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ABSTRACT: Obtaining an accurate estimate of the state of health of a lithium-ion battery is important
for its efficiency and stability, but it’s hard because the aging processes are so complicated and non-linear.
Deep neural networks and long short-term memory networks are powerful tools, but their potential is
often not realized if the raw operating features fail to capture synergistic aging mechanisms. This article
proposes a novel two-stage hybrid feature engineering methodology to address this constraint. In the first
stage, the method uses a binary particle swarm optimization algorithm to look for a small set of important

predictive features. In the second stage, the parsimonious subset is enhanced with a physics-constrained  Keywords:

Electro-Thermal Interaction Feature that incorporates terminal voltage and temperature interaction Deep Learning Algorithms

stresses. The resulting feature set was subsequently utilized for the training and evaluation of both deep
State of Health (SOH)

neural networks and long short-term memory network models. Adding the electro-thermal interaction S
feature significantly improves the predictability of both models on the primary BO5 cell, raising the R? Feature Engincering

Binary Particle Swarm Optimization

(BPSO)

value from about 0.93 to over 0.99. To assess generalizability, the framework was rigorously validated
using a cross-battery approach on two additional cells (B07 and B055), where the models maintained
high performance with an average R* > 0.97. The findings indicate that domain-knowledge-intensive  Qptimization
feature engineering significantly influences performance more than the architectural decision between
deep neural networks and long short-term memory networks, facilitating highly accurate and robust

state-of-health predictions, which are crucial in advanced battery management systems.

1- Introduction

Lithium-ion batteries (LIBs) possess substantial energy
density, exhibit prolonged longevity, and demonstrate
superior performance throughout utilization. These are some
of the reasons why so many modern gadgets, such as electric
cars (EVs), mobile electronics, and renewable energy storage
plants, use them [1-3]. Batteries are becoming more and
more important to the world’s energy patterns every day, so
we need better ways to make sure they perform effectively
and stay stable. SOH is undoubtedly a key diagnostic metric
monitored by a battery management system (BMS). It shows
how much power the battery has right now compared to how
much power it was supposed to have when it was new. It
provides a reliable indicator of its degradation and aging over
time [4-6].

Electrochemical side reactions, mechanical and thermal
stress, and changes in the environment are only a few of the
many linked physicochemical factors that affect LIB aging
[7, 8]. Charging and discharging in cycles and changing
load conditions additionally speed up these processes. This
causes the battery to lose performance in a way that is usually

*Corresponding author’s email: s.kalantary@kntu.ac.ir

nonlinear and dynamic [9]. It is challenging for traditional
modeling methods to capture this type of degradation
process. Coulomb counting and electrochemical impedance
spectroscopy, while relatively simple, frequently encounter
drawbacks due to cumulative error, experimental complexity,
and the requirement for proprietary equipment [10, 11].

To overcome the previously described constraints, data-
driven strategies have surfaced as significant contenders for
the SOH prediction [12]. These approaches utilize externally
measurable values such as voltage, current, temperature, and
capacity. These measurements are also straightforward to
obtain during regular battery operation, reducing the need for
detailed knowledge of internal electrochemical behavior [13-
15]. LSTMs and DNNs are two examples of deep architectures
that have shown a lot of promise in their ability to acquire
long-term temporal patterns from battery operational data. In
addition, Models have shown a significant improvement over
standard machine learning methods for predicting Remaining
Useful Life (RUL)[16-18].

But how well any data-based model can make predictions
always depends on how well its input features represent the
data and how accurate they are. Feature selection algorithms
can use data to determine a decent set of characteristics, but
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these sets of raw features seldom take into consideration the
subtle, synergistic correlations that cause batteries to wear
out. For example, it is widely recognized that the influence of
temperature on battery degradation is more pronounced under
high voltage and current conditions. When we look at these
parameters by themselves, we can’t observe this simple non-
linear relationship [19-21].

This paper presents a novel hybrid feature engineering
technique designed to enhance the reliability and accuracy of
the SOH estimate, motivated by these observations. There are
two steps in the new process. To start, a BPSO procedure is
utilized to acquire a tiny yet useful collection of features from
the initial set of features. In the second stage, a physics-based
Electro-Thermal Interaction Feature (ETIF) is introduced to
this modest set of features. The ETIF’s purpose is to copy the
effects of both electrical and thermal stress. After that, we use
this better collection of features to train and evaluate LSTM
and DNN models. This helps us see how these engineering
features affect different deep learning paradigms.

This work offers fundamental contributions to the
assessment of LIB health. This study introduces and
analyzes an innovative two-stage feature engineering process
that combines physics-constrained feature enhancement
through ETIF with feature reduction via BPSO. Second,
systematic comparative tests demonstrate that the proposed
hybrid strategy substantially enhances the SOH prediction
capabilities of both LSTMs and DNNs models, underscoring
the paramount significance of knowledge-informed feature
design relative to model structure selection. Third, it is
suggested to execute a comprehensive feature importance
analysis to confirm the predictive efficacy of ETIF and to
promote clearer and more reliable implementations of BMS.

This paper is organized as follows: In Section 2, we present
a brief summary of the previous research on approaches for
predicting SOH. Section 3 goes into information about the
data, the proposed method, and the model structures. Section
4 demonstrates the findings of the experiments, how they
compare to each other and, the results are critically analyzed.
In Section 5, the conclusion, the main accomplishments of this
research and their engineering implications are summarized.

2- Related works

Lithium-ion batteries are common in modern technology,
powering devices from electric cars to cell phones. To ensure
they function as required, reliably and safely, it is essential to
accurately forecast their SOH. SOH is the ratio of the current
to original capacity and is time-dependent, which declines
over a duration of continuous alterations due to a number
of factors such as charge-discharge cycles, temperature, and
chemical degradation (Shen et al. [22]). It is imperative to
calculate the amount of SOH and RUL accurately due to the
so-called battery’s inherent variability in the electrochemical
process, varying operation conditions over their life cycle,
and computation time-trades towards constructing high
accuracy predictions (Zhao et al. [23]). This paper presents
an overview of the recent developments in SOH prediction
techniques and names some of the techniques that consist
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of incremental capacity analysis, multi-dimensional health
indicators, future load information use, and use of different
machine learning models.

Battery operating statistics-based feature extraction has
been the most widely used SOH estimation method. Wen et
al. [24] Develop a SOH prediction model according to an IC
curve feature and backpropagation neural networks. It has a
pertinent discussion of IC curve behavior and SOH correlation
analysis based on temperature-based mapping correlation
on a least squares basis. It further includes an online real-
time correction predicate mode based on always-current
characteristic data to provide higher accuracy across broad
aging phases. Jiaetal. [25] Also include a discussion regarding
issues with the estimation of SOH when relying on direct
capacitance measurement online. This led them to identify
indirect health indicators derived from voltage, current, and
temperature profiles during charge and discharge. They use
grey relational analysis and Gaussian Process Regression to
extract relevant [HIs that relate to SOH predictions using a
number of annual observations. Other than that, they also
illuminate the achievement of high predictive accuracy using
three IHIs and accessible SOH values to predict RUL. Yu et al.
[26] introduce novel health indicators for battery equivalent
circuit model and constant current discharge curves, such
as polarization resistance, polarization capacitance, initial
discharge resistance, and equal voltage drop discharge time.
It also prefers a multi-dimensional health indicator (HI)
strategy adoption, which, compared to the adoption of a single
HI input type mode, is extremely precise with the use of PSO
and LSTM. In addition, Peng et al. [27] present the first SOH
estimation methods through characteristic fusion and the
earth-based method through interval voltage selection. The
paper suggests a sampling time and feature correlation-based
voltage interval selection methodology that minimizes the
training data needed. It further suggests a double correlation
similarity examination employed in its initial stages for SOH
prediction, along with a feature fusing approach utilizing
entropy weights and correlation characteristics for alleviating
redundancy. It shows excellent prediction ability with
coefficients of determination greater than 0.98.

Forward and dynamic data incorporation have contributed
much, aside from static property retrieval. Qian et al. [28]
observed a limitation that may be prevalent in most data-
driven techniques, which simply rely on past data. They
suggest a new method for forecasting the SOH using
future-load information and historical information with an
attention-based multisource sequence-to-sequence model.
The model has two encoders and a decoder, and also utilizes
attention mechanisms, thereby being able to effectively cope
with global dependencies and make trustworthy long-term
SOH predictions under most load and ambient temperature
conditions, thereby being robust to different start points of
prediction as well as different lengths of input.

Machine learning algorithms and deep learning
architectures are the fundamental components of the enhanced
techniques employed in predictive analysis. Shu et al. [29]
give an extensive survey of machine learning-based SOH
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estimation. They categorize several methods, unite feature
extraction techniques appropriate for health, and compare
various machine learning approaches. Their research gives
a series of models’ benefits and limitations, accuracy, and
parameters of the algorithms. Tang et al. [30] suggest a high-
performance multivariate dimensionality-reduction method
integrated into a Bayes-optimized bi-directional long short-
term memory algorithm, specifically to be employed in the
SOH estimation and RUL prediction. They use discharge
data health indicators, collaborative dimensionality reduction
via Pearson correlation, and a Bayesian search strategy for
determining the optimal hyperparameters of bi-directional
long short-term memory, which makes it more precise
and trustworthy. Table 1 summarizes the applications of
some of the studies of feature engineering using advanced
techniques and deep learning models to predict SOH and
RUL. It indicates the methodology they employed, the model
employed, and the accuracy attained.

3- Methodology

This section talks about the new and better management
that individuals use to check the level of SOH in lithium-ion
batteries. There are five main steps to take, such as getting
and cleaning the data, figuring out how the model works,
and choosing the performance metrics. The model for the

investigation is shown in Fig. 1.

3- 1- Data Description

The data was obtained from the open-source NASA
Ames Prognostics Center of Excellence Lithium-Ion Battery
Dataset, a repository for prognostics and health management
research [39]. This benchmark data set included a number of
different ways to quantify battery degeneration. These were
recorded in tightly controlled lab tests. For cycling tests on
industrial lithium-ion batteries, the data were accumulated
very systematically and intentionally at routine intervals
until end-of-life conditions for the cells were achieved. This
comprised measurement of operational Factors such as charge
and discharge current, voltage, temperature, and capacities.
Including time-series measurement of discharging, the
dataset provides ample information regarding the dynamics
of battery ageing over time. For this research, three batteries
from the main group of datasets were initially considered:
B05, B07, and B055. As illustrated in the Fig. 2, all three
batteries exhibited a highly similar pattern of State of Health
(SOH) degradation over cycles. Given this strong similarity
in their degradation trends, and to avoid redundancy in the
analysis, the study proceeds with a focused investigation
using a single, representative cell: battery B0S. The dataset
for BOS5 consists of nine attributes: eight independent

Table 1. Summary of the different approaches for applying feature engineering and deep learning to SOH and
RUL prediction.

Study

Feature Engineering Approach

Model Used

Best Reported Error

Pepe & Ciucci (2023) [31]

Wang et al. (2023) [32]

Zhao et al. (2023) [33]

Zhang et al. (2023) [34]

Bian et al. (2025) [35]

Shu et al. (2020) [36]

Jorge et al. (2022) [37]

Jiang et al. (2022) [38]

Charge-discharge profile features,
saliency & Pearson analysis

Three-step construction &
filter/embedded feature selection

Direct, evolution, statistical
features with filtering

Multidomain fusion (time, freq.,
entropy) + CatBoost + SSA

Hierarchical IC & charge-
discharge feature stacking + PSO

Charging voltage curve-based
feature optimization

Sliding window time series
feature extraction

Convolutional autoencoder + self-
attention

LSTM, GRU with custom
loss

XGBoost, LightGBM,
Random Forest

Sparse Autoencoder +
Transformer

CatBoost optimized with
Sparrow Search

PSO-MLSt-LSTM (stacked
model)

Fixed-size LS-SVM +
Genetic Algorithm

LSTM (window-based)

Autoencoder + Self-
attention

SOH: 5.49%, EOL: -1.27%

RMSE < 0.29%, Max error
<1%

RUL error: 2.6% (100
cycles)

RMSE <0.02, R*>0.98

RMSE: 0.0035-0.0078

<2% SOH error

Long-term accurate
prediction (no %)

RMSE: 0.0048, MAPE:
0.46%
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Lithium-ion Battery SOH Prediction
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Fig. 1. Overview of the proposed methodology, highlighting the two-stage feature engineer-
ing process. It shows the crucial phases, such as getting the data and testing the final model.

Table 2. Overview of Battery Discharge Datasets Used in This Study

Dataset Name No. of Cycles Initial SOH (%) Final SOH (%) Data Type
B05 168 0.9282 0.6437 Discharge
B07 168 0.9455 0.7002 Discharge
B055 168 0.9282 0.6437 Discharge

features (terminal voltage, terminal current, temperature,
charge current, charge voltage, time, capacity, cycle) and
one dependent variable, SOH, obtained by current capacity
divided by initial capacity. Capacity is included as an
independent feature as it is a directly measured parameter that
contributes to modeling degradation dynamics, while SOH is
the computed target. SOH retains estimation as its primary
interest and subject of analysis. Descriptions of attributes
have been provided for listed data, used here, in Table 2.
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1. These sets of data typically include the primary battery
characteristics measured through controlled charge and
discharge tests, as demanded for SOH assessment. The
primary characteristics usually include:

2. terminal voltage: The voltage across the battery terminals
during operation, which reflects the electrical potential
and is key to assessing discharge/charge states.

3. terminal current: The electric current flowing through the
terminals of the battery. It will be positive (charging) or
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Fig. 2. SOH degradation over operational cycles for all batteries.

negative (discharging), giving an indication of the health

of the battery.

4. Temperature: Shows the battery’s outside or inside
temperature at regular intervals. This can have a huge
effect on how well the battery works and how long it lasts.

S.charge current: The amount of electrical current that flows
to the battery while it is charging, commonly measured in
volts.

6. charge voltage: The voltage used to charge the battery,
which affects how well it works.

Time measurement: This tells us how long it takes to collect
data, usually in seconds from the start of the experiment.

7. capacity: Battery capacity, measured in ampere-hours
(Ah), represents the amount of charge a battery can
deliver.

8. cycle: Number of discharge and charge cycles the battery
has been put through; one complete discharge and one
complete charge typically equal one complete cycle.

9. state of Health (SOH): The health of the battery, typically
given as a percentage that measures the battery’s ability to
store and deliver energy compared to when it was newly
installed. We care most about this measurement.

Prior to the construction of the model, the data had been
preprocessed to ensure it was good, accurate, and consistent
in its analysis. We started off by examining the dataset
to check for any missing values within any of the most
important features. We confirmed the dataset contained no
missing values, thus eliminating the need for imputation or
removal of rows.

Fig. 2 shows the State of Health (SOH) degradation
trends for three batteries, B05, BO7, and B055, across 168
cycles. The figure reveals a strong similarity in their aging
patterns, all exhibiting a characteristic non-linear decline

from an initial SOH above 0.90 to a final SOH below 0.70.
The degradation is not a simple straight line; it is marked
by complex, short-term recovery spikes (visible as upward
jumps) superimposed on the long-term downward trend.
This combination of a steady decline with sporadic, non-
linear recovery events highlights the dynamic nature of
battery aging. Again, we should mention that given the high
similarity in the degradation patterns of BO5, B07, and B055,
the analysis in this study is focused on a single, representative
cell, BOS, to avoid redundancy.

We applied min-max normalization to all numerical
features to facilitate comparison and improve model
convergence. Eq. (1) explains how the process changes each
feature to fit within the range [0, 1]:

X _XMin
X (D

Min

X

Nomalized — X
Max

This kind of normalization keeps the shape of the
distribution but eliminates the effect of features being in
various scales (e.g., [degrees Celsius] and temperature),
beneficial particularly in models that make use of gradients.

From Fig. 3, We can observe that Pearson correlation
coefficients between the SOH of battery B05 and different
operational parameters exhibit linear relationships that govern
battery degradation. Unsurprisingly, capacity has a perfect
positive correlation of 1.00, as SOH is directly derived from
it. Cycle is the most predictive characteristic, having a very
high negative correlation of -0.99, as predicted, reinforcing
that successful cycles are the best linear prediction of the
aging process. Charge current is moderately negatively
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Correlation of Features with SOH
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Fig. 3. Correlation coefficients between the SOH of battery B05 and different operational parameters.

correlated at -0.41, with increased charging currents being
related to increased health degradation. On the other hand, the
remaining operational parameters, i.c., charge voltage (0.18),
terminal_voltage (0.14), time (0.12), temperature (-0.14), and
terminal current (-0.13), are all weakly linearly correlated
with SOH. This implies their individual contributions are
limited, justifying the need for higher-order features capable
of modeling nonlinear dynamics and interactions among
these variables.

3-2- Binary Particle Swarm Optimization (BPSO) Feature
Selection

While feature engineering generates potentially useful
predictors, not all features contribute equally to the model’s
predictive capability. The existence of irrelevant or redundant
features may cause the curse of dimensionality, boost model
complexity, add noise, and raise overfitting risk. Therefore, a
rigorous feature selection process is essential. This research
evaluated the application of a wrapper-based feature selection
approach using the BPSO algorithm to determine the best
subset of independent variables that will give the highest
predictive accuracy at the lowest model complexity.

In feature selection, the PSO algorithm is modified to
run in a binary search space. Every particle in the swarm is
a potential feature subset. Its position, x,, is a D-dimensional
binary vector, where D is the number of original and
engineered features. A ‘1 in the j-th coordinate of the vector
means that the j-th feature is selected, and a ‘0’ means it’s not
being selected.

Particle movement here in this binary space is based
on their updated velocities, which are the probabilities of
including a feature into the optimal subset. Though the
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velocity update equation is the same as in the basic PSO, given
by Eq. (2). However, the position update is altered and the
continuous velocity value is mapped to a probability interval
[0, 1] by using a sigmoid function as defined in Eq. (3), and
then used to decide the binary value of the new position.

1.Velocity Update (same as standard PSO):

v, ¢+1)=w.v, ({)+c,. 1. (pbmij @)

)
_xl‘j‘(t))+cz' r. (pbestj (t)_'xij(t))

Where:
v,.j(t) is the velocity of particle i in dimension j at iteration

w is the inertia weight.

¢, and ¢, are the cognitive and social acceleration
coefficients, respectively.

r, and r, are random numbers uniformly distributed in [0, 1].

pbmﬁ(t) is the best position (feature subset) ever found by
particle i in dimension j up to iteration t.

gbemy(t) is the best position (feature subset) ever found by
the entire swarm in dimension j up to iteration .

x,.j(t) is the current position of particle i in dimension j at
iteration ¢.

2. Position Update (probabilistic): A sigmoid function is
applied to the new velocity to get a probability:

1

PRSE) A3)

S(v,@ +1))=1+e
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Where:

S(vl_/_(t-ﬁ-] )) is the sigmoid-transformed velocity,
representing the probability of the feature being selected.

The new position (i.e., whether to select a feature) is
then determined by comparing this probability to a random
number according to Eq. (4):

1 if rand()<S (v, (t+1))
0 Otherwise

X, +1)={ 4)

where rand () is a random number generated from a
uniform distribution in [0, 1].

The fitness function is one of the essential parts of this
wrapper algorithm, which has to reconcile two competing
requirements: maximizing model predictive accuracy and
minimizing the number of features selected. We create a
composite fitness function in Eq. (5) to direct the BPSO search:

Fitness (x )=ca. Emor(x )+ (I- @) . |Z—| (5)

Where:

x is the binary feature subset vector of a particle.

Error(x) is the Root Mean Squared Error of the Deep
Learning models when tested and trained on the feature
subset formed by x alone.

|x | is the number of features selected in the subset (i.e., the
number of ‘1’s in the vector).

D is the number of features available.

a is a weight parameter between [0, 1] to balance prediction
accuracy and feature reduction.

The value of & is increased to attach greater importance
to minimizing model error, and the value of & is decreased
to enhance the importance of choosing a more concise feature
set.

BPSO-based feature selection is a systemized and iterative
process. The algorithm begins by randomly initializing a
swarm of particles, where the binary position vector of each
particle serves as an initial candidate feature subset. In each
iteration, the algorithm calculates the fitness of each particle

(Eq. (5)). This is done by training and cross-validating the
LSTM model on the given feature subset specified by the
current position of the particle and then determining its
performance on the multi-objective fitness function.

According to this fitness value, all the particles refresh
their memory of their individual best position (p,, ), and the
global best position of the swarm (g, ) is refreshed by finding
that particle where the best fitness up to now was achieved.
These global and local best positions subsequently control
the motion of the swarm since the position and velocity of
all particles are modified based on the BPSO equations,
thereby pushing them towards better regions in the solution
space. The iteration is repeated until a stopping criterion, for
example, the maximum number of iterations predetermined
or the achieved stable global best fitness value, is reached. At
termination, the optimal feature subset is chosen as the global
best particle position, (g, ). After that, this streamlined and
minimized set of variables is used to make the final, better
SOH prediction model.

3- 3- Sensitivity Analysis of the Weighting Parameter o

A sensitivity analysis was conducted to evaluate the
impact of the fitness function’s weighting parameter, o,
which balances the importance of model accuracy against the
size of the feature subset. The parameter a was varied from
0.5 to 0.95 in increments of 0.1. The results, summarized in
Table 3, indicate a key finding: for the battery dataset under
study, the BPSO algorithm consistently identified the same
optimal subset of four features—charge current, charge
voltage, capacity, and cycle—regardless of the o value. This
consistency underscores the fundamental importance of these
particular operational parameters for estimating SOH.

While the feature subset size remained stable, the value
of a had a pronounced effect on the optimization cost,
which is heavily influenced by the model’s RMSE. As o
increased, giving greater priority to prediction accuracy,
the best cost found by the BPSO decreased monotonically.
This demonstrates that a higher o successfully guided the
optimization process towards superior model performance.
Consequently, a = 0.95 was selected for the final model as
it achieved the lowest possible error without altering the
parsimonious feature set, thereby optimally balancing the
objectives of the fitness function for this application.

Table 3. Sensitivity Analysis of the a Parameter on Feature Selection and Optimization Cost.

o Value Best Cost Number of Selected Features ~ Selected Features
0.50 1.178 4 charge current, charge voltage, capacity, cycle
0.60 1.014 4 charge current, charge voltage, capacity, cycle
0.70 0.849 4 charge current, charge voltage, capacity, cycle
0.80 0.685 4 charge current, charge voltage, capacity, cycle
0.90 0.520 4 charge current, charge voltage, capacity, cycle
0.95 0.438 4 charge current, charge voltage, capacity, cycle

107



N. Khalili et al., AUT J. Elec. Eng., 58(1) (2026) 101-120, DOI: 10.22060/eej.2025.24863.5779

Table 4. Comparison of ETIF Formulations on Model Performance (LSTM model).

Formulation R? Score RMSE

V*T 0.9909 0.0087
log (V *T) 0.91 0.012
exp (V/T) 0.92 0.014

Table 5. Grid Search Summa

ry for Optimal Hyperparameters.

Quantitative Justification

DNN LSTM
Parameter Optimal Optimal Search Space
DNN: [1-4];
Layers 3 2 LSTM: [1-3]
[16, 32, 50, 64,
Units/Neurons ~ 128/64/32 100/50 100, 128, 256,
512]
. [0.1, 0.01,
Learning Rate 0.001 0.001 0.001, 0.0001]
[0.0,0.1,0.2,
Dropout Rate 0.2 0.2 0.3,0.5]
Epochs 50 50 [20-200]
Batch Size 32 32 [16,32, 64]

DNN: 3 layers yielded a 4.2% lower RMSE than 2 layers. LSTM: 2
layers achieved a 0.3% lower RMSE than 3 layers with 35% faster
training convergence.

DNN: This architecture provided a 2.1% RMSE improvement over a
flat 128/128/128 structure. LSTM: The 100/50 configuration reduced
overfitting by 15% (train-test gap) compared to larger sizes.

LR=0.001 converged in 92% fewer steps than LR=0.1 and achieved a
5.8% lower final loss than LR=0.0001.

A dropout of 0.2 minimized the train-test RMSE gap to 0.005,
compared to 0.018 with no dropout (0.0), indicating optimal
regularization.

Selected at the point where validation loss plateaued for >20
consecutive epochs, ensuring full convergence without overfitting.

Batch size 32 provided a 12% faster training time per epoch than 16 and

a 7% lower final validation loss than 64.

3- 4- Introducing Electro-Thermal Interaction Feature (ETIF)

A new feature was engineered from the raw sensor data
to help the model learn more complex patterns of battery
degradation. Feature engineering is a key step in getting the
data ready because it lets us build higher-level representations
that can find hidden correlations and improve the efficiency
of the model.

This engineered feature, defined in Eq. (6), is motivated
by the interaction between temperature and terminal voltage.
The concept behind this feature is that the combined effect
of internal temperature and voltage stress is a key element
of how batteries age and lose their SOH. High temperatures,
especially when combined with high voltages, can speed up
the decomposition of chemicals. This combination captures
the synergistic effect of electrochemical and thermal stress
on battery degradation. This interaction component lets the
model figure out nonlinear effects that might not be clear if
voltage and temperature are considered separately.

ETIF =v x Temperature (6)

current _terminal

Incorporating this feature enriches the dataset with a
representation more directly linked to the physicochemical
processes of lithium-ion battery aging. The engineered
feature was used in conjunction with the initial readings when
training and testing the model.

The multiplicative form V' * T was chosen to capture
the synergistic acceleration of degradation under high
voltage and temperature, as supported by literature showing
multiplicative effects on SEI growth and lithium plating [40,
41]. For example, Waldmann et al.[40] demonstrated that
degradation rates increase with temperature at high SOC
(linked to voltage), while Ramadass et al. [41] highlighted
voltage-temperature interactions in capacity fade. Alternative
nonlinear combinations were tested, including logarithmic
(log (V *T)) and exponential (exp (V' / T)). The simple product
yielded the best performance, as summarized in Table 4.

3- 5- Model Architecture

To compare the performance of deep learning techniques
for SOH forecasting, two neural network architectures were
employed: a DNN and an LSTM network. Both were chosen
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for their complementary strengths: DNNs for learning static
feature representations, and LSTMs for capturing temporal
dynamics in time-series data. Both were learned from the
same input features chosen by PSO, raw sensor measurements
and the engineered feature described in Section 3.3.

3- 5- 1- Hyperparameter Selection

Hyperparameters were optimized via grid search on a
validation set (20% of training data), testing layers (1-3),
units/neurons (16-512), learning rate (0.0001-0.01), dropout
(0.1-0.5), and so on. The configuration minimizing validation
MSE was selected. Results of the grid search are summarized
in Table 5

3- 5- 2- Deep Neural Networks (DNN)

A Deep Neural Network (DNN) with a feedforward
architecture was used to learn the implicit correlation between
the sensor measurements of the battery and its SOH. Since our
dataset had static, cycle-level feature structure, a three-hidden-
layer fully connected DNN was specified to model nonlinear
relationships between features. The DNN has three hidden
layers of 128, 64, and 32 neurons respectively, each followed
by a ReLU activation function to bring in nonlinearity (See
Fig. 4). The 0.2 dropout rate was used after every hidden
layer to avoid overfitting and improve generalization. The
last layer of output is a single linear activation neuron that
outputs the SOH value as a continuous quantity.

All chosen feature variables were normalized to the [0,
1] interval via min-max scaling for numerical stability and
training convergence improvement. The network was trained
for 50 epochs with the Adam optimizer, a learning rate of
0.001, and a batch size of 32. Mean Squared Error (MSE)

hidden hidden  hidden
input layer layer 1 layer 2 layer 3

128 64 32

Fig. 4. Shows the main structure of DNN model in the
paper.

was employed as the loss function to punish any variance in
predicted vs actual SOH values. The overview of the principal
used parameters of the DNN model was determined in Table
6.

3- 5- 3- Long Short-Term Memory (LSTM)

To complement the static feature extraction of the DNN,
an LSTM network was employed to capture the temporal
nature of battery degradation. LSTM is one particular
subtype of recurrent neural network, which has specifically
been crafted to retain long-term dependencies of sequential
information and is thus particularly suited to time-series
tasks like SOH prediction. In the paper, every battery cycle is

Table 6. Summary of Model Architectures and Training Parameters.

Component DNN Configuration LSTM Configuration
Input Shape selected features + engineered T, selected features + engineered
Layer 1: 128 neurons, ReLU Layer 1: 100 units
Hidden Layers Layer 2: 64 neurons, ReLU Layer 2: 50 units
Layer 3: 32 neurons, ReLU
Dropout 0.2 after each hidden layer 0.2 after LSTM output

Dense Layer
Output Layer

Loss Function

1 neuron, linear activation

Mean Squared Error (MSE)

Optimizer Adam (learning rate = 0.01)
Batch Size 32
Epochs 50
Early Stopping Patience=10

25 neurons, ReLU activation
1 neuron, linear activation
Mean Squared Error (MSE)
Adam (learning rate = 0.01)
32

50

Patience=10
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depicted as a series of multivariate observations through time,
and every timestep includes the same fixed set of features the
DNN model employs. The LSTM learns to identify temporal
patterns that capture the health evolution of the battery, as
well as the present input state and the overall impact of
previous behavior.

The proposed LSTM model has two LSTM layers: Layer
1 with 100 units and Layer 2 with 50 units to capture temporal
relations within the sequence. To prevent overfitting,
the output of LSTM was diminished by 0.2. Dense fully
connected layer of 32 neurons with ReLU activation is used
after LSTM for the purpose of more transformation of learnt
temporal features before going ahead and producing the final
output using a one-node linear layer. The model was trained
for 50 epochs with a batch size 32 with the Adam optimizer
(learning rate = 0.001) and MSE loss. A comprehensive
comparison of the DNN and LSTM model architectural
parameters and training parameters is given in Table 6.

3- 6- Performance Metrics

To compare predictive accuracy and generalizability of
models, we used three commonly used metrics of regression
model performance: R? coefficient of determination, Mean
Absolute Error (MAE), and Root Mean Squared Error
(RMSE).

All these metrics give complementary information on
how well the models predict the SOH of lithium-ion batteries.

* Mean Absolute Error (MAE):

MAE is the mean magnitude of the deviations of forecasted
and actual SOH values, but not their direction. It is the mean
absolute difference and gives a qualitative impression of the
average error in the forecast. Lower MAE indicates better
performance.

* Root Mean Squared Error (RMSE):

RMSE is the square root of the average of squared
differences between actual and predicted values. RMSE
penalizes errors more than MAE and thus is sensitive to
outliers. RMSE is especially useful when large errors are not
desirable in the field of application. Similar to MAE, lower
values of RMSE indicate greater accuracy of the model.

* Coefficient of Determination (R?):

R? measures the accuracy of forecasted SOH values
relative to true values based on how well the model does
relative to a naive mean-based baseline. R? is a number
between 0 and 1, with closer to 1 being better, indicating
that the model accounts for more of the actual SOH value
variance. R? = 1 indicates perfect prediction.

These quantities were calculated on test data for the battery
data to give an objective evaluation of model performance
across a range of operating profiles.

3- 7- Data Partitioning
To prevent temporal data leakage, a sequential split was
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used: the first 70% of cycles for training, the next 15% for
validation, and the last 15% for testing. This respects the
time-series nature of battery degradation. Validation and test
gaps in metrics were <5%, confirming no overfitting.

4- The results and discussion

This section provides empirical results derived from a
comprehensive assessment of the purported SOH prediction
models. We first present the results of the BPSO feature
selection, which yielded a concise baseline set of predictors.
After that, a thorough comparison of the LSTM and DNN
models is done. This is done by looking at their performance
based on baseline data and adding the ETIF that was
constructed. To gain a more profound understanding of the
model’s dynamics, the ETIF response across the battery’s
entire lifespan is scrutinized, and the model’s predictive
inaccuracies are assessed at different phases of degradation.
All of these results add up to a new value for how model
structure and, more importantly, feature design based on
domain knowledge affect the outcome. This shows that
people like the suggested way to estimate SOH.

4- 1- The features that PSO picked

Feature selection is an effective technique for improving
machine learning models, particularly when data is high-
dimensional and contains irrelevant or redundant features. In
this work, a BPSO algorithm was utilized to systematically
identify the most informative input feature set for battery
State of Health (SOH) prediction. From the initial set of eight
independent variables, namely terminal voltage, terminal
current, temperature, charge current, charge voltage, time,
capacity, and cycle, the BPSO algorithm was successful in
reducing the feature set to a smaller set of four prime features,
namely charge current, charge voltage, capacity, and cycle.
This 50% dimensionality reduction simplifies the model,
reduces computational cost, and mitigates overfitting risk.

The optimization process followed a composite fitness
function to optimize two goals: maximize correlation of
selected features to SOH, and minimize the overall number
of selected features. To give a very high priority to prediction
relevance, the value of the weight parameter was fixed and
equal to a = 0.95, which assigned high priority to feature
relevance without destroying dimensionality reduction.
Besides, to prevent the choice of too small a subset of
features and hence trivial solutions, a minimum requirement
of three features per particle was enforced throughout the
whole optimization. The BPSO was initialized with the
following hyperparameters: cognitive coefficient (c,) = 1.5,
social coefficient (c,) = 1.5, inertia weight (w) = 0.8, number
of particles = 10, and number of iterations = 15. From Table
7, the best fitness score that was attained after optimization
was 0.4131, and the best particle was the best feature subset.

These chosen features emphasize the most significant
features of the charging process of the battery (charge
current, charge voltage), its historical use (cycle), and
its energy storage capacity (capacity). Their reason for
selection guarantees the success of the BPSO-based method
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Table 7. PSO-Selected Features and Optimization Configuration.

Category Item Value/Details
charge current Charging current applied to the battery
charge voltage Charging voltage applied to the battery
Selected Feature ) )
capacity Measured battery capacity (Ah)
cycle Number of completed discharge cycles
a (fitness weight) 0.95
c1 (cognitive) 1.5
Algorithm Params ¢2 (social) L5
w (inertia) 0.8
Particles 10
Iterations 15
Best fitness 0.4131
Result
Features reduced From 8 to 4
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Fig. 5. ETIF Changes and Fluctuations Over the Course of a Battery’s Life.
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in achieving the most descriptive inputs to subsequent
SOH modeling. The chosen input features and employed
hyperparameter setting are shown in Table 7.

4- 2- Analysis of ETIF Evolution, Volatility, and Correlation
with SOH Degradation Rate

In order to better comprehend the predictive capability
of the engineered ETIF feature, this subsection investigates
its performance throughout the life of the battery and
looks into its immediate relationship with the SOH rate of
degradation. This two-part analysis shows that while the
long-term trajectory of ETIF is a strong predictor of aging, its
relationship with the instantaneous SOH degradation rate is
neither straightforward nor linear. This underscores the value
of a model capable of learning from sequences.

ETIF

Mean ETIF £ STD by Lifecycle Phase
100

Early Growth Mature End-of-Life

Phase

Fig. 5 Shows that the long-term temporal history of
ETIF shows a clear trend once the battery has aged. The left
panel, “ETIF Evolution Over Cycles,” shows the raw ETIF
trace (blue) and the 50-cycle moving average (red). The
raw trace is rather unstable, but the moving average shows
a clear downward trend, especially after the first “growth”
period (around cycle 50). The right-hand panel shows this by
comparing the average ETIF value for four different periods
of the lifetime. The graph reveals that the average value of
the characteristic drops from 78.27 at the “Early” stage to
68.37 at the “End-of-Life” stage. The error bars demonstrate
that the standard deviation quickly goes up from 19.37 to
29.50, which is more critical. This means that the battery’s
thermo-electric dynamics get more unstable and less stable
as it gets older. This means that we can learn a lot about the
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Fig. 6. Correlation Analysis of ETIF and SOH Degradation Rates.

Table 8. Ablation Study Results Demonstrating ETIF’s Impact on DNN Model Performance.

Model Configuration R? RMSE RMSE Increase
With ETIF 0.99 0.0087 Baseline
Without ETIF 0.901 0.0143 +64.2%

battery’s health by looking at the magnitude and stability of
the ETIF function.

But the relationship between instantaneous rates of
change in ETIF and SOH is not one-to-one. Fig. 6. looks
into this relationship. The left plot shows the smoothed
rates of degradation, which show how volatile the ETIF rate
is compared to the very steady SOH rate every cycle. The
scatter figure on the right tests the linear relationship between
these two rates directly. The analysis yields a Pearson
correlation coefficient (r) of just 0.0535, indicating the
absence of a straight linear relationship between the cycle-
to-cycle fluctuation in ETIF and the equivalent change in
SOH. It is a striking result: it shows that ETIF’s explanatory
power does not come from a simple, direct-rate relationship.
Instead, its usefulness derives from being able to match the
complex, long-term patterns that a more advanced model
like an LSTM can learn. The model uses not only the rate
at the current moment, but also the entire history of ETIF
magnitude, trend, and volatility to predict the overall decline
in SOH. The observation that ETIF degradation at high rates
(>=90th percentile) in 17 individual cycles also supports the
notion that its impact can be simulated by short, extreme
events rather than smooth, continuous correlation, makes
a stronger argument for a model capable of capturing such
complex, non-linear connections.
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4- 3- Quantitative  Validation of ETIF’s Predictive
Contribution

The preliminary analysis in Fig. 6 indicated a low
Pearson correlation coefficient (r = 0.0535) between the
ETIF value and the instantancous SOH degradation rate.
This is an expected finding, as the Pearson coefficient only
measures linear correlation. The ETIF feature is designed
to represent cumulative electro-thermal interaction stress,
which influences SOH through nonlinear, state-dependent
degradation mechanisms rather than a direct proportional
relationship. To move beyond correlation and quantitatively
establish ETIF’s causal contribution to model performance,

one rigorous test is conducted: an ablation study.

4- 3- 1- Ablation Study

An ablation study is performed by training and evaluating
the optimal DNN model with and without the ETIF feature.
All other hyperparameters and features remained identical.
The results, summarized in Table 8, demonstrate a dramatic
degradation in model performance when ETIF is excluded.
The RMSE increased by 64.2%, and the R? score fell
substantially. This confirms that the ETIF feature is not merely
supplementary but is a critical component for achieving high-
fidelity SOH estimation, providing direct evidence of its
causal role in boosting predictive accuracy.



N. Khalili et al., AUT J. Elec. Eng., 58(1) (2026) 101-120, DOI: 10.22060/e¢j.2025.24863.5779

Table 9. Final Model Performance Comparison on Hold-Out Test Data.

Model(s) MAE RMSE R2 Score
Istm_4 (PSO Features) 0.0183 0.0231 0.9359
Istm_5(PSO +Eng. Feature) 0.0066 0.0087 0.9909
dnn_4(PSO Features) 0.0163 0.0229 0.9370
dnn_5(PSO +Eng. Feature) 0.0061 0.0075 0.9932
Linear Regression 0.058 0.043 0.9130
KNN Regressor 0.061 0.054 0.8901
ElasticNet 0.057 0.071 0.602

4- 4- Comparative Model Performance on Test Data

The predictive performance of all four models—LSTM
with 4 features (Istm_4), LSTM with 5 features including
ETIF (Istm_5), DNN with 4 features (dnn_4), and DNN with
5 features including ETIF (dnn_5)—was evaluated on the
same held-out test set. Table 9. records their MAE, RMSE,
and R? scores. The baseline models, Istm 4 and dnn 4,
performed similarly well: MAEs of 0.0183 and 0.0163,
RMSESs of 0.0231 and 0.0229, and R? values of 0.9359 and
0.9370, respectively. This illustrates that LSTM and DNN
architectures are just as good when limited to the four simple
features. The DNN showed a slightly lower MAE than the
LSTM, though their overall scores were comparable.

Incorporating  ETIF  substantially improved the
performance of both architectures. The MAE of model
Istm_5 decreases by 64 % (0.0183 to 0.0066), its RMSE by
62 % (0.0231 to 0.0087), and its R* from 0.9359 to 0.9909.
Similarly, dnn_5’s MAE is 0.0061 (down by 63 %), RMSE is
0.0075 (down by 67 %), and R* is 0.9932. These significant
improvements demonstrate that ETIF captures crucial
nonlinear degradation dynamics arising from the combined
voltage and temperature stress, which are not apparent in
the raw features In summary, ETIF enables both sequential
(LSTM) and static (DNN) learners to become highly accurate
SOH estimators (see Table 9).

The comparison reveals two key insights. First, when
using raw features, the structure of the model (LSTM vs.
DNN) doesn’t matter very much. However, predictive
performance improves dramatically with effective feature
engineering. Second, the very high-end performance of
Istm 5 and dnn_5 (MAE in 0.0005, RMSE in 0.0012, R? both
~0.99) shows that after enough interaction information is
input after the major interaction, even a plain feedforward
network can compete with the recurrent design. This shows
the value of domain-knowledge-guided feature design in
battery health prediction.

The loss curves (Fig. 7) for all model configurations show
a rapid and monotonic decrease in loss, converging smoothly
and stabilizing after approximately 30-40 epochs. The close

alignment of the curves across all models indicates effective
generalization and a clear absence of overfitting, validating
the chosen regularization strategies, including the dropout
rate of 0.2. The implementation of early stopping with a
patience of 10 epochs confirmed that no further improvement
was possible after convergence. Furthermore, the models
utilizing the five-feature set (ETIF-5), namely LSTM-5 and
DNN-5, consistently achieved a lower final loss than their
four-feature counterparts (LSTM-4, DNN-4), providing a
visual confirmation of the performance gain attributable to
the engineered ETIF feature.

4- 5- Cross-Battery Validation

To assess generalizability, the framework was validated
on B07 and B055 datasets using cross-battery testing (train
on BO0S5, test on B07/B055) with 3-fold cross-validation.
The ETIF-augmented models achieved average R? > 0.97,
with minor drops due to slight profile variations, confirming
robustness (Table 10).

4- 6- Analysis of SOH Prediction Errors Over Battery
Lifecycle

The temporal evolution of the prediction error provides
valuable insights into model performance at different
degradation stages. As shown in Fg. 8, all models achieved
high accuracy (MAE < 0.01) during the initial cycles (0-40),
where SOH degradation follows a nearly linear trajectory.
There is considerable performance divergence, however, in
mid-life (cycles 40-120) as the nonlinear recovery events and
increased aging actually start to happen. The model DNN
without ETIF experienced increasing error accumulation
after cycle 60 with maximum deviations of 0.038 SOH units
in recovery transient (e.g., cycle 95). Adding ETIF made
DNN respond significantly better to nonlinear effects, cutting
mid-life errors by 42%. But it still took too long to respond
to recovery events.

The LSTM architecture showed that the degradation
path could be able to handle time better. Baseline LSTM
(4 features) frequently stayed accurate during progressive
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Fig. 7. loss (MSE) curves for all developed models (DNN and LSTM) across 50 epochs, demonstrating
stable convergence without overfitting.

Table 10. Cross-Battery Performance (Average Across Folds).

Model B07 R? B07 RMSE B055 R? B055 RMSE
Istm_5 0.981 0.010 0.979 0.011
dnn_5 0.985 0.009 0.982 0.010

Table 11. Evolution of MAE Across Battery Degradation Phases for Model Configurations.

Lifecycle Stage DNN (4F) DNN (4F+ETIF) LSTM (4F) LSTM (4F+ETIF)
Early (0-40) 0.0082 0.0065 (-21%) 0.0059 0.0046 (-22%)
Mid (40-120) 0.0197 0.0114 (-42%) 0.0101 0.0063 (-37%)

Late (120-168) 0.0246 0.0219 (-11%) 0.0163 0.0117 (-28%)

degradation phases, but it had short latencies (around 3
cycles) when it came to discovering unexpected recovery
periods. ETIF-augmented LSTM maintained a high level
of accuracy across all life stages, reducing the maximum
error at critical recovery points by 62% in comparison to
standard LSTM. It is especially important that this model
works so well in late life (cycles 120—168) since it shows how
convoluted the aging process can be and how it can cause
multiple types of degeneration to develop at the same time.
With a lot of volatility, the combination of LSTM and ETIF
minimized late-stage mistakes to fewer than 0.015 units of
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SOH. This worked past the electrochemical “memory effect,”
which momentarily reset the rates of degradation during
restoration events.

Error clustering analysis (Table 11) assigns size to these
observations, indicating ETIF’s varying impact across
lifecycle stages. The engineered feature provided the most
advantage during mid-life, when thermal-electrochemical
interactions govern degradation, resulting in a 37% reduction
in MAE for LSTM, compared to a 22% improvement in early
cycles. Particularly, the DNN lacked strong ability to tap into
ETIF during late-life decay (only 11% reduction), whereas
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Fig. 8. Comparative Analysis of SOH Prediction Models.

LSTM+ETIF retained 28% error decrease, illustrating the
superior ability of RNN architectures to integrate interaction
features within a temporal context. These results support
the fact that coupling effects due to temperature and
voltage become ever more vital as batteries get older, where
engineered features and temporal modeling are essential to
properly estimate health.

4- 7- Discussion

The empirical findings of this study provide strong
evidence that a data-driven method in combination with
domain-knowledge-assisted feature engineering can make
very accurate State of Health (SOH) predictions of lithium-
ion batteries. In this section, the key findings are discussed
and contextualized within the existing body of research.
The limits of the current research are also highlighted, and
suggestions for further research are made.

The most noteworthy finding is the significant impact of
the engineered ETIF feature. In addition to this one feature,
which captures the multiplicative interaction between
terminal voltage and temperature, significantly enhanced
both DNN and LSTM network performance, bringing down
the RMSE by more than 60% for both models (Table 9).
This result strongly supports our main hypothesis: the non-
linear, synergistic stress from high temperature and high
voltage happening at the same time is a major driver of
battery degradation that raw sensor data alone doesn’t do a
good job of explaining. By actively providing the models
with this tactile interaction, their learning process was made
considerably easier, leading to a more accurate mapping of
the battery’s health state.

The performance comparison between the DNN and
LSTM after incorporating ETIF yielded a surprising insight.

The LSTM somewhat grabbed the lead with the basic feature
set, but the simpler feedforward DNN (dnn_5) performed
on par with, and even slightly better than, the more complex
recurrent LSTM (Istm_5). This suggests that for this SOH
prediction problem, capturing the underlying physics of
degradation was more critical than retaining long-term
temporal context from the raw data. Once ETIF abstracted
this critical interaction, the architectural advantage of the
LSTM was diminished. This is a significant theme: careful
feature engineering can be more powerful than selecting an
even more advanced model architecture.

In addition, insight into ETIF’s behavior comes through
examination. The negligibly significant linear correlation
between instantaneous SOH degradation rates and ETIF
(r=0.0535, Fig. 5) at first glance is counterintuitive. What it
is actually pointing out is that SOH is a cumulative measure
of damage, not instantaneous change. The models are not
identifying a linear, direct rate relationship. Rather, they are
capturing the long-term evolution of the ETIF signal—its
slow reduction of magnitude and growing volatility with
battery age (Fig. 6). These are exactly the kinds of long-
term path-dependent behaviors that deep learning models
can discover, which again goes some way to explaining why
the feature performs so well in such models. The lifecycle
error analysis in Table 11 then further specifically pinpoints
this finding, indicating that both models did take advantage
of ETIF but that the LSTM architecture was especially able
to use the temporal context of the feature to keep accuracy
high throughout the tricky late-life degradation phase while
exhibiting a better integration of temporal data and interaction
effects.

These results affirm and augment the existing body of
research. While numerous works have already established
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the significance of feature extraction (e.g., Jia et al., 2020;
Peng et al.,, 2024), our research suggests and verifies a
certain, physically-informed interaction feature compared
to statistical or algorithmically-derived ones in isolation. It
provides a fair counter to the general admiration for the in-
built supremacy of LSTMs over time-series, proposing that
their strength lies in being context-dependent and can be
overcome by dominant, domain-knowing features.

4- 8- Limitations and Future Work

Despite its contributions, this work has some limitations.
For one, only a single type of battery (B05) from the NASA
database was tested, and which was aged within laboratory-
controlled settings. The generalizability of the ETIF feature’s
performance enhancement to other battery chemistries, cell
designs, and, crucially, to real-world usage profiles (e.g., in
electric vehicles) remains to be validated. Second, ETIF is
a first-order approximation of a complex electrochemical
process. More advanced physics-informed aspects could be
even better.

Promising future directions, based on the findings and
limitations, include:

1. Multi-Battery & Multi-Chemistry Validation: Validate the
ETIF-upgraded framework on larger, more diverse public
and proprietary data across various LIB kinds and aging
conditions.

2. Optimization and Embedded Implementation: Create low-
latency variations of the LSTM+ETIF model suitable for
efficient operation in BMS deployment on embedded
hardware. Techniques such as quantization, pruning, or
surrogate modeling could be explored.

3. Additional interaction types: Investigate other physically
sourced interaction characteristics, such as voltage,
temperature, or current-based stress proxies. Investigate
the automatic identification of feature relationships using
methods like Symbolic Regression or Deep Feature
Synthesis.

4. Physics Enrichment: Investigate hybrid methodologies
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that integrate the data-driven components of LSTM+ETIF
with advanced electrochemical or thermal models to
enhance their interpretability and reliability.

5. Prognostics Extension: Use the very accurate SOH
predictions as inputs for strong models that predict RUL.

5- Conclusion

This work successfully developed and validated a
deep learning framework for precise SOH estimation of
lithium-ion batteries, highlighting the critical importance of
interaction features. We proposed the new variable named
ETIF, a straightforward yet robust construct that encodes
correlated stress of terminal voltage and temperature. The
findings unequivocally demonstrate that incorporating this
physically-motivated feature significantly improves the
predictability of both DNN and LSTM models, achieving an
R? value well in excess of 0.99 for the primary BO5 battery
cell. Crucially, the framework’s robustness was demonstrated
through cross-battery validation, where models trained on
B05 maintained high accuracy (R? > 0.97) when predicting
the SOH of two distinct cells, BO7 and B055, underscoring its
generalizability across cells with similar cycling conditions.
This research demonstrates that intelligent, domain-informed
feature engineering can be as impactful as, if not more than,
the choice of an advanced neural network architecture. By
explicitly encoding a key physical degradation mechanism,
we enabled a simpler feedforward network to achieve state-
of-the-art performance. The LSTM model’s superior ability
to leverage the ETIF feature during later battery life phases
further underscores the utility of combining interaction
features with temporally-aware models. This work helps to
make battery management systems safer, more dependable,
and more efficient by making it easier to understand and
more accurate to anticipate SOH. While promising, the
generalizability of ETIF’s effectiveness should be further
validated on batteries with different chemistries and usage
profiles in future work.
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Nomenclature
The following symbols and abbreviations are used throughout this article for clarity and consistency.

Electric Cars

Electro-Thermal Interaction Feature

Error
Fitness
Ehest

1

Lithium-ion batteries

Long Short-Term Memory

MAE

MSE

Phest

ri

r2

rand
Remaining Useful Life
RMSE

R?

S

State of Health
t

~

=T =N <

x
X

X max
X min
capacity

charge_current

Abbreviations
Binary Particle Swarm Optimization BPSO
Battery Management System BMS
i Cognitive acceleration coefficient, dimensionless
1) Social acceleration coefficient, dimensionless
D Total number of features, dimensionless
Deep Neural Networks DNNs
e Base of natural logarithm, dimensionless

EVs

ETIF, V-°C

Prediction error (typically RMSE), dimensionless
Fitness function value, dimensionless

Global best position vector, dimensionless
Current, A

LIBs

LST™M

Mean Absolute Error, dimensionless

Mean Squared Error, dimensionless

Personal best position vector, dimensionless
Random number between 0 and 1, dimensionless
Random number between 0 and 1, dimensionless
Random number between 0 and 1, dimensionless
RUL

Root Mean Squared Error, dimensionless
Coefficient of determination, dimensionless
Sigmoid function value, dimensionless

SOH

Iteration number or time, dimensionless or s
Temperature, °C

Particle velocity, dimensionless

Voltage, V

Inertia weight, dimensionless

Particle position vector (binary), dimensionless
Feature value varies by feature (e.g., V, A, °C)
The maximum feature value, varies by feature
Minimum feature value, varies by feature
Battery capacity, Ah

Charging current, A
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charge voltage
cycle
terminal_current

terminal_voltage
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Charging voltage, V
Number of discharge cycles, dimensionless
Terminal current, A

Terminal voltage, V

time Time measurement, S
Greek symbols
o Trade-off parameter in fitness function, dimensionless
Subscript
best Best (personal or global)
i Particle index
J Feature or dimension index
max Maximum
min Minimum
Superscript
() Current iteration
(t+1) Next iteration
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