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The accuracy of Inertial Navigation System (INS) is limited mainly by inertial sensors imperfections. 
Before using inertial signals in the datafusion algorithm, noise removal procedure should be done. In 
order to remove the noise, wavelet decomposition method is used in which the raw data are decomposed 
into high and low-frequency data sets. In this study, wavelet multi-level of decomposition technique is 
used as an efficient pre-filter method for inertial measurements to improve the performance of INS. This 
technique improves navigation accuracy by eliminating the high-frequency noise of inertial measure-
ments. Optimum values of the level of decomposition are selected to obtain minimum error. Success-
fully performing the de-noising process improves the sensors’ signal-to-noise ratios and removes short 
term errors mixed with motion dynamics and finally provides cleaner and more reliable data to the INS. 
In this paper, the performance of an error state Kalman filter based GPS/INS integrated navigation sys-
tem is studied using real measurement during GPS outages. The GPS/INS integrated navigation system 
used in this work is the loosely coupled structure. Results show that the average value of the root mean 
square of the position errors (as a measure of the quality of de-noising) during GPS outages using the 
WMRA procedureis reduced about 14% compared to those using the raw inertial measurements.
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1- Introduction
Most navigation systems use inertial sensors 

(accelerometers and gyroscopes). An inertial 
navigation system (INS) has a good accuracy in a 
short time, but the error grows with the elapse of time 
without bounds, while GPS has a high accuracy in 
a long time. Thus, INS and GPS integration could 
improve navigation accuracy for all times [1]. 
Conventional Kalman filtering (KF) [2] has been 
the widely the implemented and accepted procedure 
for integrating the inertial navigation systems (INS) 
with auxiliary sensors. The Kalman filter has been 
implemented in two approaches, total state space and 
error state space methods, which are named direct and 
indirect filtering, respectively [3,4]. In recent years, 
the indirect filtering is used mostly in the integrated 
navigation systems [5,6]. Some literature reported 
the direct filtering based integrated navigation system 
[7-9]. In the case of GPS outages (signal blockages), 
the INS positioning error will increase in time until 
the GPS signals are available again. As soon as the 
GPS signals become available, it provides position 
information that may lead to compensation of INS 
errors [10].

The primary concern when working with a low-
performance inertial measurement unit (IMU) is that 
the navigation solution degrades rapidly in the absence 
of an aiding source (which is mainly GPS). However, 
the navigation is still facing problem in places where 
the GPS signal gets lost, that commonly occur in 
urban areas and in unsuitable weather condition. In 
the case of GPS outages, the INS is used alone for 
positioning until the GPS signals are available again. 
One of the major issues that limits the INS accuracy, 
as a stand-alone navigation system, is the level of 
sensor imperfections especially its noise [11].

The noise affecting inertial sensors contains 
two parts: a low-frequency and a high-frequency 
component. Both components are combined together 
and affect the inertial sensor accuracy. The high-
frequency component has white noise characteristics, 
while the low-frequency component (more commonly 
termed bias drift) is characterized by correlated 
noise. One way to deal with high-frequency noise is 
to de-noise the inertial sensor measurements prior to 
processing. In this study we can remove the effect 
of the short-term error of the stand-alone INS only, 
while the long-term error can often be modeled 
with sufficient accuracy as a stochastic process, and 
be estimated and compensated using data fusion 

techniques like Kalman filter [12].
In order to enhance the final accuracy of the 

system especially during GPS outages, it is necessary 
to use an appropriate pre-filtering method to the raw 
IMU data. Applying efficient pre-filter successfully 
improves the sensors signal-to-noise ratios, removes 
short-term errors mixed with motion dynamics, 
and provides more reliable data. Conventional de-
noising methods include moving average and low-
pass filtering techniques. In recent years, wavelet 
decomposition is more often presented as an effective 
method to cope with the inertial sensor noise. Several 
other novel methods, such as neural network de-
noising [13] have also been widely investigated. The 
wavelet enormous advantages compared with other 
methods of signal processing are summarized by 
Sifuzzaman et al. [14]. In these methods, preventing 
over-smoothing effects is too difficult, because 
there is no rigorous criterion to evaluate the cut-off 
frequency or the wavelet de-noising levels [15].

The wavelet transform (WT) is a powerful 
tool for signal and image processing. From the 
mid-1980s, it has been successfully used in many 
scientific fields such as signal processing, image 
compression, computer graphics, pattern recognition 
and de-noising of medical imaging [16]. One way 
to remove high frequency noise of the inertial 
sensor signals is to use wavelet technique prior to 
processing. Wavelet decomposition is a process in 
which a signal is successively broken down into low 
and high-frequency components [12,17]. Several 
studies have focused on evaluating the advantages of 
this technique, for instance, Nassar [17], Chiang et 
al. [10], and Abdel-Hamid et al. [18]. Skaloud [12] 
used wavelet decomposition technique for de-noising 
of INS data and achieved a significant reduction 
in estimated attitude errors. Bruton et al. [19] used 
WMRA to improve the estimation of airborne gravity 
disturbance values. Zhang et al. [20] also introduced 
a model using wavelet multi-resolution analysis 
and neural network to assist KF when GPS outages 
happen. The trained neural network can be employed 
to remove high-frequency noise and improve system 
accuracy. Noureldin et al. [21] integrated neuron-
wavelet algorithm and Kalman filter to de-noising and 
fused the outputs of INS/GPS and provided precise 
positioning information for the vehicle.

In this paper, the wavelet multi-resolution 
analysis (WMRA) technique has been implemented 
experimentally to a set of tactical grade IMU (gyro 
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drift of 1.0–10.0 deg/h and accelerometer bias of 1-5 
mg) in order tominimize the undesirable effects of 
sensor noise and other high-frequency disturbances. 
In Sect. 4, we show that the position errors obtained 
from de-noised INS data will be smaller than the ones 
obtained from the original data.

This paper is organized as follows: Section 
2 describes the basic information of the Wavelet 
transform (WT) and the principle of wavelet multi-
resolution analysis. Section 3 presents wavelet 
de-noising method implemented to the INS/GPS 
integrated navigation system. It contains the structure 
of INS/GPS integrated system and Kalman filter used 
in the integration of the system. The experimental 
results and the effect of de-noising INS data in INS/
GPS integration with some simulated GPS outages 
are analyzed in section 4. Finally, the conclusion is 
given in section 5.

2- Wavelet de-noising technique
2- 1- Discrete wavelet transform (DWT)

Wavelet transform is able to eliminate noise and 
compression of signals without the original signal 
deterioration. The wavelet transformation of a time-
domain signal is defined in terms of the projections 
of this signal into a family of functions that are all 
normalized dilations and translations of wavelet 
functions [22]. Wavelet techniques are based on 
analyzing a signal through signal windowing but 
with variable window sizes. The major advantage of 
wavelets transform relative to other signal processing 
techniques is a capability to analyze a localized 
portion of a large signal [23]. This is possible since 
wavelet transform applies the wide window (long 
time intervals) to analyze a low-frequency component 
of the signal and the narrow window (short time 
intervals) to analyze a high-frequency component of 
the signal [24].

The low frequency fraction of the IMU sensor 
data is the signal of interest (motion dynamics) and 
the high frequency component is usually the signal 
noise. In the implementation of the DWT, the wavelet 
coefficients of a signal are computed by passing 
such a signal through two complementary half-band 
filters, the output of the low-pass filter (LPF) is called 
approximation part while the output of high-pass 
filter (HPF) is called details part (see Fig. 1). For 
more details on  the design of decomposition and 
corresponding reconstruction LPF and HPF, see [25]. 
A good review of statistical properties of wavelet 

coefficients can be found in [26] and [27].
Since we are dealing with discrete-time inertial 

sensor signals, the DWT is implemented. The wavelet 
coefficients of a discrete time sequence, x(n), is given 
as [25,28]:

(1)

(2)

where aj,k and dj,k are the approximation coefficient 
and the details coefficient at the j-th resolution level, 
respectively, Φj,k(n) is the scale function, Ψj,k(n) is 
the wavelet function and 2-j/2Φ(2-jn-k), 2-j/2Ψ(2-jn-k) 
are the scaled and shifted versions of Φj,k(n) and 
Ψj,k(n) respectively, based on the values of j (scaling 
coefficient) and k (shifting coefficient). The original 
signal x(n) can be generated from the corresponding 
wavelet function using the following equation:

(3)

The wavelet function should be short and 
oscillatory; in other words, it should have zero average 
and decay quickly at both ends. This condition 
ensures that the summation in the DWT equation is 
finite [29,30].

2- 2- Signal de-noising using Wavelet multi-level 
of decomposition

The wavelet multi-resolution analysis or 
wavelet multiple Level of Decomposition (LOD) 
is a procedure in which a signal is broken down 
into various resolution levels [12,23]. Therefore, 
to obtain finer resolution frequency components 

Fig. 1. Signal Decomposition by the Discrete Wavelet 
Transform [12]
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of a specific signal, the signal is broken down into 
many lower-resolution components by repeating 
the DWT decomposition procedure with successive 
decompositions of the obtained approximation parts 
(see Fig. 2). Using wavelet multi-resolution analysis, 
the signal can be represented by a finite sum of 
components at different resolutions and hence, each 
component can be processed adaptively depending 
on the application at hand [23]. Applying WMRA to 
the inertial signal comprises two main steps. The first 
involves eliminating the high-frequency sensor noise 
using wavelet de-noising methods. The second step 
then follows by specifying a proper threshold through 
which the motion dynamics can be separated from the 
short-term and/or long-term sensor errors as well as 
other disturbances.The approximation part includes 
the long term noises, the earth gravity and rotation 
rate frequency and dynamic of vehicle motion. The 
WMRA is unable to separate long-term noise and 
the IMU readings. Thus, it must be removed by the 
appropriate integration algorithm using auxiliary 
sensors. The details part includes the undesired high-
frequency noise components of the IMU and a lot of 
noise disturbances such as vehicle vibration.

The WMRA algorithm is presented in four main 
stages to remove noise from the data:

1) Choosing anappropriate value for LOD is very 
important. The selection is based on the removal   
high-frequency noise while keeping all the useful 
information in the signal. LOD selection criteria for 
static and kinematic mode data have been further 
reviewed in [31]. To select an appropriate LOD for 
static inertial data, several decomposition levels are 
applied and the standard deviation (STD) value of the 
high frequency component can be calculated for each 

Fig. 2. Wavelet multi-resolution analysis (considering 
three levels of decomposition) [12]

obtained approximation component. The acceptable 
LOD will be the one after which the STD reaches its 
minimum value. To select an appropriate LOD for 
kinematic inertial data, in the beginning, a spectral 
analysis of the kinematic INS sensor raw data should 
be performed to ensure that the de-noising process 
does not remove any actual motion information. 
The vehicle motion dynamics is usually in the low-
frequency portion of the spectrum. Then, by analyzing 
the spectrum, the frequency range of dynamic motion 
is detected. Therefore, the appropriate LOD can be 
selected to remove only the components that have 
frequencies higher than the detected motion frequency 
range.

2) Selection of the appropriate wavelet function. 
The wavelet transform has various types of filters 
such as Daubechies, Coiflet, Biorsplines and Symlets 
which have different coefficients. To achieve optimal 
performance in de-noising and minimize RMSE 
in navigation, one needs to choose an appropriate 
wavelet function.

3) Then, in order to reject the noise, a threshold 
is set for the obtained detail coefficients at each level. 
Setting a threshold can be classified into hard and soft 
thresholding as described by Burrus et al. [22]. The 
choice of the threshold value is crucial to the quality 
of the de-noising process. Several different methods 
were offered to calculate the amount of threshold by 
Ma et al. [32], Li and Zhao [33], Veterli et al. [34] and 
Misite et al. [35].

4) Reconstruct the de-noised signal using the 
linear combination of the details and approximation 
coefficients which have been obtained at each level. 
Then, the inverse wavelet transform is applied to this 
de-noised signal.

3- INS-GPS integrated navigation system us-
ing wavelet-based de-noising method

The structure of the INS/GPS integration 
system used in this study is shown in Fig. 3. The 
state variables, Xk, of the error state Kalman filter 
consist of position error, velocity error, attitude error, 
accelerometer bias, and gyro bias. The measurement 
vector, Yk, of the Kalman filter is the position error 
between the states and the new measurement of GPS. 
Inertial sensor signal after the noise removal process 
has been used for INS.

The de-noising algorithm is implemented to 
the inertial sensor as follows. Spectral analysis 
is used to staticand kinematic data of the gyros 
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Fig. 3. IMU/GPS integrated navigation system structure

and accelerometers and the appropriate LOD of 
each signal is acquired. The wavelet transform is 
applied to calculate the coefficients and then, the 
inverse wavelet transform is used to reconstruct the 
decomposed signal. The de-noised signal is used 
to execute the INS/GPS integrated navigation. The 
process is described briefly in the flowchart shown 
in Fig. 4.

The following, firstly, the equations related to the 
position, velocity, orientation and bias in an SDINS 
are briefly reviewed. In the following, the system and 
measurement error states equations for navigation 
and procedure of the KF are described.

3- 1- The SDINS
The acceleration and angular rate measurement 

vectors of the accelerometer and gyroscope fb̃ and ωb̃
ib 

respectively, are modeled by:
(4)

(5)
where b and q are bias and measurement noise, 
respectively. The acceleration and angular rate vectors 
are corrected as follows:

(6)

(7)

Fig. 4. Flowchart of the De-noising procedure

 The accelerometer and gyro bias are modeled as 
random walks plus random constants, where:

(8)

(9)

where baC and bgC are random constants, ωba and ωbg 
are driving noise vectors assumed to be Gaussian 
white noise with zero mean and known variances, σba

2 
and σbg

2, respectively.
The system state vector, x, consists of position, 

velocity, attitude, and bias. The   vector is estimated 
by numerical integrationof the IMU measurements 
and dynamic equations of the system.

(10)
where L̂, l̂ and d̂ are latitude, longitude, depth, and 
v̂N, v̂E and v̂D are east velocity, north velocity, down 
velocity and Φ̂, θ̂ and Ψ̂ are rolled angle, pitch angle, 
azimuth and b is the accelerometer bias and b̂g is gyro 
drift. The equations related to the calculation of the 
position, velocity, orientation and bias in an SDINS 
can be expressed as follows:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
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(19)
where Vn=[vN,vE,vD] is velocity vector resolved in the 
navigation frame.The variables RN, RE, Cb

n, ωie
n, ωen

n 

and gn represent the meridian radius of curvature, the 
transverse radius of curvature, the transformation 
matrix from body to navigation axes, the angular 
rate of the earth expressed in the navigation frame, 
the angular rate of the navigation frame with respect 
to the earth-fixed frame and the gravity vector in the 
navigation frame, respectively [37].

3- 2- The system equations
The error state equation is represented as a time-

varying linear system:
(20)

For the inertial navigation system, the error state 
vector, δX, is 15×1 and consists of the position errors, 
velocity errors, attitude errors and the errors in the 
inertial sensors and is given as follow:

(21)
where δPn=[δL,δl,δd]T is the position error vector of 
the vehicle in the navigation frame, δVn=[δvN,δvE,δvD] T 
is the velocity error vector resolved in the navigation 
frame, Ψ=[δα,δβ,δγ] T is the orientation error vector, 
δba=[δbax,δbay,δbaz] and δbg=[δbgx,δbgy,δbgz] are the 
accelerometer bias errors and the gyro drifts in the 
body frame, respectively.

Where, w is the process noise due to uncertainty 
in the control inputs and is modeled as a white-noise 
vector with zero mean and a power spectral density 
Qc, and may be expressed as follows:

(22)

where wa=[wax,way,waz] noise components of 
accelerometers and wg=[wgx,wgy,wgz] noise 
components of gyroscopes and wba=[wbax,wbay,wbaz] 
and wbg=[wbgx,wbgy,wbgz] are driving noise vectors 
assumed to be Gaussian white noise with zero mean 
and known variances, σba

2 and σbg
2, respectively. The 

process noise covariance matrix, Qc, is defined as 
follows:

(23)
where σa

2 and σg
2 are the accelerator and gyroscope 

outputs variances and σba
2, σbg

2 are the variance of 
accelerator bias and gyroscope bias. The parameters 
of inertial sensors error are gained by analyzing 
PSD or Allan variance. BWINS is the inertial sensors 
bandwidth.

The equations related to the errors of the position, 
velocity, orientation, and bias can be expressed as 
follows:

(24)

(25)

(26)

(27)

(28)
In Eq. (20), F(t) is 15×15 dynamics matrix for the 

stand-alone INS system which propagates the errors 
over time and G(t) is 15×12 noise distribution matrix 
of the stand-alone INS system. Besides, State space 
equations in matrixformas follows:

(29)

The components of the dynamics matrix, Fij for 
the SDINS system given in the appendix are derived 
from the (24) to (28).

3- 3- The measurement equations
The measurement equation is expressed as 

follows:

(30)
where H is the measurement output matrix and r 
represents the measurement noise which is assumed 
to be a zero mean, Gaussian white-noise process 
with time-varying covariance matrix, R(t). The 
measurements are the linear combination of states 
perturbed by measurement noise. The measurement 
error vector, δyk giving the difference between the 
navigation solution from the SINS and auxiliary 
sensors signal, is given by:
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(31)

where Lm, lm and dm are latitude, longitude and height 
measured by the GPS, Respectively.
The measurement output matrix, H, and The 
measurement noise covariance matrix, Rk, may be 
expressed as follows:

(32)

(33)

where σL
2, σl

2 and σd
2 are the variances of the GPS’s 

measurement.

3- 4- The integration procedure
In order to formulate the Kalman filter ,  Eqs. (20) 

and (30) are required . The implementation of the 
Kalman filter requires a discrete-time state transition 
matrix, Φk|k-1, for the time interval from tk-1 to tk, and a 
discrete-time process noise covariance matrix Qk [4].

(34)
where Φk=exp(Fkdt), Qk=dt[AkGQcG

TAk
T+GQcG

T] and 
dt=tk-tk-1 is the sampling time of inertial sensors and is 
input white noise in a time interval tk-1 to tk [38].
Kalman filter algorithm consists of two main stages, 
in the prediction procedure; the system state and its 
covariance are  predicted to receive measured inertial 
data as follows:

(35)

(36)
When one or more of auxiliary sensors are 

received at the time tk, the update procedure of the 
KF is executed . In the event that none of the auxiliary 
sensors are available, the filter continues to operate 
without update using the prediction procedure. On 
receiving a new auxiliary signal Yk, the navigation 
error state δX̂k

+ and its associated covariance matrix 
P̂k

+ at time step tk are corrected. The update procedure 
of KF is given by the following equations:

(37)

(38)

(39)

(40)
where Kk is the Kalman gain which updates the weight 
between auxiliary measurements and the predicted 
states. vk is the innovation sequence. The innovation 
sequence is simply the difference between the actual 
measurements and the predicted measurements based 
on the predicted state vector. Note that, it is necessary 
for covariance matrix to be a symmetric matrix, which 
can be done by replacing P with (P+PT)/2.

4- Experimental result
In order to evaluate the performance of the 

designed system, a road test was set. An instrumented 
car was utilized to perform the experiments as shown 
in Fig. 5.

The instruments used in the test include a fiber 
optic gyro IMU and a GPS receiver installed on the 
car according to Fig. 5. The IMU consists of three 
orthogonal MEMS accelerometer (bias of several 
milli-g) and three orthogonal fiber optic gyroscope 
(gyro drift of 1.0 deg/h). To test the effect of de-
noising inertial sensor data on the system results, 
the positioning performance of INS/GPS integration 
during GPS outages is analyzed offline.

The de-noising procedure was applied to real data 
set collected using tactical-grade IMU. The trajectory 
of the test is a closed path of the Campus of Isfahan 
University of Technology shown in Fig. 6. It also 
shows the true trajectory measured by GPS for twenty 
minutes travelling time.

In this work, soft thresholding and threshold 
value obtained by Steins unbiased risk estimation 
method proposed by Donoho et al. [36] are used. The 
de-noising result shows that Daubechies 5 wavelet 
filter is the best filter type used to remove the high 
frequency noise. The appropriate LOD must be 

Fig. 5. Instrumented car for experiment
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Fig. 6. Road test trajectory in the Campus of Isfahan 
University of Technology (Google map)

selected before performing wavelet decomposition. 
Therefore, to select the appropriate LOD, a spectral 
analysis of the raw IMU data is performed. Fig. 7 
shows the spectrum of kinematic and static raw 
data of x-axis accelerometer. The spectral analysis 
clearly shows that the motion dynamics is locatedat 
low frequenciesless than about 5 Hz. The maximum 
acceptable value of LOD that can be considered is 
level four.

In this test, a number of 10 GPS outages were 
selected and the selected outage intervals are 60 
seconds. Fig. 8 shows the estimated position in 
the horizontal (e.g. east and north) direction of the 
trajectory using raw and de-noised IMU signals. 
Root mean square of the position and velocity errors 
during the selected GPS outages of both raw INS/
GPS navigation and de-noised INS/GPS navigation 
are computed and are shown in Figs. 9 and 10, 

Fig. 7. The spectrum of kinematic and static raw data of 
x-axis accelerometer

respectively.
The position errors of INS/GPS integration during 

GPS outages are decreased mostly by removing the 
high frequency portion of the inertial sensor noises. 
The results show that total improvement of about 14% 
in root mean square of the position errors and about 
12% in root mean square of the velocity errors are 
obtained using WMRA procedure. The average of the 
position errors at the end of the GPS outages obtained 
in a navigation system using de-noised IMU data 
was reduced by 18%. The results obtained from the 
practical test for travelled trajectories are summarized 
in Table 1.

It is not easy to compare the results of present 
work with those of others. Actually, comparisons 
between results require the same test conditions, 
such as, sensors used, traveled trajectory and a 
vehicle that performs the test. However, the test 

Fig. 9. RMS of position error during GPS outages

Fig. 8. Estimated positions using the raw data and 
de-noised data
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Fig. 10. RMS of velocity error during GPS outages

conditions and the results of  Nassar et al. [39] are 
presented here. They performed two tests to evaluate 
the effect of de-noising inertial sensor data on the 
positioning performance of INS/DGPS integrated 
navigation system. The first test was carried out using 
a navigation-grade IMU in Laval, Quebec while the 
second test was performed using a tactical-grade 
IMU in Calgary, Alberta during DGPS outages. 
They chose a number of 10 DGPS outages, and the 
selected outage intervals were ranged from 70 sec. to 
100 sec. and from 70 sec. to 180 sec. for the first and 

Table. 1. Performance comparison between raw data 
and denoised data in integrated navigation

RMSE of 
Position (m)

RMSE of 
Velocity (m/s)

Type of Data Raw Denoised Raw Denoised

Outage No. 1 445 384 15.92 13.53

Outage No. 2 103 122 3.55 4.72

Outage No. 3 264 230 8.91 7.46

Outage No. 4 170 76 4.64 2.41

Outage No. 5 169 142 6.06 5.01

Outage No. 6 24.5 9.7 1.32 0.63

Outage No. 7 16.5 25.65 0.76 1.11

Outage No. 8 30 20.44 1.07 1.12

Outage No. 9 123 104.62 4.21 3.69

Outage No. 10 69 104.18 2.92 3.66

Mean 141.78 121.96 4.93 4.33

second test, respectively. The third and fourth levels 
were used for the LOD of the navigation-grade and 
the tactical-grade IMU data, respectively. The results 
show that the position errors at the end of the DGPS 
outages were reduced by 13%–34%.

5- Conclusion
The high-frequency noise portion of inertial data 

causes deterioration of position accuracy of the INS/
GPS integrated navigation system, especially during 
GPS outages. To overcome such a problem, a de-
noising procedure based on WMRA technique has 
been used. Determining the exact value of LOD is 
very critical in the process of de-noising. In order to 
obtain an accurate LOD, spectral analysis of static 
and dynamic data was performed.

An experimental analysis was done using a 
tactical grade IMU installed on the car for a ring 
trajectory. The results of the road test show a 14% 
improvement in root mean square of the position 
errors during the selected GPS outages using WMRA 
de-noising technique. The average of the position 
errors at the end of the GPS outages obtained in a 
navigation system using de-noised IMU data was 
reduced by 18%.

6- Appendix
The dynamics matrices Fij of the SDINS system 

(29) are given by:
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