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ABSTRACT 

Mutual information (MI) is a widely used similarity metric for multimodality image registration. 
However, it involves an extremely high computational time especially when it is applied to volume images. 
Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches 
have been proposed to speed up the registration process and increase the accuracy of the result. In this paper, 
we present a new improved method of sample selection for multi-stage registration based on mutual 
information. Instead of down-sampling of the whole image as it is done in the pyramid methods, we propose 
a new technique to find a suitable subset of image samples based on image information content, which 
results in a better estimate of the optimal transformation. A comparison for MR images indicates that our 
proposed method yields better registration than subsampling method, especially when subsampling factor is 
low. The experimental results involving three-dimensional clinical images of CT, MR and PET are presented 
for rigid registration. 
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1.  INTRODUCTION 

Image registration is the process of spatial alignment of 
two or more images acquired from different sensors, 
viewpoints or time intervals [1]. Registration is widely 
used in medical imaging applications. A common practice 
of these applications could be found in fusion of 
multimodality images when patients have to undergo 
epilepsy surgery [2]. Registration and fusion of MR and 
PET images will benefit the surgeon. Besides 
multimodality registration, there exist important 
application areas in monomodality registration. Examples 
include alignment of two images given in different times 
in order to detect silent differences. Over the years, a 
large number of registration techniques have been 
developed including point-based methods, deformation 
models [3] and voxel-based methods. In voxel-based 
approaches, the optimum registration is determined by 
iteratively optimizing a similarity measure calculated 
using gray values of both images. Such methods do not 

require user interaction but may suffer from high 
computational cost. When mutual information is selected 
as the similarity measure, estimating the joint histogram 
which is a time-consuming process is iteratively required. 
Another difficulty with this method is the possible 
existence of local maxima in MI function. If original 
misregistration is small, the algorithm converges to the 
global maximum more possibly. For this reason, coarse to 
fine multi-resolution strategies have been introduced. 
These approaches increase accuracy of the registration 
and speed up the optimization algorithm. In multi-
resolution methods, the pyramid of images could be 
obtained using the wavelet transformation [4], averaging 
method or image subsampling [5]. When using image 
pyramids, no preference is considered for different 
regions of images. We propose that more samples should 
be selected from high entropy areas such as regions of 
tissue transition. Furthermore, mutual information 
criterion suffers from lack of spatial information. Using 
the proposed method, we try to compensate this shortage.  

The most common optimizers used for voxel-based 
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registration are Powell’s routine and Simplex method [6] 
which both are non-stochastic. Probabilistic optimization 
routines such as genetic algorithms and simulated 
annealing are seldom used. The main reason behind 
unpopularity of stochastic search routines for MI function 
is the fact that the desired maximum corresponding to the 
optimal transformation may not be the global maximum 
of the search space. A limited part of search space, called 
capture range, leads to the desired solution and 
probabilistic search methods can move outside the capture 
range. We propose a multi-stage search method which 
applies Powell’s routine in early stages and a simulated 
annealing scheme in the final stage when initial range of 
the search space is limited enough to be safe for any 
stochastic search routine. 

In Sections 2, we first review image registration based 
on mutual information. Section 3 presents our proposed 
subsampling method and Section 4 describes the search 
technique that we applied. In Section 5, the experimental 
results for registration of CT to MR and PET to MR 
images are presented and finally Section 6 gives a 
summary of our method. 

2.  IMAGE REGISTRATION 

The registration problem is to find the optimal 
transformation *T which best aligns the images. For 
reference image I and floating image J , image 
registration can be defined as follows: 

(1) ))(,(maxarg* JTI
T

T ρ=  

where ρ  refers to a similarity measure. Therefore, 
different registration methods can be derived from 
different similarity measures and different search 
strategies. 

The most common transformations applied to register 
medical images are rigid and affine. An affine 
transformation includes transition, rotation, scaling and 
shearing where it maps parallel lines to parallel lines [7]. 
Rigid transformation is a special kind of affine 
transformation when only transitions and rotations are 
allowed. In rigid transformation, the objects retain their 
relative shape and size and it is generally used for brain 
images. 

A.  Mutual information criterion 
Mutual information is an entropy-based measure 

representing the amount of information that one of the 
images gives about the other. Consequently, registration is 
assumed to be gained in the state of maximizing of mutual 
information [8]. Given reference image I  and floating 
image J , mutual information of the two images can be 
defined using marginal entropies )(IH  and )(JH  and 

joint entropy ),( JIH  in overlapping parts of the images: 

(2) ).,()()(),( JIHJHIHJIMI −+=  

Obviously, MI function is sensitive to the size and 
contents of the overlapping area of the two images. A 
normalized measure of mutual information which is less 
sensitive to the overlapping area is defined as [9]: 
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It can be shown that 2),(0 ≤≤ JINMI  because: 
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from (4) we find an upper bound for the normalized 
measure: 
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3.  SAMPLE  SELECTION  METHOD 

Optimizing MI function requires estimation of the joint 
histogram iteratively. Given reference image I  and 
floating image J  and for each transformation T  
belonging to the search space, the joint histogram 

)))((),(( SJTsIH  is computed for overlapping region 

of the images, where Ss ∈  and S  is the set of grid 
points of the reference image. 

To speed up the computation process, a subset of S  
may be used, where subsampling factor N1=α  means 

only one in N  voxels is selected for computing the joint 
histogram. The complexity of computing MI function [10] 
varies linearly with number of selected samples. 
Consequently, when subsampling factor is small, an 
estimation of optimal transformation can be obtained 
relatively fast. The result can be used as initial value in 
finer level (with higherα ). 

A.  Variant subsampling factors 
The idea of the proposed method [11] is based on 

using higher subsampling factors for the regions which 
contain more information. The common subsampling 
method applies a fixed factorα  for all areas of an image. 
In multi-resolution techniques, subsampling is done by 
averaging or other methods, but again α  is the same for 
all regions, whereas tissue regions deserve more attention 
than background. Furthermore, edge or tissue transition 
regions contain important information for adjustment. 
A method of incorporating spatial information of edges 
with mutual information that was introduced in [12] uses 
gradient vectors of corresponding points but calculation 
of gradient vectors in each iteration increases the 
computational cost. By using variant subsampling factors, 
we can emphasize the role of edge regions in MI measure. 
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Figure 1: Entropy maps for (a) CT, (b) MR, and (c) PET images. Blocks with higher entropy are shown with higher intensity. 
 
 

 
Figure 2: (a) A brain MR image, (b) Selected samples using proposed method where n = 3, c = 4, 1α  = 1/16, 2α  = 1/4, and 3α = 
1/1. 
 

In order to measure the information content of each 
partition of an image, entropy is used. In Fig. 1, the 
entropy maps of MR, CT and PET images which divided 
into small blocks are shown. The block size depends on 
the width of edge transition regions in the image. For 
brain images of Fig. 1 and 2, blocks of 32 × 32 were used. 
Clearly, for three-dimensional images, the entropy blocks 
should be three-dimensional. In general, to subsample an 
image with n variant factors, a series of block 

sets nAA ,...1   in the reference image are defined as: 

(6) 
Mj
niBHBsA ijiji
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,...,1
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=
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where M is the number of blocks in the image, Bj is the jth 
block, )( jBH  is entropy of the jth block and iτ  is 

entropy threshold for block set Ai which can determine 
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how many blocks belong to the block set. Assuming 
blocks Bj are sorted ascendingly with respect to their 
entries and P(Ai) to be the ratio of number of blocks in 
block set Ai to M, the entropy threshold iτ  can be found 
as: 

(7) ))((),(
1

MAPRoundlBH
i

m
mli ∑

=

==τ  

For each block set 
iA , a corresponding subsampling 

factor 
iα  is used which holds the condition 

qpqp ααττ >→>  that means the blocks with higher 

entropy should be subsampled with higher factors. A 
simple way is to consider a constant c as coefficient 
factor: 

(8) 1,1 ≤=+ iii cc ααα  

Fig. 2 shows selected samples for a brain MR image. 
Eighty percent of samples belong to the first block set 

1A  

with subsampling factor 
1α , the block set 

2A  contains 
ten percent of samples with corresponding factor 

2α  and 
the rest are members of the third block set 

3A  with 
subsampling factor 

3α .  
 

 
Figure 3: Circles and triangles indicate mean errors for proposed 
method and uniform subsampling method, respectively. 
 

A comparison of proposed method and uniform 
subsampling method for MR to MR registration of 10 
image pairs under simulated rigid transformations is 
shown in Fig. 3. The vertical axis shows the mean of 
registration errors computed in several volumes of interest 
(VOIs) and the horizontal axis represents the percentage 
of samples which selected by both methods. It is noted 
that due the voxel-size of images and the interpolation 
method, a minimum registration error is unavoidable. The 
comparison indicates that the proposed method reaches 
the minimum error at lower percentage of samples and 
yields a better registration than uniform subsampling 
method especially when subsampling factor is low. Fig. 4 
represents MI functions for a transition and a rotation 

parameter, where zero position corresponds to the optimal 
solution. It shows that by using our proposed method, the 
MI curve artifacts and local maxima are reduced (i.e., the 
curve is smoother) in compare with the uniform 
subsampling method. 

 

 
Figure 4: MI function representation under transitional and 
rotational distortion based on (a) proposed method and (b) 
uniform subsampling method. 

4.  SEARCH TECHNIQUE 

Local maxima in MI function may result from low 
resolution, interpolation artifacts [13]-[14] or small 
overlapping area between the two images. An appropriate 
search technique is needed to deal with this problem. In 
non-stochastic optimization routines such as Powell’s 
method, a maximum (or minimum) is found by decreasing 
the initial range of each parameter iteratively. The 
methods stop when encountering to a local maximum. 

In contrast, stochastic methods are able to get out of 
local maxima, but for two reasons optimization of MI 
function through these methods are less popular. The first, 
stochastic routines usually require more iteration cycles to 
converge than non-stochastic methods. The more 
important reason is the possibility of moving out of the 
capture range and accepting a local or global maximum 
which is far from the desired solution as the best value. 
The graph shown in Fig. 5 represents the mutual 
information of a PET and an MR image as a function of 
one transition and one rotation parameters. For large 
values of parameters when overlapping area of the two 
images is too small, the MI function displays an abrupt 
behavior. 

In the past, the multi-resolution approaches were 
introduced to improve the registration results. Those 
methods find a rough estimate of the optimal 
transformation using low resolution images, which is 
subsequently used as initial point for the higher 
resolutions. If the optimizer is trapped into a local 
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maximum in a coarse stage, it is likely that a local 
maximum is located at this point for the higher resolution 

stage too. As a result, the multi-stage method fails to 
improve the solution. 

 
Figure 5: Mutual information of PET/MR as a function of one transition and one rotation parameters. 

 
Because the boundaries of capture range for all 

parameters can not be determined exactly, it is necessary 
to reduce the search space before applying the simulated 
annealing method. Therefore, we propose using Powell’s 
routine or other non-stochastic optimizers in primary 
stages and a simulated annealing scheme [15] in the last 
one or two stages. 

A.  Simulated annealing 
The main concept in simulated annealing [16] is based 

on a phenomenon in thermodynamics which involves 
heating and controlled cooling of a material to increase 
the size of its crystals and reduce their defects. The atoms 
in their initial positions present a state of  local minimum 
of the internal energy. The heat causes the atoms to 
become unstuck and wander randomly through states of 
higher energy; the slow cooling gives them more chances 
of finding configurations with lower internal energy than 
the initial one. 

The Boltzmann’s probability distribution describes this 
phenomenon: 

(9) )/exp()( tcEEprob b≈  

where, E is the energy level, t is the system temperature 
and cb is called Boltzmann's constant. The expression (9) 
describes how the system is able to get out of the local 
minima. We introduce a simulated annealing scheme 
based on Metropolis's procedure to optimize the 
normalized mutual information of images. 

B.  Random generation function 
For optimizing normalized mutual information 

function )( Xf NMI , where ],...,,[ 21 NxxxX = is a vector 
of N independent parameters of a spatial transformation, 
the first step is to define a function which generates 
random numbers to be used as jump values from current 
variable vector to a new test vector. Bell-shaped 
probability functions are preferred for optimizing the 
mutual information function [17] because the probability 
of small jumps around the current value is expected to be 
greater than the probability of large jumps. We applied a 
Gaussian generation function as follows: 
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here, )(dG i
k with mean value 0=µ and standard 

deviation i
kt=σ  is the probability for jump value 

d and i
kt is the temperature variable for parameter ix in 

iteration k. 
In order to cover the initial range by the Gaussian 

function as in [17], the initial temperature for each 
parameter is selected as follows: 

(11) ( ) Ni
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33
2

00

00 =
=

== σ
 

where, iR 0 is the initial range and it 0 is the initial 
temperature for parameter ix . To ensure that the variance 
of the random generation function (10) never gets too 
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small, a minimum variance for each parameter is defined 
to be 1/4 of the initial temperature: 

 (12) 4/0
2

min
ii t=σ . 

 
Figure 6: Gaussian generation function for a parameter with 

initial range 160 =R in three consecutive iterations. 

C.  Cooling schedule 
The cooling schedule expresses how the temperature 

variables are lowered during the iterations [18]. The 
temperature i

kt in the kth iteration is determined by 
following: 

(13) 0( ) .i k i
kt tλ=  

In our proposed algorithm, we used a cooling factor 
of 9.0=λ for all the variables.  

D.  Acceptance function 
We made a trivial modification in Metropolis’s 

procedure to find the maximum, instead of the minimum 
of energy state. Considering the change in energy level to 
be: 

(14) )()( cNMInNMI XfXfE −=∆  

where nX  and cX  are the values of new and current 
variable vectors, respectively, the probability of 
acceptance of a test value for parameter ix  is defined as: 

(15) 
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Equation (15) expresses that even the worse values can 
be accepted with probability )( Epr i

k ∆ . It is desired that 
the same E∆  made by different variables results in an 
identical probability of acceptance. In other words, the 
acceptance function should be independent of initial 
temperature for each variable. Furthermore, the 
probability of acceptance in primary iterations should be 
close to 1, even for 0<∆E . As mentioned in Section 2, the 
normalized mutual information of two images is a number 

between zero and 2 and 1.0−=∆E corresponds to a large 
distortion with respect to the current values of parameters. 
We consider 99.0)1.0(0 =−ipr for all variables, so the 
constant bc is determined as: 
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Given (13), (15) and (16), we define an acceptance 

function that is independent of the temperature variables: 
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The random generation function, the cooling schedule 
and the acceptance function for a variable with initial 
range 160 =R  are shown in Fig. 6, 7, and 8. Fig. 8 
shows that the system reaches steady state about iteration 
100 that means after iteration 100, a worse jump rarely is 
accepted. A pseudo code for the simulated annealing 
algorithm is presented in Fig. 9. 

 
Figure 7: Cooling schedule for a parameter with initial range R0= 
16. 

 
Figure 8: Acceptance function. 
 



 

Amirkabir /Electrical Engineering / Vol . 41 / No.1 /Spring 2009  

 
17

 
Figure 9: Pseudo code for the simulated annealing algorithm. 

 

5.  EXPERIMENTAL RESULTS 

The proposed method was applied to register CT to 
MR and PET to MR volume images of Retrospective 
Registration Evaluation Project (RREP).  Image volumes 
of three modalities (CT, MR, and PET) were obtained 
from patients undergoing neurosurgery at Vanderbilt 
University Medical Center on whom bone-implanted 
fiducial markers were mounted. These volumes had all 
traces of the markers removed and were provided via the 
Internet to project collaborators outside Vanderbilt, who 
then performed retrospective registrations on the volumes, 
calculating transformations from CT to MR and/ or from 
PET to MR. These investigators communicated their 
transformations again via the Internet to Vanderbilt, 
where the accuracy of each registration was evaluated. 
(See [19] for more detail.) 

MR images include T1, T2, PD and rectified versions 
of them. Geometrical distortions are corrected for 
rectified images. Typical voxel size of the images is (1.25 
× 1.25 × 4) for MR images, (0.65 × 0.65 × 4) for CT 
images and (2.59 × 2.59 × 8) for PET images in mm. 

We used a three-stage search approach and reduced the 
search space when starting a new stage. The optimizer 
was Powell’s routine in the first and second stages and the 
adaptive simulated annealing in the final level. Tables 1 
and 2 describe the proposed subsampling method used in 
each stage with n = 2 (two subsampling factors) and c = 4.  

 
The joint histograms were estimated using bilinear 
interpolation. 

TABLE 1 
PARAMETERS OF THE PROPOSED SUBSAMPLING METHOD IN EACH 

STAGE FOR CT TO MR PAIRS. 

Stage Joint 
Histogram 

bins 

)( 1AP
 

)( 2AP
 

1α  2α  

1 64 × 64 0.8 0.2 1/1024 1/25
6 

2 128 × 128 0.8 0.2 1/256 1/64 

3 256 × 256 0.8 0.2 1/64 1/16 

 
TABLE 2 

PARAMETERS OF THE PROPOSED SUBSAMPLING METHOD IN EACH 
STAGE FOR PET TO MR PAIRS. 

Stage Joint 
Histogram 

bins 

)( 1AP
 

)( 2AP
 

1α  2α  

1 32 × 32 075 0.25 1/256 1/64 

2 64 ×64 0.75 0.25 1/64 1/16 

3 256 × 256 0.75 0.25 1/16 1/4 

 
Initialize: 

Initial temperatures  Nit i ,...,1,0 =  
Initial ranges NiR i ,...,1,0 =  
Cooling factor  λ  
Maximum numbers of iterations   max  
Iteration counter 0←k  

While max≤k  
For all variables ix  

Generate a test value inside the initial range  
If  0≥∆ E  

Accept the test value 
      Else 

 Accept it with a probability calculated by acceptance function 
EndElse 

 EndFor 
1+← kk  

 For all variables ix  
Reduce temperature using the cooling schedule 

EndFor 
EndWhile 
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Figure 10: Fused slices of CT/MR images (a) before registration, (b) after registration. 

 

 
Figure 11: Fused slices of PET/MR images (a) before registration, (b) after registration. 

The difference between marker-based gold standard 
and our registration has been evaluated in 10 VOIs. The 
results are summarized in Tables 3 and 4. The mean errors 
are less than the largest voxel size (4 mm for CT and MR 
and 8 mm for PET), which means that all mean errors 
represent subvoxel accuracy. Fig. 10 and 11 visualize our 
registration results. 

TABLE 3 
REGISTRATION ERRORS (IN MM) WITH RESPECT TO THE GOLD 

STANDARD FOR  CT TO MR PAIRS. 
Modality Number 

of 
datasets 

Median Mean Maximum 

CT-T1 7 1.4604 1.5638 3.6254 

CT-T1rect 6 0.6144 0.9798 5.0428 

CT-T2 7 2.1742 2.1251 3.3467 

CT-T2rect 7 0.9596 1.2045 5.3249 

CT-PD 7 2.2918 2.4021 5.0634 

CT-PDrect 7 0.7153 0.9664 3.4570 

TABLE 4 
REGISTRATION ERRORS (IN MM) WITH RESPECT TO THE GOLD 

STANDARD FOR PET TO MR PAIRS. 
Modality Number 

of 
datasets 

Median Mean Maximum 

PET-T1 5 3.1852 4.3604 9.7388 

PET-T1rect 4 2.6150 2.7462 4.5467 

PET-T2 4 3.3800 3.4876 6.5244 

PET-T2rect 4 2.9284 3.5646 7.8524 

PET-PD 4 3.6630 4.4628 9.0148 

PET-PDrect 4 2.9474 4.0269 9.8907 

6.  CONCLUSION 

An improved multi-stage registration method based on 
mutual information has been introduced. The method 
employs a new subsampling technique which selects more 
relevant samples for joint histogram estimation. Because 
of existence of local maxima, simulated annealing is used 
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in the final stage to increase the chance of finding the 
optimal solution. 

The method is tested on volume image pairs of CT/MR 
and PET/MR. The registration errors are evaluated with 
respect to the marker-based gold standard. The results 
represent subvoxel accuracy for all mean errors. 
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