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ABSTRACT: In recent years, mobile networks have faced  with the increase of  traffic demand. 
By emerging mobile applications and cloud computing, Mobile Cloud Computing (MCC) has 
been introduced. In this research, we focus on the 4th and 5th generation of mobile networks. 
Data Centers (DCs) are connected to each other by high-speed links in order to minimize 
delay and energy consumption. By considering a model of the geographical distribution of 
DCs which uses a wideband optical network, renewable energy and sharing resources for new 
generations of mobile networks, the real effect of issues on the consumed energy, cost, and 
profit in the mobile cloud computing are investigated. We derived a penalty function for cost 
and then by using Lyapunov optimization theorem; we designed an algorithm to minimize 
the average cost of energy consumption based on the online information in MCC.  The time 
average cost is at most O(1/V) above the optimum target, while the average queue size is 
O(V). The parameter V can be tuned to make the time average cost as close to (or below) the 
optimum as desired. We designed three scenarios and two classes of applications to set up our 
simulation environment. The provided results illustrate the efficiency of our proposed scheme 
and validate the mathematical model.
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1- Introduction
In recent years, users of operators have preferred to receive 
the same services from a wireless environment as those 
received from fixed networks. The best solution is integrating 
wireless systems with the fixed ones. The main common 
goal of all researchers on the 4th and 5th generations of 
mobile technologies is an unlimited number of things that 
can communicate with each other with high communication 
capacity and quality of service ‎[1]. In this paper, we focus on 
mobile cloud computing ‎[2] in the 4th  and 5th  generations of 
mobile networks.
Furthermore, the DCs can be connected to each other with 
high-speed links. Among the problems related to DCs 
which are based on cloud computing, the cost of electricity 
is noteworthy. In the following, we will refer to cooling 
methods that can reduce the cost of cooling systems. DCs 
should take steps towards automation, and right decisions 
must be made in order to control the turning on and off of 
the servers ‎[3]. To reduce the energy consumption of servers, 
the new online methods that do not  need to predict the future 
conditions are used. In addition to these issues, the use of 
new energy sources such as wind and solar energy has a vital 
role in reducing the cost ‎[4]. As a result, it would be better 
to transfer DCs to the cold climates or use new technologies 
to reduce the cost of cooling. In the proposed method, we 
divide the demands that are sent to the cloud in two classes, 
namely, real-time class and non-real-time class. Furthermore, 
since the quality of service in the 4th and the 5th generations 
is very important, the classification of demands and giving 

priority to them are also considered in the system model. 
The outline of the paper is as follows. Section 2 discusses 
some related studies. In section 3, an overview of 
conventional and system architecture is given. Architecture is 
analyzed and compared with the state-of-the-art in section 4. 
The mathematical formulation for the two DCs is described 
throughout this section. The performance evaluation and 
simulation results are presented in section 5. Section 6 
concludes the paper and propose possible future works.
2- Related Works 
In recent years, many studies  have  been dedicated to 
the energy efficiency in the cloud computing ‎[5]. In new 
generations of mobile, cloud computing in radio access 
networks has been proposed. The MCC provides computing 
resources for mobile devices in the cloud ‎[6]. This 
architecture not only runs on available wireless networks but 
also is an essential part of the 4G and 5G networks ‎[7]. In 
‎[8], minimizing energy consumption for MCC systems with 
off-loading computation has been considered. In this paper, 
a mobile user makes a decision on  the amount of demands 
that should be transferred to the cloud to minimize the 
energy consumption of mobile devices. In ‎[9], the leverage 
of cloud computing on poor resources of mobile devices is 
presented. In particular, mobile applications can be run on 
mobile devices or transferred to the cloud to save energy in 
a mobile device. In ‎[10], efficient energy consumption is 
addressed and it has been suggested that energy reduction 
should be applied to all layers of DCs. Furthermore, the 
quality of service and reduction of energy consumption have 
been considered at the same time. In ‎[11], the use of green 
energy (including renewable energy) instead of brown energy 
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(energy production from fossil sources) is considered. In 
‎[12], power proportionality which means the ratio of turning 
servers on and off to the workloads dynamically is considered 
as a way to reduce energy consumption in DCs. In ‎[13- 15] 
along with dynamic bandwidth allocation, geographically 
load balancing, and less response time have been introduced. 
The UPS and diesel generators for producing  electricity are 
used to reduce costs in the DCs, this excess energy can be 
used in the peak time period when the cost of electricity is 
high‎ [16]. Since a main part of the cost is spent on  cooling 
equipment, relocation of DCs to the colder climates results 
in a reduction in power consumption ‎[17]. In ‎[18], it is 
stated that the power consumption is a significant part of 
operational costs in the DCs, and  operators want to reduce 
their electricity bills as much as possible. The Lyapunov 
optimization technique is used to keep balancing explicitly 
between cost saving and stored energy. In [19, 20], an optical 
fiber for data communication has been proposed. The energy 
consumption of optical networks is much lower than the 
other transmission networks. Saving energy and reducing 
the environmental pollutions in the information technology 
industry are included in the green technology that has been 
addressed in ‎[21]. 
Furthermore, dynamic pricing for many applications is used 
as a tool to improve the performance of resource management. 
In ‎[22, 23], a dynamic pricing algorithm for the users of cloud 
computing is proposed to increase fairness by alignment 
and proper allocation of resources. An excellent example of 
dynamic pricing in wireless cloud computing has been used 
for the congestion control that has been investigated in ‎[24]. 
In ‎[3, 25], the pricing and the scheduling of workload in the 
mobile cloud computing are considered simultaneously, and 
Lyapunov optimization is used for the queue control.

3- Overview of System Model
3- 1- System Model
Basically, the main goal of mobile service providers is 
increasing their long-term profit and the level of satisfaction 
of their customers. We prove that this could be achieved by 
optimizing the energy consumption of the DCs. However,  
as mentioned in [8], when the demands of mobile users are 
transferred to the cloud, the energy consumption of mobile 
devices and the DCs is optimized, and the level of satisfaction 
of users increases. Due to the use of fiber-optic network 
infrastructure, costs of data transmission and switching are 
low when one compares it with the traditional networks. The 
system model has been shown in Fig 1. In addition, a list 
of all parameters that are used in our paper is presented in 
Table1. 

In this model, two DCs are considered for mobile cloud 
computing. A group of servers are implemented in the regions 
which are closer to the users and mainly provide real-time 
applications; the other one is placed in cold regions and is 
used for non-real-time applications.

Table 1.List of all parameters and their definitions throughout 
the paper

Number of real-time demands in a time sloti(t)

Number of non-real-time demands in a time slotw(t)

Length of queued non-real-time demands in a time slotq(t) 

Number of processed demands in a time sloty(t)

Trade-off parameter between a penalty and Lyapunov’s driftV

Cost of energy consumptionP(t)

Normalized number of i(t) or w(t) in a time slotf(t)

A fixed number that depends on the chiller’s structure

A coefficient that maps  f(t) on energy consumptionE

Energy consumption of cooling system in a time slot

Energy consumption for processing demands in a time slot

Renewable (solar and wind) energy in a time slot

Service price for real-time demands in a time slot

Service price for non-real-time demands in a time slot

Utility function for each user in a time slotu(w(t), t)

Price of electricity in a time slot

Cost of energy in a time slotC(t)

Profit of operator in a time slotR(t)

Capacity of data centerX

Energy consumption of transferring demands to DC2 in a 
time slot

A coefficient that maps transmission cost to the processing 
cost

A coefficient that maps transmission delay to the processing 
delayΩ

A coefficient that maps queue length to delay

The coefficient of demand status in each time slot

A relative factor for kth class of non-real-time demands

Consumed energy for processing real-time demands 

Consumed energy for processing non-real-time demands

Consumed energy for cooling real-time demands

Consumed energy for cooling non-real-time demands

Amount of renewable energy in DC

The demands of users are classified into two categories. The 
first one is i(t), that is used for real-time demands such as data 
mining, virtual searching, online audio and video services. 
The second one is w(t) that is used for non-real time demand 
such as file transfer, remote login, and web services. We 
assume that a major part of the energy in a DC is consumed 
by the cooling system of server and storage (about 76% 
‎[26]), that keeps the servers at an appropriate temperature. 
In fact, to reduce the cost of energy consumption for cooling, 
we have placed another DC in a cold region. The demands 
that are not sensitive to delay, (w(t) in Fig. 1) could be sent 
to the DC in the cold regions in order to be processed at a 
lower cost. Because the cost of transferring demands in the 
proposed infrastructure is less than that  of cooling energy 
consumption.

,µ µ′

e ( )c t
e ( )p t

e ( )r t
( )ip t
( )wp t

( )ep t

( )tre t

θ

κ
( )k tδ

( )k tλ
( )pie t
( )pye t
( )cye t

( )cie t
( )re t

Fig. 1. ‎System Model
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3- 2- Lyapunov Optimization
The Lyapunov’s drift is very critical in the optimal control 
of queues. Indeed, queue stability is achieved by optimizing 
performance-related objectives such as minimizing energy 
consumption and maximizing efficiency ‎[27, 28].
If we consider N queues with length ( ) where =1,2,...,kq t k N
at discrete time slot t ϵ{0, 1, 2, ...}, Lyapunov function of 
grade 2 is defined by

(1) 

Lyapunov’s drift in a time slot is defined as follows. 

(2)

where

( ) ( )1 max( ( ) ( ),0)k k k kq t q t w t y t+ = + −
A control law should be designed to minimize the bound of 
the queue in a time slot. Adding a weighted penalty ( . (t)V P ) 
to the drift and minimizing the formula (3) lead to a drift-plus-
penalty algorithm that is useful to achieve system stability 
and minimizes the penalty at the same time. The drift-plus-
penalty algorithm is defined as:

(3)

Since D(t) and P(t) do not have the same dimension, we 
need the constant V to make the second term have  the same 
dimension as D(t) to be able to add them together, and we can 
control the penalty function, with the drift function. The goal 
is to keep queue stable by minimizing P(t) in a time slot [29]. 
If we consider R(t) as the profit, maximizing R(t) is equivalent 
to minimizing P(t). By considering that V> 0 and defining 
P(t) as the negative of profit in each time slot, the drift plus 
penalty algorithm can be used to minimize the average 
energy consumption by restricting the queue size ‎[30]. This 
algorithm would be appropriate for both flow control and 
network stability. The value of V can be adjusted in a way that 
the average of penalty is  very close to optimum ‎[31]. This 
idea has been used throughout the paper. By increasing the 
V, the delay grows up and as a result; more profit is provided 
for operators.

(4) 

4- Problem Formulation
4- 1- Determining Cost, Profit and Service Pricing Functions
We assume that ( )ce t  and ( )pe t

 
increase linearly with the 

number of demands. This linear relationship is logically 
derived from experimental measurements ‎[32, 33]. It is 
considered that the DCs, include servers that are similar and 
the servers have a normalized processing speed and energy 
consumption.

(5)

(6)

This model has been widely applied to the management of DCs 
‎[33, 34]. In order to reduce the complexity of computations, 
the costs of turning servers on/off are not considered. Hence  
the cost of energy is defined by C( ) ( ( ), ( ))et c p t e t=  in which  
is equal to the purchased energy from electricity companies. 

2
1

1(t) ( )
2

N
kk

L q t
=

= ∑

(t) ( 1) ( )D L t L t= + −

(t) ( ) (t)DPP D t V.P= +

(t)( )) (DPP D VR tt −=

( ) . . (t)ce t E fµ=

( ) . (t)pe t E f=

It is assumed that ( ) pi ip t = . The pricing is fulfilled for 
non-real-time demands and we have max( ) [0, ].wp t p∈  Let 
the price be kept constant in each period.  C(t) and  R(t) are 
defined by

(7)

(8)

(9)

(10)

It is assumed that the existing network connection between the 
DC and the base station (via a wideband backbone network) is 
not a data transmission bottleneck between the DC and users. 
The utility function is a time-varying function that increases 
as w(t) increases. Here, w(t) is a response to ( )wp t  and it is 
determined by the service provider. The optimal logarithmic 
utility function has been studied in prior studies [24].

(11) 
							     
The service provider pays a cost equal to ( )wkp t  for kth class, 
that results in a maximum utility equal to:

(12)

4- 2-  Two DCs with Classification
In this section, we assume that non-real-time demands 
have different QoS (Quality of Service) and the demands 
are divided into two categories, namely, Class 1 and Class 
2. Class 1 has a higher priority and is more sensitive to the 
delay. The demands of class 2 are given the second priority 
for processing. Furthermore, it is necessary to consider how 
these two different classes can affect the average of service 
provider’s profit. 

(13)

(14)

(15)

(16)

Where, M is positive constant with upper bound:      
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summarized as

(18) 

The drift-plus-penalty algorithm is used in linear programming 
as well as convex optimization ‎[29, 35]. Thus,  solving (19) is 
based on linear programming by choosing ( )ky t and ( )wkp t  in 
each time slot, independently. To calculate the cost and profit 
in the long term, a formula is required to subtract the entire 
cost from all revenues. For eachT +∈ and M +∈ there is a 

endT MT=  so that 

(19)

(20)

In the above equation, ( )C t∗  and R ( )t∗  are the optimal cost 
and profit through DPP algorithm. In order to process these 
categories properly, we focus on three different scenarios.

4- 2- 1- First Scenario
In this approach, the real-time demands and Class 1 demands 
(higher QoS of non-real-time demands) are processed in 
DC1 and the rest of non-real-time demands are processed in 
DC2. In this regard, adequate servers in DC1 are allocated to 
real-time applications and then through DPP algorithm, the 
amount of processing and the cost of services are determined. 
In DC2, only Class 2 demands are processed and the needed 
servers, as well as the cost of services, are optimized. Total 
costs can be computed according to the following equation.

(21)

(22)  

In the above equation, ( )rke t  (k = 1, 2) represent the amount 
of renewable energy in the first and second DC. Because of 
locating DC2 in cold regions, energy consumption for cooling 
DC2 is lower ( 'µ µ< ). To calculate the delay, the transferring 
time of non-real-time demands to DC2, is also considered. 
Finally, by calculating the amount of revenue resulted from 
the price of services and subtracting the total cost from it, the 
amount of profit is achieved. 

(23)

The equation (25) shows the total delay is proportional to the 
queue length.

(24)

4- 2- 2- Second Scenario
In this approach, real-time demands are processed in DC1, 
and non-real-time demands of Class 1 and 2 are processed 
in DC2. As a result, applications that require real-time 
processing are not transferred, but applications that are less 
or non-sensitive delay are transferred to DC2 to impose a 
lower cooling cost. At first, the applications of Class 1 are 
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processed and then the remaining capacity is allocated to 
Class 2 applications in DC2.  The following equations show 
the total cost, profit, and delay in this scenario, respectively.

(25)

(26) 

(27)

4- 2- 3- Third Scenario
In this scenario, real-time demands are processed in DC1 and 
non-real-time demands of Class 1, and 2 are processed in 
DC2. The dedicated capacity of servers to Class 1 and Class 
2 is optimized simultaneously. As a result, the equations of 
cost, profit and delay are similar to the second scenario, and 
the difference is the optimizing method of 1( )y t  and 2 ( )y t .

5- Simulation Results
In the beginning of each time slot, we use environmental 
information ( )ep t , i(t), ( )re t and find the ( )kw t from the 
utility function defined in  (12). For time t = 0, we assume 
that the ( )wk mp t P=  (maximum price), in order to find the 

( )kw t  for the first time. We consider a time period up to 
2000 time slots. In addition to the random data, we re-scale 
real data from California, America’s resources for electricity 
and renewable-energy cost [36]. Suppose that the maximum 
number of servers (W) in each DC is 10. We assume that 
the cooling system uses 0.75 of the energy of servers. It is 
assumed that ( )tδ is independent and distributed uniformly in 
the interval [0, 1] and i(t) is considered as a random variable 
with a uniform distribution at various intervals. It should be 
mentioned that this analysis can be proven with any other 
settings. 

5- 1- Two DCs without classification
Since a part of the consumed energy of servers is used for 
cooling, placing a DC in the cold regions can reduce energy 
consumption. It cannot improve the profit of the service 
provider if delays and costs due to the transmission of non-
real-time demands for  DC2 exceed from a certain level. 
Therefore, it is necessary to compare the delay and cost of 
two-DCs regarding to one-DC. In the following, simulation 
results of delay and cost by changing the capacity of the first 
DC are presented. In all simulations, the capacity of one-
DC approach is equal to the total capacity of the two-DC 
approach. 
Fig. 2(a) shows the average delay for both one-DC and two-
DC approaches with different delay coefficients (Delay Co). 
As  can be seen, with using  two DCs with small values of 
the coefficient, delay reduces. However, if transmission delay 
increases, using  two DCs cannot lead to  better results in 
delay. Fig 2(b) shows that when the cost of the transmission 
is less than a threshold, using  two DCs reduces the cost, 
significantly. Fig. 3 shows the average delay and cost in 
terms of V for both approaches (X1=0.25X2) with different 
coefficients. In this case, because of low capacity for real-
time demands and less revenue, we reach the same results 
with fewer network cost coefficients.
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5- 2- Two DCs with classification 
In the previous section, it was supposed that the demands 
have the same priority for processing, and we considered 
the same QoS for non-real-time demands. In this section, we 
assume that the demands have different QoS and are divided 
into two categories, namely, Class 1 and Class 2. At first, by 
considering  the  DC, the effect of classification on the price 
of services as well as the delay of each class is investigated.In 
Fig. 4,  the average price of service and average delay in two 
classes in the case of  max 8i =  have  been compared. Clearly, 
the class 1 services with a lower delay have the higher price, 
compared to class 2.  Fig. 5 and Fig. 6 show the average 
delay, cost and profit for max 2i =  and max 8i =  in different 
scenarios, respectively. It can be seen that initially (for 
small maxi ) the delay of the third scenario is larger than other 
scenarios’, but it is less than the delay of one-DC method. 
In one-DC method, because all the processing is carried out 
inside a single DC and the electricity price is compared with 
a smaller threshold, the amount of processing is low. Thus, 
the amount of processing is low and, the delay is more than 
other scenarios. In the third scenario, 1y ( )t  and 2y ( )t  are 
optimized in the second DC, simultaneously. These values 
are determined so that the profit would be maximized. As a 
result, the profit of the third scenario is more than that of the 
other scenarios as well as single DC mode although, the third 
scenario imposes more delay, to increase the profit. In this 
regard, the third scenario has a higher delay compared to the 
other scenarios.
As can be seen, by  increasing maxi , the profit of the third 

scenario decreases gradually. In this case, due to a reduction 
in residual capacity to optimize profit, the allocation of all 
capacities to the Class 1 demands and, then, to the class 2 
demands is more optimal than simultaneously optimizing  
two classes. Thus, in the case of max 8i = , the second scenario 
has a higher profit for the mobile service provider than the 
other scenarios.
Fig. 7 and Fig. 8 compare the second and third scenarios in 
terms of demands, amount of processing and queue length 
for             and             .max 2i = max 8i =

(a) average delay

(b) average cost
Fig. 2. The average delay and cost in terms of V, (X1=X2=W) 

for different coefficients

(a) average delay

(b) average cost
Fig. 3. The average delay and cost in terms of V, (X1=0.25X2) 

for different coefficients

Fig. 4. The average price of service and delay in the case of 
classification with imax= 8
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Fig. 5. The average delay, cost and profit for imax= 2 
in different scenarios

Fig. 6. The average delay, cost and profit for imax= 8 
in different scenarios

6- Conclusion
In this paper, we found a new criteria for the 4th  and 5th  
generation of mobile networks that adopt cloud computing for 
their uses. Furthermore, the delay, cost, and profit of service 
providers are investigated. A novel approach was proposed 
to transmit the demands for  subscribers to the cloud. We 
focused on the processing of the real-time demands that are 
delay-sensitive in closer DC and also the processing of non-
real-time demands that are less or non-delay-sensitive in 
the DC placed in cold regions. The mobile subscribers are 
modeled with their demands and, the demands are affected 
by deciding on price of service. To decrease the long-term 
cost and to increase the profit for service providers, we 
used drift-plus-penalty algorithm that can be implemented 
based on the online information. For real approach, the 

idea of classification of demands was used by using one 
and two DCs. We observed that the classification decreases 
the amount of cost and increases the profit substantially. 
Moreover, the results of using two DCs, with and without 
classification, to  process non-real-time demands showed that 
when the amount of transmission delay is low, the cost of 
the service provider decreases significantly. It was shown that 
even by decreasing real-time demands as well as the capacity 
of near-zone DC, the transferring of non-real-time demands 
to the cold-zone can decrease delay and cost compared to that 
using one DC method. Extensive experimental results show 
that the proposed algorithm decreases the amount of average 
cost and increases the average profit substantially. 
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(a) Second Scenario                               (b) Third Scenario          .
Fig. 7. A comparison between the second and third scenarios for imax= 2

(a) Second Scenario                            (b) Third Scenario      .
Fig. 8. A comparison between the second and third scenarios for imax= 8
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