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1- Introduction
An intrinsic demand for automated, robotic and unmanned 
systems has largely driven by various applications such as 
search and rescue, fire-fighting, intelligent transportation, 
exploration or surveillance missions that are inherently 
repetitive, unpleasant, or dangerous [1]. Especially, when 
multiple unmanned autonomous vehicles cooperate to achieve 
a given task, more flexibility and robustness are accessible.
A formation of vehicles can be defined as swarming by 
considering some motion constraints which have been studied 
in three main structures, namely, leader-follower, virtual, 
and behavioral. The leader-follower is the most popular 
one in formation control due to its ease of implementation 
and analysis. In this structure, a vehicle is considered as a 
leader, and other vehicles are followers which track the leader 
(see [2] and references therein). In this field of research, 
commonly, the presence of an active communication link 
between the leader and the follower was assumed and the 
formation problem is solved based on the concept of the 
graph theory, e.g. see [2]-[5]. However, when the follower  
is only equipped with an onboard sensor to track the leader, 
formation control is more challenging. For instance, in [6]-
[12], researchers have focused on vision-based formation 
control of the mobile robots using an onboard camera. Only 
the view-angle to the other robots is provided by each camera 
and the distances should be estimated [7]. Moreover, usually, 
a limited information exchange among the robots is assumed 
[9].
In the scope of formation flight problem, [13] investigates 
the use of line of sight (LOS) and relative  measurements 
exchange for a relative positioning of unmanned aircraft. 
Tight formation flight based on visual sensory systems was 
The corresponding author; Email: menhaj@aut.ac.ir  

studied in [14] and [15]. In these papers, the information of 
visual relative measurements is fused with the information 
of navigation sensors and global positioning system to 
achieve a desired relative positioning. In [16] and [17], based 
on LOS guidance method, the leader-follower formation 
flight of unmanned aircraft is studied. However, our work 
is distinct from the existing studies in sensor measurements 
specifications, and, therefore, a novel model for the 
leader-follower system is obtained. Absence of an active 
communication link between the leader and the follower is 
another feature that the authors of this paper pursue. 
This paper is mainly intended to employ seekers as sensors 
that provide relative measurements for the formation 
keeping in the leader-follower structure. In general, seekers 
are categorized into two classes, namely, three axes seeker 
and two axes seeker [18]. In this paper, elevate-azimuth 
seekers which are of two-axes type and can provide relative 
measurements in elevation and azimuth axes are adopted. 
Generally, LOS angles and LOS rate angles with respect to 
the leader are the information provided by seekers [19]-[21].
With considering the seeker dynamics, a model for the 
related mechanism is accomplished. In this model, the noise 
of the onboard sensor in measuring the LOS angle rate is 
considered. In the literature, this noise is considered as the 
main uncertainty in seeker measurement and is called glint 
noise (see [22]-[27] for instance). Simulation results are 
given to study the effect of the seeker dynamics and sensor 
noise on the accuracy of the formation keeping.
It is worth mentioning that application of the proposed idea 
is tested by the authors via a hardware in the loop simulation 
test-bed in [28] and more analytical studies by considering 
uncertainties in seeker measurements and the leader 
maneuvering are presented in [29] and [30].
The rest of the paper is organized as follows. The leader-
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follower kinematic equations are formulated in section 2. 
Modeling of the airborne seeker is presented in section 3. In 
section 4, the formation control structure is proposed. Section 
5 provides simulation results and finally, section 6 concludes 
the paper.

2- leader-follower kinematic equations
Leader-follower formation can be achieved via regulation of 
the relative angles ( ),

LV LV
   and the relative distance L

r  to 
maintain these quantities at the desired values, as depicted 
in Fig. 1.
To solve the leader-follower formation problem, at first, a 
kinematic formulation for the follower motion equations and 
the leader-follower relative kinematics must be derived. For 
this purpose, three coordinate frames ,I L  and V  are defined 
as the inertial reference frame, the line of sight frame and the 
follower velocity frame, respectively.
To derive the motion equations of the follower, by introducing 

0 0
T

V
F F

V vé ù= ê úë û  as the follower velocity vector 
F

V  with respect 
to the frame V , we have
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where I
V
C  denotes rotation matrix of I  with respect to 

V ; F
v  is the follower speed. The variables V

  and V
  are 

the angles of follower velocity vector with respect to the 
reference frame. 

Now, let us define 
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xV yV zV
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in combination with (1), the motion equation of the follower 
can be obtained as it follows,
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Fig. 1.The leader-follower relative kinematics.
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where 
T

F F F
x y zé ù
ê úë û  is position vector of the follower with 

respect to the reference frame.
To formulate the leader-follower relative kinematics, by 
defining 0 0

T
L

L L
R ré ù= ê úë û

and T
L
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, we have
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Time derivative of the above equation yields
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where 
T

xL yL zL
a a aé ù
ê úë û  is the LOS acceleration with respect to 

the frame L . Hence, by rearranging the above equation, the 
relative kinematic equation can be obtained as,
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Equations (2) and (3) describe the leader-follower system 
kinematics.

3- Airborne Seeker Modeling
In this section, a mathematical model for seeker dynamics and 
kinematics is expressed. A typical gimbaled seeker contains a 
two-degree-of-freedom gimbal in which the external gimbal 
is fixed to the body as shown is Fig. 2.
To derive kinematic equations, rotation matrix S

V
C  is 

considered as follows:
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rate vectors. Now,  using the following equation,
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Fig. 2. Structure of two-degree-of-freedom gimbal.
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Moreover, the internal gimbal torque can be expressed as it 
follows,
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where 
s

I  is the moment of inertia of the internal gimbal and 
sf

T  is the friction torque of the internal gimbal. Now, by using 
(4) in (5), one can obtain that
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In a similar manner, for the external gimbal, we have
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where 
g

I  is the moment of inertia of the external gimbal. 
Consider the equation (4). Then, it holds that
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The above-mentioned equations describe the kinematics and 
the dynamics of the seeker mechanism. For the sensor mea-
surement by considering ( ),

SL SL
   as the seeker beam angles 

with respect to the leader, we have 
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Moreover, glint noise in angle measurements is assumed and 
modeled as follows [22],
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This model is a mixture distribution where ( )
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20,Gp N s  are zero-mean Gaussian distributions with 

different standard deviations with the assumption of 2 1s s> ; 
e  represents the glint probability.
The achieved models for yaw and pitch channels of the 
airborne seeker are depicted in Fig. 3 and Fig. 4. By 
considering the kinematics as in (4) and the dynamics as in 
(6) and (7), the external inputs yaww , 

pitchw , yawd  and pitchd  
can be formulated as follows,
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Fig. 3.Block diagram of seeker model in yaw channel
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In the above-mentioned models, a cascade control structure is 
used to control the gimbaled mechanism in the pitch and the 
yaw channels in which 

1 2 3
, ,K K K  and 

4
K  are positive gains 

and   is a time constant. This control structure is generally 
useful when multiple measurements with only one control 
variable are required for a better response to disturbances in 
a system. Note that the inner loop should include the major 
disturbances and  react faster than the outer loop in order to 
achieve a significantly improved system performance [31].

4- FORMATION CONTROL STRUCTURE
Considering the kinematic equations presented in section 2 
and the seeker model in section 3. Now, we need a control 
structure to complete the leader-follower formation control 
model. The proposed control method is a cascade loop control 
as follows:
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desired values of the relative angles (orientation) and the 
relative distance (range). Using this control structure, the 
relative orientation and the relative range can be regulated 
to maintain these quantities at the desired values. Thus, the 
desired formation is achieved. 
Cascade control is designed to allow the outer loop control-
ler to respond to the slow changes in the relative distances 
and the relative angles, while the inner loop controller con-
trols disturbances that happen quickly in speed or angle rates 
loops.

 

1
s 3

K

4
K

1
1s 

1
s

pitch
w

pitch
dPitch Controller

Glint 
Noise

1
s

3

4

K

K

yl


ylM


ys


SV


SV


cos
SV



y

s g

c

I I

1

s g
I I

cos
SL



sin
SL



xs


SL


Fig. 4. Block diagram of seeker model in pitch channel
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Finally, the schematic diagram of the leader-follower forma-
tion control structure is obtained as depicted in Fig. 5. This 
model can be used to simulate the leader-follower formation 
in a proper simulation environment.

5- simulation results
In order to verify the effectiveness of the proposed control 
structure, a simulation is carried out for a V-shaped leader-
follower formmation of three UAVs. Simulation parameters 
are set as listed below,
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The initial conditions of UAVs position, speed and angles are 
given in Table 1.
Simulation results for 3D trajectories of the leader and 
followers are depicted in Fig. 6. The regulation of relative 
distances and angles to the desired values are shown in Fig. 
7 that verify the formation achievement. Moreover, Fig. 8 
to Fig. 11 evaluate the accuracy of the model of the seeker, 
where the measured angles and the angle rates of seekers 
are compared with kinematical values. We can conclude 
that the seeker dynamics is highly fast and, thus, does not 
seriously affect the accuracy of the formation. However, if a 
close formation (low relative distance) is intended, a filtering 
method should be used in the angle rate measurements.

Table 1. Initial conditions of UAVs

UAVs Position
( ), , [ ]x y z m

Speed 
[ ]m

s

Angles
( ), [deg] 

Leader ( )250,150, 100 50 ( )30,20

Follower1 ( )0, 0, 0 20 pitchd

Follower2 ( )100,20, 0 20 ( )0, 0
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Fig. 6. The leader-follower 3D trajectories.
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0 5 10 15 20 25 30 35 40 45 50
-35

-30

-25

-20

-15

Se
ek

er
2 

A
ng

le
 [d

eg
]

 

 
θLV

θLVM

0 5 10 15 20 25 30 35 40 45 50
-40

-20

0

20

40

60

Time [s]

Se
ek

er
2 

A
ng

le
 [d

eg
]

 

 

ψLV

ψLVM

Fig. 11. Follower2 seeker angle measurements.

6- Conclusions
In this paper, a model for the leader-follower formation 
kinematics was proposed with considering an onboard sensor 
with special relative measurements. To study the effect of the 
airborne seeker dynamics and sensor measurement noise on 
the formation, the seeker mechanism was considered in the 
model. Then, by employing a cascade loop control structure, 
a proper controller was designed. Simulation results verified 
the application of the proposed control strategy for multi-
UAV formation flight.
As for future research, one can focus on the visibility 
maintenance problem in which a limited field of view for 
the seeker will be assumed. Another potential research field 
is filter design to cope with measurements noises for close 
formation scenarios.
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