases, the overlapped 
area in the other tip-pair ))(( 2 θa  increases. Thus a new 
path for flux through 2a  expands (figure 4-c). It should 
be noted that a third area for flux path ))(( 3 θa  may exist 
around sP/180=θ . Area 3a  is produced when 1a  and 2a  
are not simultaneously equal to zero. 

 
a  

b 

 
c 

 
d 

Figure 4: Flux patterns with the field winding excited 
 
Figure 5 shows the profile of the explained areas. 

a 1
a 2

θ

a 3

Rgαs

θ1 180/ps-θ2
180/ps 180/Ps+θ2

Rgθ2

Rgαs

Figure 5: The areas of flux crossings in various paths 
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To solve for the field intensity, Ampere’s law is 
integrated around a closed contour in figure 6, such as the 
one which passes through the centers of overlapping 
poles, air-gaps, and the yoke. The field quantities in the 
poles along this path are considered as the main field 
quantities and are denoted with an “m” subscript. 
Equation (3) expresses the integral of Ampere’s law 
around this closed contour. Here, the idealizing 
assumption is just to neglect the saturation of cores.  

FF

mgmFe

IN

gHlH

⋅

=⋅⋅+⋅⋅ 22 ,,  (3) 

Ampere’s law can also be integrated around the 
parallel closed contour in figure 6 where the stator and 
rotor poles do not overlap. The field quantities along this 
path are called the fringing field quantities and denoted 
with an “f” subscript. So: 

FF

ffgfFe

IN
gHlH

⋅

=⋅⋅+⋅⋅ 11,1, 22
 (4) 

 

 
a 

 
b 

Figure 6: Ampere contours for computing magnetic field 
 
Note that in (4) equivalent air gap )( 1fg  is applied 

instead of g and 1fg is the length of fringing flux path 
beyond the stator poles which goes through the air. 
Another fringing field contour exists in FSM, as shown in 
figure 6-b. Integrating Ampere’s law along this path 
gives: 

FF

ffgfFe

IN
gHlH

⋅

=⋅⋅+⋅⋅ 22,2, 22
 (5) 

The flux density B , of the pole-shoe is equal to the B  
field in the air-gap for the main flux solution since the 
cross-sectional area for the main flux is taken to be 

constant right through the pole. This flux density is 
denoted as mB . Likewise, the B  field in the iron is equal 
to the B  in the air gap for fringing flux solution since the 
cross-sectional area for the fringing flux is also taken to 
be constant. This field is denoted fB . Of course mB  does 

not equal fB  since the air gaps in two regions are 
different. To find the B  field, the constitutive relationship 
between B  and H , which characterizes the materials, 
must be known. In the air-gap of the main flux ampere 
contour we have: 

mgm HB ,0µ=  (6) 
A similar equation holds for the air-gap along fringing 

flux contour. In the iron along the main flux contour, 
considering unsaturated core, the following relation holds: 

mFem HB ,µ=  (7) 
A similar equation holds for the iron along the fringing 

flux contour. Equations (3), (6), and (7) constitute the 
equations for the three unknowns mFeH , , mgH ,  and mB . 
One can easily solve for Bm by solving for Hg,m from (6), 
using the result to eliminate Hg,m  from (3) to get (9), 
solving (9) for HFe,m , and substituting the result into (7) 
as in the following:  

0
, µ

m
mg

B
H =  (8) 

FF
m

mFe INgBlH
2
1

0
, =⋅+⋅

µ
 (9) 

0
, 2 µ

mFF
mFe

B
l
g

l
INH ⋅−=  (10) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅+
⋅=

2
1 FF

r
m

IN
gl

B
µ

µ  (11) 

The main flux-linkages of  the field winding per stack 
length is taken to be equal to the area of rotor-stator poles 
overlap times the number of turns around pole (figure 7) 
as follows: 

2
)(

)(),(
2

FF
s

r

stk

msstkFFmF

INa
gl

l
BalNI

⋅⋅
⋅+

⋅
=

⋅⋅⋅=

θ
µ

µ
θθλ

 (12) 

where, the area of rotor and stator poles overlap  
)(θsa  , is equal to )()( 21 θθ aa +  as shown in figure 7. 

The fringing flux-linkages of the field winding is: 

2
)

)(
)(

)(
)(

(),(

2

2

2

1

1

FF

fr

g

fr

g
FfF

IN
gl

a
gl

a
I

⋅
⋅+

+
⋅+

⋅=

θµ
θ

θµ
θ

µθλ

 

(13) 

where, )(1 θga and )(2 θga are the fringing flux areas 

(figure 8), and at full-aligned position )(1 θga  is 
approximately equal to: 

gsstkstkgsg RlglgRa ⋅−+⋅+⋅= ααθ /)()()(1  (14) 

Ampere Fringing 
Field Contour 

Ampere Main 
Field Contour 

Ampere 
Fringing Field 
Contour 
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All quantities on the right hand sides of (12) and (13) 
are known, except for )(2/1 θfg . 

0 X

mλ

1fλ

1a
2a

stator
pole

rotor
pole

g

2fλ  
Figure 7: Simplified model to calculate the flux-linkages of the 
field winding 

rotor angle

a g1
 a

nd
 a

g2
a s
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180/ps-θ2 180/ps+θ2

360/ps
360/ps-θ1

360/ps+θ1

αs Rg

(αr+αs-360/ps)Rg

αs Rg

 
Figure 8: The crossing areas of the main and fringing fluxes 
 

A proposed method to compute )(2,1 θfg  is to define 
the fringing flux to be the total flux not accounted for by 
the main flux. This idea is illustrated in figure 9. By 
calculating the fringing flux-linkages using figure 7 and 
setting it equal to the one obtained by using figure 9 and 
knowing that )/180()/180( 21 sfsf PgPg = results into the 
following: 

( )

)/180(2

)/180()/180(
2

360

1

0

21

0

0

sf

FF
stk

sgsgF

FF
stkgs

s
FfF

Pg
IN

l

PaPaN
g

IN
lR

p
N

µ

µ
αλ

⋅⋅

⋅+⋅=

⋅⋅⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⋅=

 (15) 

By Solving (15) for )(1 θfg  , one obtains: 

0
1

1

)/180(
)/180( g

a
Pa

Pg sg
sf ⋅=  (16) 

)(1 θfg  will increase as the )(1 θga  increases and thus, 

)(1 θfg  can be approximated as follows: 

gg
a

a
g g

f +⋅= 0
1

1

)(
)(

θ
θ  (17) 

Similarly, 

gg
a

a
g g

f +⋅= 0
2

2

)(
)(

θ
θ  (18) 

The stator and rotor poles are approximated in figure 9. 
Therefore to refine the results and to consider the effect of 
real air gap, the real air gap is added to equations 17 and 
18. where, 

( ) gss RPa ⋅+= α/360  (19) 

0g  is chosen as such to obtain the required value of 
inductance 0L  in figure 9. Detailed calculations of 0g  
and 0L  are in the appendix. 

0 X
stator
pole

rotor
pole

fictitious stator pole

effective rotor yoke

0g

Figure 9: Effective geometry 
 
The total flux-linkages of the field winding due to field 

current is the summation of mFλ  and fFλ multiplied by 
two, to account for the other leg of the winding: 

)),(),((2),( FfFFmFFF III θλθλθλ +⋅=  (20) 
Now, the self inductance of the field winding is 

obtained as follows: 
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 (21) 

Because of symmetry, the self-inductance of the 
armature winding can also be expressed as in the 
following: 

)/360()( sFA PLL −= θθ  (22) 
 

B.  Mutual inductance 
Again, it is assumed without loss of generality, that 

only the field winding is excited. The other assumptions 
are as before. 

In order to obtain the mutual inductance three issues 
should be considered carefully. The First one is that the 
fringing component of flux does not contribute mutual 
inductance. The second point is that when  )(1 θa  and 

)(2 θa   are not both equal to zero, the flux of the field 
winding does not go through the armature winding (figure 
4-d).  The third one is that after passing the unaligned 
position, the flux will switch between poles, so that in this 
region the polarity of the induced electro-motive-force 
will change. 

According to figure 10, the effective area of the stator-
rotor-poles overlap is )()()( 21 θθθ aaam −= . And hence, 
the mutual flux linkage between the field and armature 
windings is as in the following:  
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0a m

rotor angle
θ1 180/ps180/ps-θ2 180/ps+θ2  

Figure 10: The effective area to calculate the mutual inductance 
LAF . 
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And the mutual inductance is: 

FAm
r

stk

F

FAF
AF

NNa
gl

l
I

IL

⋅⋅
⋅+

⋅
=

=

)(

),()(

θ
µ

µ

θλθ
 (24) 

 

4.  RESULTS 

The proposed analytic approach is applied to model an 
FSM with the dimensions given in table 1. As it can be 
seen from figure 11, the self and mutual inductance 
profiles are very similar to the idealized inductance profile 
of figure 2. It is observed from figure 12 that the proposed 
model predicts the mutual inductance very accurately 
within 5% of the 2-D finite element method.  

 

TABLE 1: THE DIMENSIONS OF THE MODELED MOTOR  
Specifications Type I Type II 
Stator-pole arc (degrees) 45 45 
Rotor-pole arc (degrees) 60 45 
Stator-pole height (mm) 50 50 
Rotor-pole height (mm) 30 30 
Air-gap (mm) 5 0.5 
Number of field-coil turns 100 100 
Number of armature-coil 
turns 100 100 

Rotor radius (mm) 100 100 
Stator-yoke height (mm) 80 80 
Number of stator/rotor poles 4/2 4/2 
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Figure 11: The inductance profiles obtained by the proposed 
method (for motor type I) 
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Figure 12: The mutual-inductance profile obtained by the 
proposed model and FEM (for motor type I) 

 
Although the proposed model predicts the mutual 

inductance accurately, the prediction of self-inductance in 
the unaligned position of rotor is not as accurate. Figure 
13 displays the predicted self-inductance and its 
comparison with the FEM results. 
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Figure 13: The self-inductance obtained by the proposed model 
and FEM, and the prediction errors (for motor type I) 

 
The maximum error of predictions is 10% which 

happens at the unaligned position. The authors believe 
that the source of these errors might be in the calculation 
of area for the fringing flux.  

The proposed model has also been implemented to 
model motor type II with the specifications summarized in 
table 1. Figure 14 shows the results. 
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Figure 14: The self- and mutual-inductances obtained by the 
proposed model and FEM (for motor type II) 

 
Again the proposed model can calculate mutual 

inductance accurately, but it is not as accurate in 
predicting the self-inductance in the unaligned position at 
450. 

5.  CONCLUSION 

An analytical approach to model flux switching motors 
has been described. The proposed model is correct if a 
piece-wise saturation of core is assumed. As it is deduced 
from figures 12 and 14, the proposed method predicts the 
mutual inductance accurately with a maximum error of 
5%. However, the proposed model is not as accurate in 
the calculation of the self-inductance. The error is within 
10% of the finite element method. The authors are now 
working to see if the area for the fringing flux can be 
obtained more accurately. 

6.  APPENDIX 

An analytic solution for the unaligned inductance will 
be obtained by following the classical procedure for the 2-
D field. The main equations are the magnetostatic 
Maxwell’s equations. 

BA =×∇  A-1 

0=⋅∇ A  A-2 

JA ⋅−=∇ µ2  A-3 
It is well known that for a 2-D problem, where the 

current flows only in z direction, only the z component of 
the vector potential is nonzero hence: 

zz JA ⋅−=∇ µ2  A-4 
The geometry of problem is approximated by a 

rectangle as shown in figure A-1. 
 

lr

ls

hr

gR⋅1θ

Y

X

stator
pole

 
Figure A-1: Rectangular geometry to obtain field 

 
There is no current in the rotor slot so that the right-

hand side of (A-4) in this area is zero, and hence we will 
have the Laplace’s equation. In figure (A-1) much of the 
box is bounded by iron so that, with the assumption of 
zero H field in the iron, the boundary condition on the 
boundary of box where there is iron is that the tangential 
H  field is zero. Thus, the y and x components of H  are 
zero on the two vertical boundaries and on the lower edge 
of box, respectively. To obtain an approximated value for 
the x component of H  at hry =  where there is no iron, it 
will be assumed that the x directed field is constant. In this 
case the integral form of Ampere’s law can be used to 
find this constant value as: 

ls
NIhrxHx =),(  A-5 

The solution to Laplace’s equation inside of a 
rectangular box is known and can be written as: 

⎟
⎠
⎞
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Figure A-2: boundary conditions on the periphery of rectangle. 

The H  is found by taking the curl of the vector 
potential and dividing it by 0µ . 
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A-7

The H  field in (A-7) satisfies all of the boundary 
conditions except the one at hry = . This boundary 

condition determines nAr . An expansion of  H  in 
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Fourier series is: 
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where na  is: 
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 A-9 

Evaluating (A-7) at hry = , and setting it equal to     
(A-8) gives the following: 

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅⋅⋅

=

lr
hrn

lr
lsnn

n
NIlrArn π

ππ

π
µ

sinh

2
sin

2
cos

)(
2

2
0  

A-10 
Substituting (A-10) into (A-7) and multiplying the 

result by 0µ  gives the flux density components as: 
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A-11 
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A-12 
Integrating B over the surface enclosed by winding 

from left tip of rotor slot to the middle of slot i.e. 
2/0 lrx →=  and along the stack gives the flux linkage 

of rotor slot. The normal of this surface is in the y  
direction so that only y - directed component of B  at 

hry = should be integrated. Due to the other leg of 
winding, the result should be multiplied by two. 
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A-13 
Dividing (A-13) by the current gives the rotor slot 

contribution to the inductance. 
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 A-14 

The rotor pole contribution to inductance can be 
obtained easily by considering an ideal core as: 

)2/(2 2
10 gNlRL stkgrp ⋅⋅⋅⋅= θµ  A-15 

The inductance at the unaligned position becomes: 
)(20 rprs LLL +⋅=  A-16 

In figure 9, 0g  is chosen such that the required value 
of inductance 0L  is obtained as in the following: 

)2/( 0
2

00 LNag ⋅⋅= µ  A-17 
where ( ) gss RPa ⋅+= α/360 . 
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