[1] Farmanzad, F.; Najarian, S.; Eslami, M.; Seddighi, A.S.; “A novel model for biomechanical behavior of human brain in epidural hematoma injuries”, Bio-Med. Mater. and Eng., vol. 17 (2), p.p. 119-125, 2007.
[2] Pott, P.P.; Scharf, H.P.; Schwarz, M.L.R.; “Today’s state of the art surgical robotics”, J. of Comput. Aid. Surg., vol. 10 (2), p.p. 101-132, 2005.
[3] Taylor, Z.; Miller, K.; “Reassessment of brain elasticity for analysis of biomechanics of hydrocephalus”, J. of Biomech. Eng., vol. 37, p.p. 1263-1269, 2005.
[4] Walsh, E.K.; Schettini, A.; “Elastic behavior of brain tissue in vivo”, Am. J. Physiol., vol. 230, p.p. 1058-1062, 1976.
[5] Ommaya, A.K.; “Mechanical properties of tissues of the nervous system”, J. of Biomech., vol. 1, p.p. 127, 1968.
[6] Estes, M.S.; McElhaney, J.H.; “Response of brain tissue of compressive loading”, ASME Pub., 70-BHF-13, 4, 1970.
[7] Miller, K.; “Constitutive modeling of brain tissue: Experiment and theory”, J. of Biomech., vol. 30, p.p. 1115-1121, 1997.
[8] Miller, K.; Chinzei, K.; “Mechanical properties of brain tissue in tension”, J. of Biomech., vol 35, p.p. 483-490, 2002.
[9] Bilston, L.E.; Liu, Z.; Phan-Thien, N.; “Large strain behavior of brain tissue in shear: Some experimental data and differential constitutive model”, Biorheolog, vol. 38, p.p. 335-345, 2001.
[10] Brands, D.W.A.; Bovendeerd, P.H.M.; Peters, G.W.M.; Wismans, J.S.H.M.; “The large shear strain dynamic behavior of in-vitro porcine brain tissue and the silicone gel model material”, Proc. of the 44th Stapp Car Crash Conf., 2000-01-SC17, p.p. 249-260, 2000.
[11] Donnely, B.R.; Medige, J.; “Shear properties of human brain tissue”, J. of Biomech. Engin., vol. 119, p.p. 423-432, 1997.
[12] Prange, M.T.; Margulies, S.S.; “Regional, directional, and age-dependent properties of the brain undergoing large deformation”, J. of Biomech. Eng., vol. 124, p.p. 244-252, 2002.
[13] Miller, K.; “Constitutive model of brain tissue suitable for finite element analysis of surgical procedures”, J. of Biomech., vol. 32, p.p. 531-537, 1999.
[14] Franceschini, G.; Bigoni, D.; Regitni, P.; Holzapfel, G.A.; “Brain tissue deforms similarly to filled elastomers and follows consolidation theory”, J. of the Mech. and Physics of Solids, vol. 54: p.p. 2592–2620, 2006.
[15] Hashemi, J.; Bennettv, R.; “Materials Characterization: Tensile Test”, Mater. and Mech. Laborat., ME 3328, 2003.
[16] Ling, Y.; “Uniaxial True Stress-Strain after Necking”, AMP J. of Technolog., vol. 5,1996.
[17] Velardi, F.; Fraternali, F.; Angelillo, M.; “Anisotropic constitutive equations and experimental tensile behavior of brain tissue”, Biomech. Model Mechanbiol., vol. 5, p.p. 53–61, 2006.
[18] Mendis, K.K.; Stalnaker, R.L.; Advani, S.H.; “A constitutive relationship for large deformation finite element modelling of brain tissue”, J. of Biomech. Eng., vol. 117, p.p. 279–285, 1995.
[19] Khoshgoftar, M.; Najarian, S.; Farmanzad, F.; “A Biomechanical Composite Model to Determine Effective Elastic Moduli of the CNS Gray Matter”, Am. J. of Appl. Sci., vol. 4, p.p. 918-924, 2007.
[20] Miller, K.; Chinzei, K.; Orssengo, G.; Bednarz, P.; “Mechanical properties of brain tissue in vivo: experiment and computer simulation”, J. of Biomech., vol. 33, p.p. 1369-1376, 2000.