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ABSTRACT: Obtaining an accurate estimate of the state of health of a lithium-ion battery is important 
for its efficiency and stability, but it’s hard because the aging processes are so complicated and non-linear. 
Deep neural networks and long short-term memory networks are powerful tools, but their potential is 
often not realized if the raw operating features fail to capture synergistic aging mechanisms. This article 
proposes a novel two-stage hybrid feature engineering methodology to address this constraint. In the first 
stage, the method uses a binary particle swarm optimization algorithm to look for a small set of important 
predictive features. In the second stage, the parsimonious subset is enhanced with a physics-constrained 
Electro-Thermal Interaction Feature that incorporates terminal voltage and temperature interaction 
stresses. The resulting feature set was subsequently utilized for the training and evaluation of both deep 
neural networks and long short-term memory network models. Adding the electro-thermal interaction 
feature significantly improves the predictability of both models on the primary B05 cell, raising the R² 
value from about 0.93 to over 0.99. To assess generalizability, the framework was rigorously validated 
using a cross-battery approach on two additional cells (B07 and B055), where the models maintained 
high performance with an average R² > 0.97. The findings indicate that domain-knowledge-intensive 
feature engineering significantly influences performance more than the architectural decision between 
deep neural networks and long short-term memory networks, facilitating highly accurate and robust 
state-of-health predictions, which are crucial in advanced battery management systems.

Review History:

Received: Oct. 06, 2025
Revised: Nov. 20, 2025
Accepted: Dec. 06, 2025
Available Online: Jan. 10, 2026

Keywords:

Deep Learning Algorithms

State of Health (SOH)

Feature Engineering

Binary Particle Swarm Optimization 

(BPSO)

Optimization

101

1- Introduction
Lithium-ion batteries (LIBs) possess substantial energy 

density, exhibit prolonged longevity, and demonstrate 
superior performance throughout utilization. These are some 
of the reasons why so many modern gadgets, such as electric 
cars (EVs), mobile electronics, and renewable energy storage 
plants, use them [1-3]. Batteries are becoming more and 
more important to the world’s energy patterns every day, so 
we need better ways to make sure they perform effectively 
and stay stable. SOH is undoubtedly a key diagnostic metric 
monitored by a battery management system (BMS). It shows 
how much power the battery has right now compared to how 
much power it was supposed to have when it was new. It 
provides a reliable indicator of its degradation and aging over 
time [4-6].

Electrochemical side reactions, mechanical and thermal 
stress, and changes in the environment are only a few of the 
many linked physicochemical factors that affect LIB aging 
[7, 8]. Charging and discharging in cycles and changing 
load conditions additionally speed up these processes. This 
causes the battery to lose performance in a way that is usually 

nonlinear and dynamic [9]. It is challenging for traditional 
modeling methods to capture this type of degradation 
process. Coulomb counting and electrochemical impedance 
spectroscopy, while relatively simple, frequently encounter 
drawbacks due to cumulative error, experimental complexity, 
and the requirement for proprietary equipment [10, 11].

To overcome the previously described constraints, data-
driven strategies have surfaced as significant contenders for 
the SOH prediction [12]. These approaches utilize externally 
measurable values such as voltage, current, temperature, and 
capacity. These measurements are also straightforward to 
obtain during regular battery operation, reducing the need for 
detailed knowledge of internal electrochemical behavior [13-
15]. LSTMs and DNNs are two examples of deep architectures 
that have shown a lot of promise in their ability to acquire 
long-term temporal patterns from battery operational data. In 
addition, Models have shown a significant improvement over 
standard machine learning methods for predicting Remaining 
Useful Life (RUL)[16-18].

But how well any data-based model can make predictions 
always depends on how well its input features represent the 
data and how accurate they are.   Feature selection algorithms 
can use data to determine a decent set of characteristics, but *Corresponding author’s email: s.kalantary@kntu.ac.ir
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these sets of raw features seldom take into consideration the 
subtle, synergistic correlations that cause batteries to wear 
out. For example, it is widely recognized that the influence of 
temperature on battery degradation is more pronounced under 
high voltage and current conditions. When we look at these 
parameters by themselves, we can’t observe this simple non-
linear relationship [19-21].

This paper presents a novel hybrid feature engineering 
technique designed to enhance the reliability and accuracy of 
the SOH estimate, motivated by these observations. There are 
two steps in the new process.   To start, a BPSO procedure is 
utilized to acquire a tiny yet useful collection of features from 
the initial set of features. In the second stage, a physics-based 
Electro-Thermal Interaction Feature (ETIF) is introduced to 
this modest set of features.  The ETIF’s purpose is to copy the 
effects of both electrical and thermal stress. After that, we use 
this better collection of features to train and evaluate LSTM 
and DNN models. This helps us see how these engineering 
features affect different deep learning paradigms.

This work offers fundamental contributions to the 
assessment of LIB health. This study introduces and 
analyzes an innovative two-stage feature engineering process 
that combines physics-constrained feature enhancement 
through ETIF with feature reduction via BPSO. Second, 
systematic comparative tests demonstrate that the proposed 
hybrid strategy substantially enhances the SOH prediction 
capabilities of both LSTMs and DNNs models, underscoring 
the paramount significance of knowledge-informed feature 
design relative to model structure selection. Third, it is 
suggested to execute a comprehensive feature importance 
analysis to confirm the predictive efficacy of ETIF and to 
promote clearer and more reliable implementations of BMS.

This paper is organized as follows: In Section 2, we present 
a brief summary of the previous research on approaches for 
predicting SOH. Section 3 goes into information about the 
data, the proposed method, and the model structures. Section 
4 demonstrates the findings of the experiments, how they 
compare to each other and, the results are critically analyzed. 
In Section 5, the conclusion, the main accomplishments of this 
research and their engineering implications are summarized.

2- Related works
Lithium-ion batteries are common in modern technology, 

powering devices from electric cars to cell phones. To ensure 
they function as required, reliably and safely, it is essential to 
accurately forecast their SOH. SOH is the ratio of the current 
to original capacity and is time-dependent, which declines 
over a duration of continuous alterations due to a number 
of factors such as charge-discharge cycles, temperature, and 
chemical degradation (Shen et al. [22]). It is imperative to 
calculate the amount of SOH and RUL accurately due to the 
so-called battery’s inherent variability in the electrochemical 
process, varying operation conditions over their life cycle, 
and computation time-trades towards constructing high 
accuracy predictions (Zhao et al. [23]). This paper presents 
an overview of the recent developments in SOH prediction 
techniques and names some of the techniques that consist 

of incremental capacity analysis, multi-dimensional health 
indicators, future load information use, and use of different 
machine learning models. 

Battery operating statistics-based feature extraction has 
been the most widely used SOH estimation method. Wen et 
al. [24] Develop a SOH prediction model according to an IC 
curve feature and backpropagation neural networks. It has a 
pertinent discussion of IC curve behavior and SOH correlation 
analysis based on temperature-based mapping correlation 
on a least squares basis. It further includes an online real-
time correction predicate mode based on always-current 
characteristic data to provide higher accuracy across broad 
aging phases. Jia et al. [25] Also include a discussion regarding 
issues with the estimation of SOH when relying on direct 
capacitance measurement online. This led them to identify 
indirect health indicators derived from voltage, current, and 
temperature profiles during charge and discharge. They use 
grey relational analysis and Gaussian Process Regression to 
extract relevant IHIs that relate to SOH predictions using a 
number of annual observations. Other than that, they also 
illuminate the achievement of high predictive accuracy using 
three IHIs and accessible SOH values to predict RUL. Yu et al. 
[26] introduce novel health indicators for battery equivalent 
circuit model and constant current discharge curves, such 
as polarization resistance, polarization capacitance, initial 
discharge resistance, and equal voltage drop discharge time. 
It also prefers a multi-dimensional health indicator (HI) 
strategy adoption, which, compared to the adoption of a single 
HI input type mode, is extremely precise with the use of PSO 
and LSTM. In addition, Peng et al. [27] present the first SOH 
estimation methods through characteristic fusion and the 
earth-based method through interval voltage selection. The 
paper suggests a sampling time and feature correlation-based 
voltage interval selection methodology that minimizes the 
training data needed. It further suggests a double correlation 
similarity examination employed in its initial stages for SOH 
prediction, along with a feature fusing approach utilizing 
entropy weights and correlation characteristics for alleviating 
redundancy. It shows excellent prediction ability with 
coefficients of determination greater than 0.98.

Forward and dynamic data incorporation have contributed 
much, aside from static property retrieval. Qian et al. [28] 
observed a limitation that may be prevalent in most data-
driven techniques, which simply rely on past data. They 
suggest a new method for forecasting the SOH using 
future-load information and historical information with an 
attention-based multisource sequence-to-sequence model. 
The model has two encoders and a decoder, and also utilizes 
attention mechanisms, thereby being able to effectively cope 
with global dependencies and make trustworthy long-term 
SOH predictions under most load and ambient temperature 
conditions, thereby being robust to different start points of 
prediction as well as different lengths of input.

Machine learning algorithms and deep learning 
architectures are the fundamental components of the enhanced 
techniques employed in predictive analysis.  Shu et al. [29] 
give an extensive survey of machine learning-based SOH 
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estimation. They categorize several methods, unite feature 
extraction techniques appropriate for health, and compare 
various machine learning approaches. Their research gives 
a series of models’ benefits and limitations, accuracy, and 
parameters of the algorithms. Tang et al. [30] suggest a high-
performance multivariate dimensionality-reduction method 
integrated into a Bayes-optimized bi-directional long short-
term memory algorithm, specifically to be employed in the 
SOH estimation and RUL prediction. They use discharge 
data health indicators, collaborative dimensionality reduction 
via Pearson correlation, and a Bayesian search strategy for 
determining the optimal hyperparameters of bi-directional 
long short-term memory, which makes it more precise 
and trustworthy. Table 1 summarizes the applications of 
some of the studies of feature engineering using advanced 
techniques and deep learning models to predict SOH and 
RUL. It indicates the methodology they employed, the model 
employed, and the accuracy attained.

3- Methodology
This section talks about the new and better management 

that individuals use to check the level of SOH in lithium-ion 
batteries. There are five main steps to take, such as getting 
and cleaning the data, figuring out how the model works, 
and choosing the performance metrics. The model for the 

investigation is shown in Fig. 1. 

3- 1- Data Description
The data was obtained from the open-source NASA 

Ames Prognostics Center of Excellence Lithium-Ion Battery 
Dataset, a repository for prognostics and health management 
research [39]. This benchmark data set included a number of 
different ways to quantify battery degeneration. These were 
recorded in tightly controlled lab tests. For cycling tests on 
industrial lithium-ion batteries, the data were accumulated 
very systematically and intentionally at routine intervals 
until end-of-life conditions for the cells were achieved. This 
comprised measurement of operational Factors such as charge 
and discharge current, voltage, temperature, and capacities. 
Including time-series measurement of discharging, the 
dataset provides ample information regarding the dynamics 
of battery ageing over time. For this research, three batteries 
from the main group of datasets were initially considered: 
B05, B07, and B055. As illustrated in the Fig. 2, all three 
batteries exhibited a highly similar pattern of State of Health 
(SOH) degradation over cycles. Given this strong similarity 
in their degradation trends, and to avoid redundancy in the 
analysis, the study proceeds with a focused investigation 
using a single, representative cell: battery B05. The dataset 
for B05 consists of nine attributes: eight independent 

Table 1. Summary of the different approaches for applying feature engineering and deep learning to SOH and 
RUL prediction.

Table 1.Summary of the different approaches for applying feature engineering and deep learning to SOH and RUL 
prediction. 

Study Feature Engineering Approach Model Used Best Reported Error 

Pepe & Ciucci (2023) [31] Charge-discharge profile features, 
saliency & Pearson analysis 

LSTM, GRU with custom 
loss SOH: 5.49%, EOL: -1.27% 

Wang et al. (2023) [32] Three-step construction & 
filter/embedded feature selection 

XGBoost, LightGBM, 
Random Forest 

RMSE < 0.29%, Max error 
< 1% 

Zhao et al. (2023) [33] Direct, evolution, statistical 
features with filtering 

Sparse Autoencoder + 
Transformer 

RUL error: 2.6% (100 
cycles) 

Zhang et al. (2023) [34] Multidomain fusion (time, freq., 
entropy) + CatBoost + SSA 

CatBoost optimized with 
Sparrow Search RMSE < 0.02, R² ≥ 0.98 

Bian et al. (2025) [35] Hierarchical IC & charge-
discharge feature stacking + PSO 

PSO-MLSt-LSTM (stacked 
model) RMSE: 0.0035–0.0078 

Shu et al. (2020) [36] Charging voltage curve-based 
feature optimization 

Fixed-size LS-SVM + 
Genetic Algorithm <2% SOH error 

Jorge et al. (2022) [37] Sliding window time series 
feature extraction LSTM (window-based) Long-term accurate 

prediction (no %) 

Jiang et al. (2022) [38] Convolutional autoencoder + self-
attention 

Autoencoder + Self-
attention 

RMSE: 0.0048, MAPE: 
0.46% 
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features (terminal_voltage, terminal_current, temperature, 
charge_current, charge_voltage, time, capacity, cycle) and 
one dependent variable, SOH, obtained by current capacity 
divided by initial capacity. Capacity is included as an 
independent feature as it is a directly measured parameter that 
contributes to modeling degradation dynamics, while SOH is 
the computed target. SOH retains estimation as its primary 
interest and subject of analysis. Descriptions of attributes 
have been provided for listed data, used here, in Table 2.

1. These sets of data typically include the primary battery 
characteristics measured through controlled charge and 
discharge tests, as demanded for SOH assessment. The 
primary characteristics usually include:

2. terminal_voltage: The voltage across the battery terminals 
during operation, which reflects the electrical potential 
and is key to assessing discharge/charge states.

3. terminal_current: The electric current flowing through the 
terminals of the battery. It will be positive (charging) or 

 

Fig. 1 Overview of the proposed methodology, highlighting the two-stage feature engineering process. It shows the 
crucial phases, such as getting the data and testing the final model. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Overview of the proposed methodology, highlighting the two-stage feature engineer-
ing process. It shows the crucial phases, such as getting the data and testing the final model.

Table 2. Overview of Battery Discharge Datasets Used in This StudyTable 2. Overview of Battery Discharge Datasets Used in This Study 

Dataset Name No. of Cycles Initial SOH (%) Final SOH (%) Data Type 

B05 168 0.9282 0.6437 Discharge 

B07 168 0.9455 0.7002 Discharge 

B055 168 0.9282 0.6437 Discharge 
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negative (discharging), giving an indication of the health 
of the battery.

4. Temperature: Shows the battery’s outside or inside 
temperature at regular intervals. This can have a huge 
effect on how well the battery works and how long it lasts. 

5. charge_current: The amount of electrical current that flows 
to the battery while it is charging, commonly measured in 
volts. 

6. charge_voltage: The voltage used to charge the battery, 
which affects how well it works.

Time measurement: This tells us how long it takes to collect 
data, usually in seconds from the start of the experiment.

7. capacity: Battery capacity, measured in ampere-hours 
(Ah), represents the amount of charge a battery can 
deliver.

8. cycle: Number of discharge and charge cycles the battery 
has been put through; one complete discharge and one 
complete charge typically equal one complete cycle.

9. state of Health (SOH): The health of the battery, typically 
given as a percentage that measures the battery’s ability to 
store and deliver energy compared to when it was newly 
installed. We care most about this measurement.
Prior to the construction of the model, the data had been 

preprocessed to ensure it was good, accurate, and consistent 
in its analysis. We started off by examining the dataset 
to check for any missing values within any of the most 
important features. We confirmed the dataset contained no 
missing values, thus eliminating the need for imputation or 
removal of rows.

Fig. 2 shows the State of Health (SOH) degradation 
trends for three batteries, B05, B07, and B055, across 168 
cycles. The figure reveals a strong similarity in their aging 
patterns, all exhibiting a characteristic non-linear decline 

from an initial SOH above 0.90 to a final SOH below 0.70. 
The degradation is not a simple straight line; it is marked 
by complex, short-term recovery spikes (visible as upward 
jumps) superimposed on the long-term downward trend. 
This combination of a steady decline with sporadic, non-
linear recovery events highlights the dynamic nature of 
battery aging. Again, we should mention that given the high 
similarity in the degradation patterns of B05, B07, and B055, 
the analysis in this study is focused on a single, representative 
cell, B05, to avoid redundancy.

We applied min-max normalization to all numerical 
features to facilitate comparison and improve model 
convergence.  Eq. (1) explains how the process changes each 
feature to fit within the range [0, 1]:
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This kind of normalization keeps the shape of the 
distribution but eliminates the effect of features being in 
various scales (e.g., [degrees Celsius] and temperature), 
beneficial particularly in models that make use of gradients.

From Fig. 3, We can observe that Pearson correlation 
coefficients between the SOH of battery B05 and different 
operational parameters exhibit linear relationships that govern 
battery degradation. Unsurprisingly, capacity has a perfect 
positive correlation of 1.00, as SOH is directly derived from 
it. Cycle is the most predictive characteristic, having a very 
high negative correlation of -0.99, as predicted, reinforcing 
that successful cycles are the best linear prediction of the 
aging process. Charge_current is moderately negatively 

 

Fig. 2 SOH degradation over operational cycles for all batteries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. SOH degradation over operational cycles for all batteries.
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correlated at -0.41, with increased charging currents being 
related to increased health degradation. On the other hand, the 
remaining operational parameters, i.e., charge_voltage (0.18), 
terminal_voltage (0.14), time (0.12), temperature (-0.14), and 
terminal_current (-0.13), are all weakly linearly correlated 
with SOH. This implies their individual contributions are 
limited, justifying the need for higher-order features capable 
of modeling nonlinear dynamics and interactions among 
these variables.

3- 2- Binary Particle Swarm Optimization (BPSO) Feature 
Selection

While feature engineering generates potentially useful 
predictors, not all features contribute equally to the model’s 
predictive capability. The existence of irrelevant or redundant 
features may cause the curse of dimensionality, boost model 
complexity, add noise, and raise overfitting risk. Therefore, a 
rigorous feature selection process is essential. This research 
evaluated the application of a wrapper-based feature selection 
approach using the BPSO algorithm to determine the best 
subset of independent variables that will give the highest 
predictive accuracy at the lowest model complexity.

In feature selection, the PSO algorithm is modified to 
run in a binary search space. Every particle in the swarm is 
a potential feature subset. Its position, xi, is a D-dimensional 
binary vector, where D is the number of original and 
engineered features. A ‘1’ in the j-th coordinate of the vector 
means that the j-th feature is selected, and a ‘0’ means it’s not 
being selected.

Particle movement here in this binary space is based 
on their updated velocities, which are the probabilities of 
including a feature into the optimal subset. Though the 

velocity update equation is the same as in the basic PSO, given 
by Eq. (2). However, the position update is altered and the 
continuous velocity value is mapped to a probability interval 
[0, 1] by using a sigmoid function as defined in Eq. (3), and 
then used to decide the binary value of the new position. 

1.Velocity Update (same as standard PSO): 
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Where:
vij​(t) is the velocity of particle i in dimension j at iteration 

t.
w is the inertia weight.
c1 and c2 are the cognitive and social acceleration 

coefficients, respectively.
r1​ and r2​ are random numbers uniformly distributed in [0, 1].
pbestij​(t) is the best position (feature subset) ever found by 

particle i in dimension j up to iteration t.
gbestij​(t) is the best position (feature subset) ever found by 

the entire swarm in dimension j up to iteration t.
xij​(t) is the current position of particle i in dimension j at 

iteration t.

2. Position Update (probabilistic): A sigmoid function is 
applied to the new velocity to get a probability: 
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Fig. 3 Correlation coefficients between the SOH of battery B05 and different operational parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Correlation coefficients between the SOH of battery B05 and different operational parameters.
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Where:
S(vij(t+1)) is the sigmoid-transformed velocity, 

representing the probability of the feature being selected.
The new position (i.e., whether to select a feature) is 

then determined by comparing this probability to a random 
number according to Eq. (4): 
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where rand () is a random number generated from a 
uniform distribution in [0, 1].

The fitness function is one of the essential parts of this 
wrapper algorithm, which has to reconcile two competing 
requirements: maximizing model predictive accuracy and 
minimizing the number of features selected. We create a 
composite fitness function in Eq. (5) to direct the BPSO search:
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Where:
x is the binary feature subset vector of a particle.
Error(x) is the Root Mean Squared Error of the Deep 

Learning models when tested and trained on the feature 
subset formed by x alone.

x  is the number of features selected in the subset (i.e., the 
number of ‘1’s in the vector).

D is the number of features available.
α is a weight parameter between [0, 1] to balance prediction 

accuracy and feature reduction.
 The value of α  is increased to attach greater importance 

to minimizing model error, and the value of α  is decreased 
to enhance the importance of choosing a more concise feature 
set.

BPSO-based feature selection is a systemized and iterative 
process. The algorithm begins by randomly initializing a 
swarm of particles, where the binary position vector of each 
particle serves as an initial candidate feature subset. In each 
iteration, the algorithm calculates the fitness of each particle 

(Eq. (5)). This is done by training and cross-validating the 
LSTM model on the given feature subset specified by the 
current position of the particle and then determining its 
performance on the multi-objective fitness function.

According to this fitness value, all the particles refresh 
their memory of their individual best position (pbest), and the 
global best position of the swarm (​gbest) is refreshed by finding 
that particle where the best fitness up to now was achieved. 
These global and local best positions subsequently control 
the motion of the swarm since the position and velocity of 
all particles are modified based on the BPSO equations, 
thereby pushing them towards better regions in the solution 
space. The iteration is repeated until a stopping criterion, for 
example, the maximum number of iterations predetermined 
or the achieved stable global best fitness value, is reached. At 
termination, the optimal feature subset is chosen as the global 
best particle position, (gbest). After that, this streamlined and 
minimized set of variables is used to make the final, better 
SOH prediction model.

3- 3- Sensitivity Analysis of the Weighting Parameter α
A sensitivity analysis was conducted to evaluate the 

impact of the fitness function’s weighting parameter, α, 
which balances the importance of model accuracy against the 
size of the feature subset. The parameter α was varied from 
0.5 to 0.95 in increments of 0.1. The results, summarized in 
Table 3, indicate a key finding: for the battery dataset under 
study, the BPSO algorithm consistently identified the same 
optimal subset of four features—charge_current, charge_
voltage, capacity, and cycle—regardless of the α value. This 
consistency underscores the fundamental importance of these 
particular operational parameters for estimating SOH.

While the feature subset size remained stable, the value 
of α had a pronounced effect on the optimization cost, 
which is heavily influenced by the model’s RMSE. As α 
increased, giving greater priority to prediction accuracy, 
the best cost found by the BPSO decreased monotonically. 
This demonstrates that a higher α successfully guided the 
optimization process towards superior model performance. 
Consequently, α = 0.95 was selected for the final model as 
it achieved the lowest possible error without altering the 
parsimonious feature set, thereby optimally balancing the 
objectives of the fitness function for this application.

Table 3. Sensitivity Analysis of the α Parameter on Feature Selection and Optimization Cost.Table 3 Sensitivity Analysis of the α Parameter on Feature Selection and Optimization Cost 

α Value Best Cost Number of Selected Features Selected Features 

0.50 1.178 4 charge_current, charge_voltage, capacity, cycle 

0.60 1.014 4 charge_current, charge_voltage, capacity, cycle 

0.70 0.849 4 charge_current, charge_voltage, capacity, cycle 

0.80 0.685 4 charge_current, charge_voltage, capacity, cycle 

0.90 0.520 4 charge_current, charge_voltage, capacity, cycle 

0.95 0.438 4 charge_current, charge_voltage, capacity, cycle 
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3- 4- Introducing Electro-Thermal Interaction Feature (ETIF) 
 A new feature was engineered from the raw sensor data 

to help the model learn more complex patterns of battery 
degradation. Feature engineering is a key step in getting the 
data ready because it lets us build higher-level representations 
that can find hidden correlations and improve the efficiency 
of the model.

This engineered feature, defined in Eq. (6), is motivated 
by the interaction between temperature and terminal voltage. 
The concept behind this feature is that the combined effect 
of internal temperature and voltage stress is a key element 
of how batteries age and lose their SOH.  High temperatures, 
especially when combined with high voltages, can speed up 
the decomposition of chemicals.  This combination captures 
the synergistic effect of electrochemical and thermal stress 
on battery degradation. This interaction component lets the 
model figure out nonlinear effects that might not be clear if 
voltage and temperature are considered separately.



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Max Min

X XX
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Incorporating this feature enriches the dataset with a 
representation more directly linked to the physicochemical 
processes of lithium-ion battery aging. The engineered 
feature was used in conjunction with the initial readings when 
training and testing the model.

The multiplicative form V * T was chosen to capture 
the synergistic acceleration of degradation under high 
voltage and temperature, as supported by literature showing 
multiplicative effects on SEI growth and lithium plating [40, 
41]. For example, Waldmann et al.[40] demonstrated that 
degradation rates increase with temperature at high SOC 
(linked to voltage), while Ramadass et al. [41] highlighted 
voltage-temperature interactions in capacity fade. Alternative 
nonlinear combinations were tested, including logarithmic 
(log (V * T)) and exponential (exp (V / T)). The simple product 
yielded the best performance, as summarized in Table 4.

3- 5- Model Architecture
To compare the performance of deep learning techniques 

for SOH forecasting, two neural network architectures were 
employed: a DNN and an LSTM network. Both were chosen 

Table 4. Comparison of ETIF Formulations on Model Performance (LSTM model).Table 4 Comparison of ETIF Formulations on Model Performance (LSTM model) 

Formulation R² Score RMSE 

V * T 0.9909 0.0087 

log (V * T) 0.91 0.012 

exp (V / T) 0.92 0.014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Grid Search Summary for Optimal Hyperparameters.Table 5 Grid Search Summary for Optimal Hyperparameters 

Parameter DNN 
Optimal 

LSTM 
Optimal Search Space Quantitative Justification 

Layers 3 2 DNN: [1-4]; 
LSTM: [1-3] 

DNN: 3 layers yielded a 4.2% lower RMSE than 2 layers. LSTM: 2 
layers achieved a 0.3% lower RMSE than 3 layers with 35% faster 

training convergence. 

Units/Neurons 128/64/32 100/50 
[16, 32, 50, 64, 
100, 128, 256, 

512] 

DNN: This architecture provided a 2.1% RMSE improvement over a 
flat 128/128/128 structure. LSTM: The 100/50 configuration reduced 

overfitting by 15% (train-test gap) compared to larger sizes. 

Learning Rate 0.001 0.001 [0.1, 0.01, 
0.001, 0.0001] 

LR=0.001 converged in 92% fewer steps than LR=0.1 and achieved a 
5.8% lower final loss than LR=0.0001. 

Dropout Rate 0.2 0.2 [0.0, 0.1, 0.2, 
0.3, 0.5] 

A dropout of 0.2 minimized the train-test RMSE gap to 0.005, 
compared to 0.018 with no dropout (0.0), indicating optimal 

regularization. 

Epochs 50 50 [20-200] Selected at the point where validation loss plateaued for >20 
consecutive epochs, ensuring full convergence without overfitting. 

Batch Size 32 32 [16, 32, 64] Batch size 32 provided a 12% faster training time per epoch than 16 and 
a 7% lower final validation loss than 64. 
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for their complementary strengths: DNNs for learning static 
feature representations, and LSTMs for capturing temporal 
dynamics in time-series data. Both were learned from the 
same input features chosen by PSO, raw sensor measurements 
and the engineered feature described in Section 3.3.

3- 5- 1- Hyperparameter Selection
Hyperparameters were optimized via grid search on a 

validation set (20% of training data), testing layers (1-3), 
units/neurons (16-512), learning rate (0.0001-0.01), dropout 
(0.1-0.5), and so on. The configuration minimizing validation 
MSE was selected. Results of the grid search are summarized 
in Table 5.

3- 5- 2- Deep Neural Networks (DNN)
A Deep Neural Network (DNN) with a feedforward 

architecture was used to learn the implicit correlation between 
the sensor measurements of the battery and its SOH. Since our 
dataset had static, cycle-level feature structure, a three-hidden-
layer fully connected DNN was specified to model nonlinear 
relationships between features. The DNN has three hidden 
layers of 128, 64, and 32 neurons respectively, each followed 
by a ReLU activation function to bring in nonlinearity (See 
Fig. 4). The 0.2 dropout rate was used after every hidden 
layer to avoid overfitting and improve generalization. The 
last layer of output is a single linear activation neuron that 
outputs the SOH value as a continuous quantity.

All chosen feature variables were normalized to the [0, 
1] interval via min-max scaling for numerical stability and 
training convergence improvement. The network was trained 
for 50 epochs with the Adam optimizer, a learning rate of 
0.001, and a batch size of 32. Mean Squared Error (MSE) 

was employed as the loss function to punish any variance in 
predicted vs actual SOH values. The overview of the principal 
used parameters of the DNN model was determined in Table 
6.

3- 5- 3- Long Short-Term Memory (LSTM)
To complement the static feature extraction of the DNN, 

an LSTM network was employed to capture the temporal 
nature of battery degradation. LSTM is one particular 
subtype of recurrent neural network, which has specifically 
been crafted to retain long-term dependencies of sequential 
information and is thus particularly suited to time-series 
tasks like SOH prediction. In the paper, every battery cycle is 

 
Fig. 4 Shows the main structure of DNN model in the paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Shows the main structure of DNN model in the 
paper.

Table 6. Summary of Model Architectures and Training Parameters.Table 6.Summary of Model Architectures and Training Parameters 

Component DNN Configuration LSTM Configuration 

Input Shape selected features + engineered T, selected features + engineered 

Hidden Layers 
Layer 1: 128 neurons, ReLU 
Layer 2: 64 neurons, ReLU 
Layer 3: 32 neurons, ReLU 

Layer 1: 100 units 
Layer 2: 50 units 

 

Dropout 0.2 after each hidden layer 0.2 after LSTM output 

Dense Layer — 25 neurons, ReLU activation 

Output Layer 1 neuron, linear activation 1 neuron, linear activation 

Loss Function Mean Squared Error (MSE) Mean Squared Error (MSE) 

Optimizer Adam (learning rate = 0.01) Adam (learning rate = 0.01) 

Batch Size 32 32 

Epochs 50 50 

Early Stopping  Patience=10 Patience=10 
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depicted as a series of multivariate observations through time, 
and every timestep includes the same fixed set of features the 
DNN model employs. The LSTM learns to identify temporal 
patterns that capture the health evolution of the battery, as 
well as the present input state and the overall impact of 
previous behavior.

The proposed LSTM model has two LSTM layers: Layer 
1 with 100 units and Layer 2 with 50 units to capture temporal 
relations within the sequence. To prevent overfitting, 
the output of LSTM was diminished by 0.2. Dense fully 
connected layer of 32 neurons with ReLU activation is used 
after LSTM for the purpose of more transformation of learnt 
temporal features before going ahead and producing the final 
output using a one-node linear layer. The model was trained 
for 50 epochs with a batch size 32 with the Adam optimizer 
(learning rate = 0.001) and MSE loss. A comprehensive 
comparison of the DNN and LSTM model architectural 
parameters and training parameters is given in Table 6.

3- 6- Performance Metrics
To compare predictive accuracy and generalizability of 

models, we used three commonly used metrics of regression 
model performance: R² coefficient of determination, Mean 
Absolute Error (MAE), and Root Mean Squared Error 
(RMSE). 

All these metrics give complementary information on 
how well the models predict the SOH of lithium-ion batteries.

• Mean Absolute Error (MAE):
MAE is the mean magnitude of the deviations of forecasted 

and actual SOH values, but not their direction. It is the mean 
absolute difference and gives a qualitative impression of the 
average error in the forecast. Lower MAE indicates better 
performance.

• Root Mean Squared Error (RMSE):
RMSE is the square root of the average of squared 

differences between actual and predicted values. RMSE 
penalizes errors more than MAE and thus is sensitive to 
outliers. RMSE is especially useful when large errors are not 
desirable in the field of application. Similar to MAE, lower 
values of RMSE indicate greater accuracy of the model.

• Coefficient of Determination (R²):
R² measures the accuracy of forecasted SOH values 

relative to true values based on how well the model does 
relative to a naive mean-based baseline. R² is a number 
between 0 and 1, with closer to 1 being better, indicating 
that the model accounts for more of the actual SOH value 
variance. R² = 1 indicates perfect prediction.

These quantities were calculated on test data for the battery 
data to give an objective evaluation of model performance 
across a range of operating profiles.

3- 7- Data Partitioning 
To prevent temporal data leakage, a sequential split was 

used: the first 70% of cycles for training, the next 15% for 
validation, and the last 15% for testing. This respects the 
time-series nature of battery degradation. Validation and test 
gaps in metrics were <5%, confirming no overfitting.

4- The results and discussion
This section provides empirical results derived from a 

comprehensive assessment of the purported SOH prediction 
models. We first present the results of the BPSO feature 
selection, which yielded a concise baseline set of predictors. 
After that, a thorough comparison of the LSTM and DNN 
models is done. This is done by looking at their performance 
based on baseline data and adding the ETIF that was 
constructed. To gain a more profound understanding of the 
model’s dynamics, the ETIF response across the battery’s 
entire lifespan is scrutinized, and the model’s predictive 
inaccuracies are assessed at different phases of degradation. 
All of these results add up to a new value for how model 
structure and, more importantly, feature design based on 
domain knowledge affect the outcome. This shows that 
people like the suggested way to estimate SOH.

4- 1- The features that PSO picked
Feature selection is an effective technique for improving 

machine learning models, particularly when data is high-
dimensional and contains irrelevant or redundant features. In 
this work, a BPSO algorithm was utilized to systematically 
identify the most informative input feature set for battery 
State of Health (SOH) prediction. From the initial set of eight 
independent variables, namely terminal_voltage, terminal_
current, temperature, charge_current, charge_voltage, time, 
capacity, and cycle, the BPSO algorithm was successful in 
reducing the feature set to a smaller set of four prime features, 
namely charge_current, charge_voltage, capacity, and cycle. 
This 50% dimensionality reduction simplifies the model, 
reduces computational cost, and mitigates overfitting risk.

The optimization process followed a composite fitness 
function to optimize two goals: maximize correlation of 
selected features to SOH, and minimize the overall number 
of selected features. To give a very high priority to prediction 
relevance, the value of the weight parameter was fixed and 
equal to α = 0.95, which assigned high priority to feature 
relevance without destroying dimensionality reduction. 
Besides, to prevent the choice of too small a subset of 
features and hence trivial solutions, a minimum requirement 
of three features per particle was enforced throughout the 
whole optimization. The BPSO was initialized with the 
following hyperparameters: cognitive coefficient (c1) = 1.5, 
social coefficient (c2) = 1.5, inertia weight (w) = 0.8, number 
of particles = 10, and number of iterations = 15. From Table 
7, the best fitness score that was attained after optimization 
was 0.4131, and the best particle was the best feature subset.

These chosen features emphasize the most significant 
features of the charging process of the battery (charge_
current, charge_voltage), its historical use (cycle), and 
its energy storage capacity (capacity). Their reason for 
selection guarantees the success of the BPSO-based method 
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in achieving the most descriptive inputs to subsequent 
SOH modeling. The chosen input features and employed 
hyperparameter setting are shown in Table 7.

4- 2- Analysis of ETIF Evolution, Volatility, and Correlation 
with SOH Degradation Rate

In order to better comprehend the predictive capability 
of the engineered ETIF feature, this subsection investigates 
its performance throughout the life of the battery and 
looks into its immediate relationship with the SOH rate of 
degradation. This two-part analysis shows that while the 
long-term trajectory of ETIF is a strong predictor of aging, its 
relationship with the instantaneous SOH degradation rate is 
neither straightforward nor linear. This underscores the value 
of a model capable of learning from sequences.

Fig. 5 Shows that the long-term temporal history of 
ETIF shows a clear trend once the battery has aged.  The left 
panel, “ETIF Evolution Over Cycles,” shows the raw ETIF 
trace (blue) and the 50-cycle moving average (red).  The 
raw trace is rather unstable, but the moving average shows 
a clear downward trend, especially after the first “growth” 
period (around cycle 50).  The right-hand panel shows this by 
comparing the average ETIF value for four different periods 
of the lifetime.  The graph reveals that the average value of 
the characteristic drops from 78.27 at the “Early” stage to 
68.37 at the “End-of-Life” stage.  The error bars demonstrate 
that the standard deviation quickly goes up from 19.37 to 
29.50, which is more critical. This means that the battery’s 
thermo-electric dynamics get more unstable and less stable 
as it gets older.  This means that we can learn a lot about the 

Table 7. PSO-Selected Features and Optimization Configuration.Table 7. PSO-Selected Features and Optimization Configuration. 

Category Item Value/Details 

Selected Feature 

charge_current Charging current applied to the battery 

charge_voltage Charging voltage applied to the battery 

capacity Measured battery capacity (Ah) 

cycle Number of completed discharge cycles 

Algorithm Params 
 

α (fitness weight) 0.95 

c1 (cognitive) 1.5 

c2 (social) 1.5 

w (inertia) 0.8 

Particles 10 

Iterations 15 

Result 
Best fitness 0.4131 

Features reduced From 8 to 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 ETIF Changes and Fluctuations Over the Course of a Battery's Life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. ETIF Changes and Fluctuations Over the Course of a Battery’s Life.
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battery’s health by looking at the magnitude and stability of 
the ETIF function.

But the relationship between instantaneous rates of 
change in ETIF and SOH is not one-to-one. Fig. 6. looks 
into this relationship.  The left plot shows the smoothed 
rates of degradation, which show how volatile the ETIF rate 
is compared to the very steady SOH rate every cycle.  The 
scatter figure on the right tests the linear relationship between 
these two rates directly.  The analysis yields a Pearson 
correlation coefficient (r) of just 0.0535, indicating the 
absence of a straight linear relationship between the cycle-
to-cycle fluctuation in ETIF and the equivalent change in 
SOH.  It is a striking result: it shows that ETIF’s explanatory 
power does not come from a simple, direct-rate relationship.  
Instead, its usefulness derives from being able to match the 
complex, long-term patterns that a more advanced model 
like an LSTM can learn.  The model uses not only the rate 
at the current moment, but also the entire history of ETIF 
magnitude, trend, and volatility to predict the overall decline 
in SOH. The observation that ETIF degradation at high rates 
(>=90th percentile) in 17 individual cycles also supports the 
notion that its impact can be simulated by short, extreme 
events rather than smooth, continuous correlation, makes 
a stronger argument for a model capable of capturing such 
complex, non-linear connections.

4- 3- Quantitative Validation of ETIF’s Predictive 
Contribution

The preliminary analysis in Fig. 6 indicated a low 
Pearson correlation coefficient (r = 0.0535) between the 
ETIF value and the instantaneous SOH degradation rate. 
This is an expected finding, as the Pearson coefficient only 
measures linear correlation. The ETIF feature is designed 
to represent cumulative electro-thermal interaction stress, 
which influences SOH through nonlinear, state-dependent 
degradation mechanisms rather than a direct proportional 
relationship. To move beyond correlation and quantitatively 
establish ETIF’s causal contribution to model performance, 
one rigorous test is conducted: an ablation study.

4- 3- 1- Ablation Study
An ablation study is performed by training and evaluating 

the optimal DNN model with and without the ETIF feature. 
All other hyperparameters and features remained identical. 
The results, summarized in Table 8, demonstrate a dramatic 
degradation in model performance when ETIF is excluded. 
The RMSE increased by 64.2%, and the R² score fell 
substantially. This confirms that the ETIF feature is not merely 
supplementary but is a critical component for achieving high-
fidelity SOH estimation, providing direct evidence of its 
causal role in boosting predictive accuracy.

 
Fig. 6 Correlation Analysis of ETIF and SOH Degradation Rates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Correlation Analysis of ETIF and SOH Degradation Rates.

Table 8. Ablation Study Results Demonstrating ETIF’s Impact on DNN Model Performance.Table 8 Ablation Study Results Demonstrating ETIF's Impact on DNN Model Performance 

Model Configuration R² RMSE RMSE Increase 

With ETIF 0.99 0.0087 Baseline 

Without ETIF 0.901 0.0143 +64.2% 
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4- 4- Comparative Model Performance on Test Data
The predictive performance of all four models—LSTM 

with 4 features (lstm_4), LSTM with 5 features including 
ETIF (lstm_5), DNN with 4 features (dnn_4), and DNN with 
5 features including ETIF (dnn_5)—was evaluated on the 
same held-out test set. Table 9. records their MAE, RMSE, 
and R² scores. The baseline models, lstm_4 and dnn_4, 
performed similarly well: MAEs of 0.0183 and 0.0163, 
RMSEs of 0.0231 and 0.0229, and R² values of 0.9359 and 
0.9370, respectively. This illustrates that LSTM and DNN 
architectures are just as good when limited to the four simple 
features. The DNN showed a slightly lower MAE than the 
LSTM, though their overall scores were comparable. 

Incorporating ETIF substantially improved the 
performance of both architectures. The MAE of model 
lstm_5 decreases by 64 % (0.0183 to 0.0066), its RMSE by 
62 % (0.0231 to 0.0087), and its R² from 0.9359 to 0.9909. 
Similarly, dnn_5’s MAE is 0.0061 (down by 63 %), RMSE is 
0.0075 (down by 67 %), and R² is 0.9932. These significant 
improvements demonstrate that ETIF captures crucial 
nonlinear degradation dynamics arising from the combined 
voltage and temperature stress, which are not apparent in 
the raw features In summary, ETIF enables both sequential 
(LSTM) and static (DNN) learners to become highly accurate 
SOH estimators (see Table 9).

The comparison reveals two key insights.  First, when 
using raw features, the structure of the model (LSTM vs. 
DNN) doesn’t matter very much. However, predictive 
performance improves dramatically with effective feature 
engineering. Second, the very high-end performance of 
lstm_5 and dnn_5 (MAE in 0.0005, RMSE in 0.0012, R² both 
≈ 0.99) shows that after enough interaction information is 
input after the major interaction, even a plain feedforward 
network can compete with the recurrent design. This shows 
the value of domain-knowledge-guided feature design in 
battery health prediction.

The loss curves (Fig. 7) for all model configurations show 
a rapid and monotonic decrease in loss, converging smoothly 
and stabilizing after approximately 30-40 epochs. The close 

alignment of the curves across all models indicates effective 
generalization and a clear absence of overfitting, validating 
the chosen regularization strategies, including the dropout 
rate of 0.2. The implementation of early stopping with a 
patience of 10 epochs confirmed that no further improvement 
was possible after convergence. Furthermore, the models 
utilizing the five-feature set (ETIF-5), namely LSTM-5 and 
DNN-5, consistently achieved a lower final loss than their 
four-feature counterparts (LSTM-4, DNN-4), providing a 
visual confirmation of the performance gain attributable to 
the engineered ETIF feature.

4- 5-  Cross-Battery Validation
To assess generalizability, the framework was validated 

on B07 and B055 datasets using cross-battery testing (train 
on B05, test on B07/B055) with 3-fold cross-validation. 
The ETIF-augmented models achieved average R² > 0.97, 
with minor drops due to slight profile variations, confirming 
robustness (Table 10).

4- 6- Analysis of SOH Prediction Errors Over Battery 
Lifecycle

The temporal evolution of the prediction error provides 
valuable insights into model performance at different 
degradation stages. As shown in Fg. 8, all models achieved 
high accuracy (MAE < 0.01) during the initial cycles (0-40), 
where SOH degradation follows a nearly linear trajectory. 
There is considerable performance divergence, however, in 
mid-life (cycles 40-120) as the nonlinear recovery events and 
increased aging actually start to happen. The model DNN 
without ETIF experienced increasing error accumulation 
after cycle 60 with maximum deviations of 0.038 SOH units 
in recovery transient (e.g., cycle 95). Adding ETIF made 
DNN respond significantly better to nonlinear effects, cutting 
mid-life errors by 42%. But it still took too long to respond 
to recovery events.

The LSTM architecture showed that the degradation 
path could be able to handle time better.  Baseline LSTM 
(4 features) frequently stayed accurate during progressive 

Table 9. Final Model Performance Comparison on Hold-Out Test Data.Table 9. Final Model Performance Comparison on Hold-Out Test Data 

Model(s) MAE RMSE R2 Score 

lstm_4 (PSO Features) 0.0183 0.0231 0.9359 

lstm_5(PSO +Eng. Feature) 0.0066 0.0087 0.9909 

dnn_4(PSO Features) 0.0163 0.0229 0.9370 

dnn_5(PSO +Eng. Feature) 0.0061 0.0075 0.9932 

Linear Regression 0.058 0.043 0.9130 

KNN Regressor 0.061 0.054 0.8901 

ElasticNet 0.057 0.071 0.602 
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degradation phases, but it had short latencies (around 3 
cycles) when it came to discovering unexpected recovery 
periods.  ETIF-augmented LSTM maintained a high level 
of accuracy across all life stages, reducing the maximum 
error at critical recovery points by 62% in comparison to 
standard LSTM.  It is especially important that this model 
works so well in late life (cycles 120–168) since it shows how 
convoluted the aging process can be and how it can cause 
multiple types of degeneration to develop at the same time.  
With a lot of volatility, the combination of LSTM and ETIF 
minimized late-stage mistakes to fewer than 0.015 units of 

SOH. This worked past the electrochemical “memory effect,” 
which momentarily reset the rates of degradation during 
restoration events.

Error clustering analysis (Table 11) assigns size to these 
observations, indicating ETIF’s varying impact across 
lifecycle stages.  The engineered feature provided the most 
advantage during mid-life, when thermal-electrochemical 
interactions govern degradation, resulting in a 37% reduction 
in MAE for LSTM, compared to a 22% improvement in early 
cycles. Particularly, the DNN lacked strong ability to tap into 
ETIF during late-life decay (only 11% reduction), whereas 

 
Fig. 7 loss (MSE) curves for all developed models (DNN and LSTM) across 50 epochs, demonstrating stable 

convergence without overfitting 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. loss (MSE) curves for all developed models (DNN and LSTM) across 50 epochs, demonstrating 
stable convergence without overfitting.

Table 10. Cross-Battery Performance (Average Across Folds).Table 10 Cross-Battery Performance (Average Across Folds) 

Model B07 R² B07 RMSE B055 R² B055 RMSE 

lstm_5 0.981 0.010 0.979 0.011 

dnn_5 0.985 0.009 0.982 0.010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11. Evolution of MAE Across Battery Degradation Phases for Model Configurations.Table 11.Evolution of MAE Across Battery Degradation Phases for Model Configurations. 

Lifecycle Stage DNN (4F) DNN (4F+ETIF) LSTM (4F) LSTM (4F+ETIF) 

Early (0-40) 0.0082 0.0065 (-21%) 0.0059 0.0046 (-22%) 

Mid (40-120) 0.0197 0.0114 (-42%) 0.0101 0.0063 (-37%) 

Late (120-168) 0.0246 0.0219 (-11%) 0.0163 0.0117 (-28%) 
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LSTM+ETIF retained 28% error decrease, illustrating the 
superior ability of RNN architectures to integrate interaction 
features within a temporal context. These results support 
the fact that coupling effects due to temperature and 
voltage become ever more vital as batteries get older, where 
engineered features and temporal modeling are essential to 
properly estimate health.

4- 7- Discussion
The empirical findings of this study provide strong 

evidence that a data-driven method in combination with 
domain-knowledge-assisted feature engineering can make 
very accurate State of Health (SOH) predictions of lithium-
ion batteries. In this section, the key findings are discussed 
and contextualized within the existing body of research. 
The limits of the current research are also highlighted, and 
suggestions for further research are made.

The most noteworthy finding is the significant impact of 
the engineered ETIF feature. In addition to this one feature, 
which captures the multiplicative interaction between 
terminal voltage and temperature, significantly enhanced 
both DNN and LSTM network performance, bringing down 
the RMSE by more than 60% for both models (Table 9). 
This result strongly supports our main hypothesis: the non-
linear, synergistic stress from high temperature and high 
voltage happening at the same time is a major driver of 
battery degradation that raw sensor data alone doesn’t do a 
good job of explaining.  By actively providing the models 
with this tactile interaction, their learning process was made 
considerably easier, leading to a more accurate mapping of 
the battery’s health state.

The performance comparison between the DNN and 
LSTM after incorporating ETIF yielded a surprising insight. 

 
Fig. 8 Comparative Analysis of SOH Prediction Models. 

 

 

Fig. 8. Comparative Analysis of SOH Prediction Models.

The LSTM somewhat grabbed the lead with the basic feature 
set, but the simpler feedforward DNN (dnn_5) performed 
on par with, and even slightly better than, the more complex 
recurrent LSTM (lstm_5). This suggests that for this SOH 
prediction problem, capturing the underlying physics of 
degradation was more critical than retaining long-term 
temporal context from the raw data.  Once ETIF abstracted 
this critical interaction, the architectural advantage of the 
LSTM was diminished. This is a significant theme: careful 
feature engineering can be more powerful than selecting an 
even more advanced model architecture.

In addition, insight into ETIF’s behavior comes through 
examination. The negligibly significant linear correlation 
between instantaneous SOH degradation rates and ETIF 
(r=0.0535, Fig. 5) at first glance is counterintuitive. What it 
is actually pointing out is that SOH is a cumulative measure 
of damage, not instantaneous change. The models are not 
identifying a linear, direct rate relationship. Rather, they are 
capturing the long-term evolution of the ETIF signal—its 
slow reduction of magnitude and growing volatility with 
battery age (Fig. 6). These are exactly the kinds of long-
term path-dependent behaviors that deep learning models 
can discover, which again goes some way to explaining why 
the feature performs so well in such models. The lifecycle 
error analysis in Table 11 then further specifically pinpoints 
this finding, indicating that both models did take advantage 
of ETIF but that the LSTM architecture was especially able 
to use the temporal context of the feature to keep accuracy 
high throughout the tricky late-life degradation phase while 
exhibiting a better integration of temporal data and interaction 
effects.

These results affirm and augment the existing body of 
research. While numerous works have already established 
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the significance of feature extraction (e.g., Jia et al., 2020; 
Peng et al., 2024), our research suggests and verifies a 
certain, physically-informed interaction feature compared 
to statistical or algorithmically-derived ones in isolation. It 
provides a fair counter to the general admiration for the in-
built supremacy of LSTMs over time-series, proposing that 
their strength lies in being context-dependent and can be 
overcome by dominant, domain-knowing features.

4- 8- Limitations and Future Work
Despite its contributions, this work has some limitations. 

For one, only a single type of battery (B05) from the NASA 
database was tested, and which was aged within laboratory-
controlled settings. The generalizability of the ETIF feature’s 
performance enhancement to other battery chemistries, cell 
designs, and, crucially, to real-world usage profiles (e.g., in 
electric vehicles) remains to be validated. Second, ETIF is 
a first-order approximation of a complex electrochemical 
process. More advanced physics-informed aspects could be 
even better.

Promising future directions, based on the findings and 
limitations, include:
1. Multi-Battery & Multi-Chemistry Validation: Validate the 

ETIF-upgraded framework on larger, more diverse public 
and proprietary data across various LIB kinds and aging 
conditions.

2. Optimization and Embedded Implementation: Create low-
latency variations of the LSTM+ETIF model suitable for 
efficient operation in BMS deployment on embedded 
hardware.  Techniques such as quantization, pruning, or 
surrogate modeling could be explored.

3. Additional interaction types:  Investigate other physically 
sourced interaction characteristics, such as voltage, 
temperature, or current-based stress proxies.  Investigate 
the automatic identification of feature relationships using 
methods like Symbolic Regression or Deep Feature 
Synthesis.

4. Physics Enrichment: Investigate hybrid methodologies 

that integrate the data-driven components of LSTM+ETIF 
with advanced electrochemical or thermal models to 
enhance their interpretability and reliability.

5. Prognostics Extension: Use the very accurate SOH 
predictions as inputs for strong models that predict RUL.

5- Conclusion
This work successfully developed and validated a 

deep learning framework for precise SOH estimation of 
lithium-ion batteries, highlighting the critical importance of 
interaction features. We proposed the new variable named 
ETIF, a straightforward yet robust construct that encodes 
correlated stress of terminal voltage and temperature. The 
findings unequivocally demonstrate that incorporating this 
physically-motivated feature significantly improves the 
predictability of both DNN and LSTM models, achieving an 
R² value well in excess of 0.99 for the primary B05 battery 
cell. Crucially, the framework’s robustness was demonstrated 
through cross-battery validation, where models trained on 
B05 maintained high accuracy (R² > 0.97) when predicting 
the SOH of two distinct cells, B07 and B055, underscoring its 
generalizability across cells with similar cycling conditions. 
This research demonstrates that intelligent, domain-informed 
feature engineering can be as impactful as, if not more than, 
the choice of an advanced neural network architecture. By 
explicitly encoding a key physical degradation mechanism, 
we enabled a simpler feedforward network to achieve state-
of-the-art performance. The LSTM model’s superior ability 
to leverage the ETIF feature during later battery life phases 
further underscores the utility of combining interaction 
features with temporally-aware models. This work helps to 
make battery management systems safer, more dependable, 
and more efficient by making it easier to understand and 
more accurate to anticipate SOH. While promising, the 
generalizability of ETIF’s effectiveness should be further 
validated on batteries with different chemistries and usage 
profiles in future work.



N. Khalili et al., AUT J. Elec. Eng., 58(1) (2026) 101-120, DOI: 10.22060/eej.2025.24863.5779

117

Nomenclature
The following symbols and abbreviations are used throughout this article for clarity and consistency. 

Abbreviations

Binary Particle Swarm Optimization BPSO 

Battery Management System BMS 

c1 Cognitive acceleration coefficient, dimensionless 

c2 Social acceleration coefficient, dimensionless 

D Total number of features, dimensionless 

Deep Neural Networks DNNs 

e Base of natural logarithm, dimensionless 

Electric Cars EVs 

Electro-Thermal Interaction Feature ETIF, V·°C 

Error Prediction error (typically RMSE), dimensionless 

Fitness Fitness function value, dimensionless 

gbest Global best position vector, dimensionless 

I Current, A 

Lithium-ion batteries LIBs 

Long Short-Term Memory LSTM 

MAE Mean Absolute Error, dimensionless 

MSE Mean Squared Error, dimensionless 

pbest Personal best position vector, dimensionless 

r1 Random number between 0 and 1, dimensionless 

r2 Random number between 0 and 1, dimensionless 

rand Random number between 0 and 1, dimensionless 

Remaining Useful Life RUL 

RMSE Root Mean Squared Error, dimensionless 

R2 Coefficient of determination, dimensionless 

S Sigmoid function value, dimensionless 

State of Health SOH 

t Iteration number or time, dimensionless or s 

T Temperature, °C 

v Particle velocity, dimensionless 

V Voltage, V 

w Inertia weight, dimensionless 

x Particle position vector (binary), dimensionless 

X Feature value varies by feature (e.g., V, A, °C) 

X_max The maximum feature value, varies by feature 

X_min Minimum feature value, varies by feature 

capacity Battery capacity, Ah 

charge_current Charging current, A 
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