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ABSTRACT: In the scientific community, it is well established that the brain is linked to neural
disorders such as epilepsy, Alzheimer’s, and depression, all of which can affect neural connectivity.
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These conditions can disrupt communication between different brain regions. To assess these changes,
neuroscientists measure neural signals like EEG and MEG and analyze brain connectivity through
scalp recordings. Various methods have been developed to evaluate intra-brain connectivity, including
classical techniques such as Granger causality (GC), Mutual Information (MI), Directed Transfer
Function (DTF), and Dynamic Causal Modeling (DCM). Recently, there has been increasing interest in
applying neural networks as a modern approach across various fields. However, many existing methods

Keywords:
Adaptive Neuro-Fuzzy Inference

suffer from low precision. This paper proposes the Adaptive Neuro-Fuzzy Inference System Granger System (ANFISGC)

Causality (ANFISGC) as a solution for measuring effective connectivity using EEG and MEG data.
Our approach integrates symplectic geometry, ANFIS regression, and Granger causality, allowing for
the detection of both linear and nonlinear causal information flow. This multivariate method can also  EEG
differentiate between direct and indirect connectivity, enhancing its significance. Additionally, we
utilized Mutual Information (MI) to evaluate the relationship between two variables, offering insights MEG
into the linearity or nonlinearity of connectivity. This measurement provides a further understanding of

Effective Connectivity

Granger Causality

brain functionality. To assess the effectiveness of our approach, we conducted tests using simulated data
and data from five epilepsy patients. The results show that measurements based on MEG data align well
with clinical findings, while incorporating EEG data alongside MEG (in a multimodal approach) does
not improve the results.

1- Introduction
Many brain disorders, including Alzheimer’s and

exerts a causal influence on Y. Granger later reformulated this
definition using linear VAR modeling. However, this linear

schizophrenia, are recognized as complex diseases. The
interactions within the brain can be effectively modeled
as a complex network, enhancing our understanding of
information flow and functionality. Analyzing this brain
network is essential for gaining insights into these disorders.
Recent advancements in neuroimaging provide valuable
experimental data for constructing comprehensive brain
networks, uncovering topological features associated with
these conditions [1]. Studying brain connectivity to map
functional regions is crucial in neuroscience. Techniques such
as EEG and MEG help identify connectivity between different
brain regions. Granger causality is an important method for
investigating effective connectivity and causal relationships
within the brain [2]. The concept of causality was first
introduced by Wiener, who proposed that if past information
from signal X improves the prediction of signal Y, then X
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approach poses challenges for studying the brain, which
operates as a nonlinear dynamic system, making Linear
Granger causality inadequate for such contexts. To address
this limitation, various methods, including Kernel Granger
causality (KGC) and Nonlinear Granger causality (NLGC),
have been developed to explore causality in nonlinear systems
[3]. The use of artificial neural networks to compute effective
connectivity has garnered significant interest in recent years.
In 2019, a study utilized a Multi-Layer Perceptron (MLP)
network to measure nonlinear Granger causality in patients
with autism, effectively distinguishing between the linear and
nonlinear components of connectivity [4]. In the same year,
a method for estimating effective connectivity in epilepsy
patients was developed using a recurrent neural network
(RNN). This approach, known as NGUEW, employed an
optimization technique to identify the optimal time lag for
predicting the target time series, resulting in a self-organized
network structure. The study also proposed using the intensity
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of causality as a means to analyze effective connectivity [5].
In 2021, a 3D convolutional neural network (CNN) was
used to differentiate individuals with Major Depressive
Disorder (MDD) from healthy individuals. The aim was to
accurately identify MDD patients by analyzing their effective
connectivity patterns [6].

Recent advancements in artificial intelligence through
deep learning techniques have the potential to significantly
assist psychologists in diagnosing mental disorders more
efficiently. One such disorder is Myotonic Muscular
Dystrophy (MMD), which poses diagnostic challenges due to
its ambiguous symptoms. EEG is a valuable tool for studying
brain diseases, including MMD, because of its high temporal
resolution and noninvasive nature. A 2021 study proposed
a deep learning framework that utilized EEG data for the
automatic classification of MMD patients versus healthy
individuals. This framework extracted relationships between
different brain channels using methods such as Generalized
Partial Directed Coherence (GPDC) and Direct Directed
Transfer Function (dDTF) analysis. By integrating these
connectivity methods across eight frequency bands, images
were generated for each individual. These EEG-derived
images were then analyzed and classified using five different
deep-learning architectures [7]. However, in this study, we
take a different approach by applying Granger causality
analysis using artificial neural networks to epileptic data.
The most common method for training neural networks is
gradient descent, a calculus-based technique that iteratively
computes local minima of the error surface. However, this
method has significant drawbacks, including the risk of
not finding the global minimum, challenges in selecting
an appropriate learning rate, and difficulties in minimizing
highly non-convex error functions. An alternative approach
to enhance the performance of deep neural networks involves
creating hybrid models that incorporate fuzzy systems.
Additionally, various issues can arise from low sample sizes,
noisy or heterogeneous data, and severe class imbalance. To
tackle these challenges specific to deep learning, multiple
strategies have been proposed [8]. In a 2019 study, a deep
fuzzy structure was employed to model the multivariate
autoregressive framework used in Granger causality, a
fundamental method for calculating effective connectivity
in the brain. The proposed model leverages a hierarchical
stacked architecture, with first-order TSK fuzzy rules
serving as the core components of the network [9]. In 2019,
researchers proposed a new model for controlling the depth
of anesthesia (DOA) that moves beyond the conventional use
of the Bispectral Index (BIS) signal. This innovative strategy
for estimating DOA utilizes a feedforward neural network
combined with an adaptive neuro-fuzzy inference model [10].

This paper presents ANFISGC, a proposed method from
[11] for deriving Granger causality using the Adaptive Neuro-
Fuzzy Inference System (ANFIS), a neural network predictor
designed to assess conditional effective connectivity. This
approach effectively identifies both linear and nonlinear
relationships. A previous study [12] demonstrated that
ANFISGC outperforms SMN as a causality inference
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method for analyzing nonlinear, chaotic, and non-stationary
datasets. To our knowledge, no study has been conducted on
multimodal data for the effective connectivity of epilepsy
patients. In this study, in addition to using ANFISGC, we
combine EEG and MEG data to investigate whether using
multimodal data (MEEG) helps improve the results. The
extracted connectivities provide valuable insights into
dynamic systems, such as brain networks. Our study aims
to determine whether brain interactions arise from linear
information flow or nonlinear processes, utilizing mutual
information as a key tool.

An article [13] investigated the use of mutual information
to explore corticomuscular interactions with both univariate
and bivariate surrogate data, validating the approach using
simulated datasets. In our study, we adopted a two-phase
approach. First, we determined the conditional effective
connectivities. Next, we assessed the linearity of these
connections using mutual information. Section 2 details
the ANFIS method, preprocessing steps, and the concept of
mutual information. We also provide information about the
simulated datasets and the real MEG and EEG data utilized
in our analysis. These datasets were evaluated using the
ANFISGC method. In the final section, we present the results
from applying ANFISGC to both the simulated and original
data.

2- Materials and Methods

This section offers an overview of the theory behind
ANFIS, time window estimation based on symplectic
geometry, Granger causality, and mutual information.
Following this, we discuss how these three tools can be
integrated for effective connectivity estimation, while also
employing mutual information to assess linearity

2- 1- Adaptive Neuro-Fuzzy Inference System

Fuzzy logic (FL) is widely used in various modeling
systems due to its effectiveness in handling imprecise
and inexact information. FL translates human reasoning
and concept formation into fuzzy rules. However, it faces
challenges in selecting appropriate membership functions
regarding both type and quantity, as well as determining
suitable scaling factors for the fuzzification and defuzzification
stages. To overcome these limitations, the Adaptive Neuro-
Fuzzy Inference System (ANFIS) integrates the advantages
of Artificial Neural Networks (ANN) to dynamically adjust
the number of membership functions and their associated
parameters [12].

In 1993, Jang introduced the ANFIS technique as a
solution for complex and nonlinear problems. This study
utilizes the ANFIS method, which integrates a fuzzy
inference system within adaptive neural network structures.
The adaptive system maps input data to output by leveraging
human knowledge and training algorithms. These algorithms
utilize predetermined input-output data and a gradient descent
approach to fine-tune the premise parameters that define
membership functions (MFs). Additionally, the least-squares
method is employed to identify the consequent parameters
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of the output equation. ANFIS is widely applied in various
fields, including modeling nonlinear functions and predicting
chaotic time series. It consists of five layers: the first
generates membership functions, while the remaining layers
perform multiplication, normalization, linear regression, and
summation [14].

2- 2- Model Order Based on Embedding Dimension

To simplify computation, our focus is on a limited number
of variables (system order p) that can effectively describe
the entire system (brain). We have a time series (X1,...,Xn),
and we can reconstruct time-delay vectors (time window) as
(XX, X X N 1)1:) [15]. The projection of the original
system into this lower-dimensional space is defined by
choosing d=p. Nonlinear time series analysis serves as an
effective technique for extracting insights from nonlinear
dynamical systems.

A new method is proposed for determining the appropriate
embedding dimension in nonlinear time series analysis. This
approach leverages symplectic geometry to overcome the
limitations of existing methods. Current techniques, including
the correlation theorem, singular value decomposition (SVD),
and false nearest neighbors [16], and Akaike information
criterion [17], face challenges such as being data-intensive,
subjective, time-consuming, and sensitive to noise and data
length. In contrast, the proposed method considers factors
like data length, sampling interval, and noise, yielding robust
results.

2- 3- Granger Causality Index

As described in the previous section, Granger causality
(GC), introduced by Wiener, offers a bivariate linear measure
of causality. In this framework, if incorporating past values
of Y improves the prediction of X, we conclude a causal
connectivity from Y to X. The assessment of causality is
determined using the following formula:

The previous p samples of X(t) and Y(t) are included in
the AR model to forecast X:

X @)= Z [a(/)X (€ =)) W
+b(G N (= j)]+&@)

[ indicates the prediction error. Then X(t) is predicted by
own past p samples:

X (@)= c()X @ —j)+&@) @)

[)” is the prediction error of X(t).
The index of linear Granger causality is defined below.
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The conclusion of causality from y to x can be made if
LGC, |, is significantly positive. However, this measurement
is bivariate and cannot differentiate between direct and indirect
connectivity. To address this limitation, a multivariate version
based on the multivariate autoregressive (MVAR) model
has been proposed in [18]. While this approach resolves
the bivariate issue, it remains linear and may oversimplify
nonlinear dynamic systems, leading to suboptimal results.
In the following section, we will combine these methods
to develop a proposed algorithm for measuring nonlinear
conditional effective connectivity.

2- 4- Adaptive Neuro-Fuzzy Inference System Granger
Causality (ANFISGC)

We explore a more advanced version of the MVAR model
called ANFIS, which can effectively approximate both linear
and nonlinear connectivity. In our analysis, we consider a
system with N channels represented by X . where n ranges
from 1 to N and t ranges from 1 to L. To partition the data, we
create two sets: Xn‘“‘i“, which includes 75% of the X data, and
X, which contains the remaining 25%. In this section, we
focus on estimating the effective connectivity from X to X,
conditioned by X, (B—a |y)

To extract the model order p using symplectic geometry,
training sets of X » X and X, are utilized. These three signals
serve as inputs for ANFIS, w1th p-lagged samples of X fed
into the system for prediction. To avoid overfitting during
training, the error of test data is monitored over iterations, and
training is stopped when the error curve starts to increase. To
determine the optimal number of rules in ANFIS, the network
is trained with different numbers of rules ranging from 3 to
50. The mean squared error (MSE) on the testing part of X is
evaluated for each number of rules, and the number of rules
that results in the lowest MSE is chosen as the best option.

E e O =f G (=D ™ (1 ~2),
’x;mm (t _p)’
“4)
tram (t _ 1) x train (t 2), tmzn ([ p)7
x;mm ( _1)’x ;ram ( - 2),...,){7 ;mm (t _p))

In 4, f is the learned ANFIS function with the least MSE
obtained by training data, and X man oy 18 the prediction of
X min(t). The MSE is: .

MSE train 1 %

d, ll ..
et L training

L _training rain 2 train
Zt:l (X; (t)_)(;limodell(t))2
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L training is the length of the data.

Concerning Granger causality, the prediction precision
is evaluated by examining the impact of lagged samples of
Y. This evaluation leads to the conclusion that there exists
a conditional causality link (B—>a|y). Now, the prediction
of x (t) follows a similar method as described above,
but the effect of delayed samples of X is not taken into
consideration.

fztzmj,:noden(t) = g(x ;mi” (t _1)yme (t - 2),
."’x[tzmin (t _p)’x ;min (t _ 1),x ;Vain (t _2)’
X (=)

(6)

X Z‘f’r’mdelz(l ) is the prediction value of x " (¢) without
using x 7" (¢) and g is the approximator function trained by

ANFIS. MSE of this approximation is as follows:

MSE Zaizmddz = ;
- L _training 7)
L _trainin, rain > train
XZ/:} g(X; (t)_X;imodEIZ(t))z
We define the measure of conditional effective
connectivity or ANFISGC:
MS Zui:‘nodelZ
ANHSGC/}‘W‘V = ln tn;in (8)
MS a_model 1

An effective connectivity from X to X given X is
detected if d is significantly positive.

2- 5- Mutual Information

Mutual information was first introduced in classical
information theory by Shannon in 1948. It is considered
a nonparametric measure that quantifies both linear and
nonlinear dependencies between two variables. In other
words, it indicates how much knowing one variable reduces
the uncertainty of another variable [19]. The mutual
information between X and Y is defined by the following
equation:

My, =Zp(x,y)10gM

P@)P() ©)

Various methods have been proposed to investigate
information flow and measure causal interactions. For
example, Hinrichs et al. utilized directed information flow
(DIF) to assess causality in event-related experiments
involving fMRI, EEG, and MEG [20]. Similarly, Seung-
Hyun Jin et al. employed time-delayed mutual information
(TDMI) to explore the contributions of nonlinear information
flow in corticomuscular (CM) interactions [13]. While these
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studies successfully determine the direction of information
flow, they do not clarify whether the connectivity is linear
or nonlinear. This limitation arises because most existing
methods measure both linear and nonlinear dependencies
simultaneously, failing to differentiate between the various
types of connectivity.

ANFISGC can extract effective connectivity but does
not differentiate between linear and nonlinear connections;
it simply categorizes connectivity as either present or absent.
While mutual information can assess connectivity without
considering direction, time-delayed mutual information
(TDMI) does take direction into account [13]. In this research,
we focus on using mutual information to characterize the type
of connectivity, specifically to determine whether it is linear
or nonlinear.

2- 6- Surrogate Test

Surrogate data is generated by manipulating the original
data to create additional datasets for statistical analysis. This
process preserves specific properties of the original data
while introducing randomness in other aspects. There are
several methods for generating surrogate data, and in this
section, we specifically employed the Fourier-transformed
surrogates’ method. This approach helps identify the nature
of the relationship between two signals.

To generate surrogate data, the following steps are taken.
First, a Fourier transform is applied to the original data to
obtain the complex amplitudes for each frequency. Next,
these complex amplitudes are modified by randomizing their
phases, which is done by adding a uniformly distributed
random phase variable ¢ within the range [0,2m) for each
frequency. This randomization involves multiplying each
complex amplitude by the complex exponential eig. Finally,
the modified spectrum is transformed back to the time domain
to create the surrogate data. Importantly, the surrogate data
retains the same mean, variance, and power spectrum as the
original time series. In the bivariate surrogate data test, the
phase randomization process is applied simultaneously to both
the x and y time series, preserving all linear autocorrelations
and cross-correlations between them [21]. The purpose of the
bivariate surrogate test is to assess the relationship between
the two signals and determine whether it can be represented
by a linear model. Specifically, we evaluate whether there is
connectivity between the x and y data through ANFISGC,
and if so, whether this connectivity arises from nonlinear
dependence, using the bivariate surrogate test. The flowchart
in Figure 1 illustrates the overall procedure of the proposed
method. The null hypothesis corresponds to the linear
dependence of the two signals. If the null hypothesis is
rejected, we can conclude that the time series has nonlinear
dependence rather than a linear one.

To determine acceptance or rejection of the test, the
significance level S is defined by:

j— |< MISL/)"() > _MI |

o(MI (10)

surro )
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Effective
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Fig. 1. The proposed procedure diagram illustrates the steps involved in analyzing the connectivity between
two time series. The first step is to use ANFISGC to extract connections, followed by the surrogate test to
determine the type of connections. If the ANFISGC test results in rejection, it indicates that both time se-
ries are independent. In such cases, we can conclude that there is no significant connectivity between them.
However, if the test does not result in rejection, it suggests that the total connectivity includes both linear
and nonlinear connections. The next step is to perform the surrogate test. If this test is rejected, it indicates
that the original two time series can be better represented by a nonlinear model, indicating the presence
of nonlinear connectivity. On the other hand, if the surrogate test is not rejected, it implies that the total
connectivity, which passed the ANFISGC test, primarily results from their linear connectivity. Overall, this
procedure ensures a comprehensive analysis of the connectivity between two time series, helping to identify
the nature of the connections and establish the appropriate model for representation.

<MI__ > and o(MI_ ) respectively denote the mean
value MI of surrogate data and standard deviation.

The hypothesis was rejected at a 0.95 level of significance
if the value of S exceeded 1.65 [22]. To validate the methods
outlined above, we generated simulated data and one hundred
surrogate datasets for the hypothesis. The results section
includes images that support the study’s findings. We have
carefully reviewed the research methodology and the formulas
used, and we have clarified the assumptions regarding the
conditional relationship between the two signals. In the
following section, we describe the experimental data and the
preprocessing steps undertaken to implement the proposed
method.

2-7- MEG and EEG data

To achieve the objectives of this research, we
implemented our method on MEG, EEG, and multimodal
data (MEEG). MEG and EEG signals were collected from
ten epilepsy patients at Henry Ford Hospital in Detroit
(HFH), MI, USA, and the data acquisition was approved
by the HFH Institutional Review Board (IRB) committee
[23]. The MEG signals were recorded using a 148-channel
whole-head neuromagnetometer, while the EEG signals were
captured with a 32-channel electrocap. Both MEG and EEG
had a sampling frequency of 508 Hz. Data was collected
from patients during the interictal period while they were at
rest. Before applying the proposed method, we conducted
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a series of preprocessing steps on the acquired data. First,
we applied a band-pass filter with a frequency range of 3
to 50 Hz. To identify the epileptic zone, we transformed the
surface-level data into brain source data using the Multiple
Sparse Prior (MSP) technique to solve the inverse problem
[24]. This process enabled us to reconstruct the time series
of brain sources. We utilized the patients’ structural MRI
(sMRI) images to define the head meshes and address the
forward problem. For the MEG data, we employed a single-
shell model, while for the EEG data, we used the EEG BEM
model. These models effectively captured the structural
characteristics of the brain and facilitated the formulation of
the forward problem. We then computed the gain matrix to
represent 8,196 brain dipoles. All steps were simulated using
the SPM Toolbox within MATLAB 2018, which provided a
comprehensive suite of tools for brain imaging analysis and
allowed for efficient computation of the lead field (gain)
matrix. Figure 2 presents the reconstructed brain dipole
sources, illustrating the spatial locations and strengths of
brain activity identified through the inverse problem analysis.
Figure 3 illustrates the formulation of the forward model.
After calculating the power of all 8,196 brain dipoles,
we identified and retained those with power exceeding 30%
of the maximum power. These selected dipoles, deemed
dominant, correspond to regions of the brain exhibiting
significant neural activity. To determine the anatomical
regions associated with these dominant dipoles, we utilized
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Fig. 2. Map of the power of the brain time series recon-
structed from the MEG inverse problem.

the AAL atlas for labeling. Subsequently, we extracted the
unified time series for all dipoles within the same Region of
Interest (ROI) using Principal Component Analysis (PCA).
This technique allows us to reduce the dimensionality of the
data while preserving the most significant temporal variations
among the selected dipoles within each ROI.

However, due to the ill-posed nature of the inverse
problem, we encountered zero-phase correlations among the
signals obtained from PCA. To mitigate this issue, we applied
a leakage correction method [25].

Finally, we applied the ANFISGC connectivity measure
to the corrected time series.

3- Results

To ensure the robustness and validity of the proposed
ANFISGC (Adaptive Neuro-Fuzzy Inference System
Granger Causality) approach in detecting effective
connectivity, a set of controlled simulations was designed.
Specifically, three synthetic time series were generated,
each consisting of 4000 samples. These signals incorporated
white Gaussian noise terms (g1, €2, and €3), with variances
matched to those of the original signals to simulate realistic
noise levels. The signal-to-noise ratio (SNR) was fixed at 0
dB to create a challenging scenario for causality detection,
mirroring real-world neural recordings where noise is often
significant [11]. The simulated time series were constructed
to embed both nonlinear dynamics and inter-signal causal
dependencies. The mathematical formulations of the signals
are as follows:
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Fig. 3. This standard (Imaging) model in SPM defines

the forward problem by mapping the activity of brain

sources to the measured data. It incorporates the geom-

etry and electrical properties of the head, as well as the

distribution of the brain dipoles. The figure shows the

canonical cortical mesh (blue), inner skull surface (red)
and scalp surface (light brown).

x,(n)=3.4x,(n -)(1-x(n _1))e—x5<n_1) r(n)

x,(n)=3.4x,(n -)(1-x;(n —1))e’*22(”’1)
+0.5x,(n —1)x,(n —1)+&,(n)

x,(n)=34x,(n-D(1-x;(n —D))e i
+0.3x,(n —=1)+0.5x  (n —1)+ &(n)

(11)

These equations define a coupled system where each
signal exhibits both self-dynamics and cross-dependencies.
The signal x,(n) evolves independently with complex
nonlinear behavior, while x ,(n) depends both on its previous
value and that of x,(n), thus introducing a directed causal
link x, = x,. Similarly, x,(n) is influenced by both x,
and x,, reflecting the causal paths x, = x; and x, > x;
. This example serves as an effective simulation model for
investigating the capabilities of ANFISGC in detecting both
linear and nonlinear connectivity in effective connectivity.
Since the ground truth structure of the interdependencies is
known, the performance of ANFISGC can be quantitatively
assessed. To establish causality, the following two principles
must be upheld:

1. The causality value of B—>a|y should be positive. A
negative value suggests that the  signal does not contribute
to the prediction of the a signal.

2. The causality value of B—>a|y must be greater than
the (1-p_value) multiplied by 100 percentile of the null
distribution.

Figure 4 illustrates the histogram of the resulting
ANFISGC for 100 surrogate data (depicted in blue). To fulfill
the conditions above, if the (1-p)x100 percentile of the null
distribution is positive, it is considered the threshold (shown
as the green line).
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Fig. 4. Histograms of the ANFISGC values for both original and surrogate data are used to inves-
tigate connectivity in the simulation data. ANFISGC accurately captures connectivity based on the
Granger Causality index, particularly concerning the right side’s threshold.

If not, the threshold is set to zero. The causal coupling
(B—>a|y) is only confirmed if the of the original data
(represented by a red star in Figure 4) exceeds the threshold.
As you can see in Table 1, ANFISGC accurately identifies
and effectively connects.

To evaluate the performance of the surrogate test based on
Mutual Information (MI) for the second phase of the research,
we generated two sets of simulated data representing linear
and nonlinear relationships:

y(m)=xn-1)+10x (n -1)’ +&(n)

y(n)=10x (n —1)+&(n) (12)

x is a random signal with a length of 50 data points, and
€ is a white Gaussian noise. The MI between two signals, x
and y, obtained from both linear and nonlinear equations, is
calculated. We obtained results for 200 pairs of signals, x and
y. Their mutual information (MI) histogram is represented in
Figure 5, multiplied by 100 percentiles of the null distribution.
As in Figure 5, it is clear that the number of signals that have
a linear relationship with the group of signals that have a non-
linear relationship are completely separated in such a way
that they form two null and alternative hypotheses.

From another perspective, as discussed in the previous
section, normalizing the Fourier transform phases of the signals
x and y individually generates what is known as “surrogate
data.” This data removes any nonlinear relationships while
preserving linear associations. To validate this approach,
we again compute The results are shown in Figures 6 and 7,
which display data for 200 pairs of signals—half exhibiting
linear relationships and the other half nonlinear relationships.
It is clear that, for linear relationships, the mutual information
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Table 1. The connectivity results of ANFISGC for simula-

tion data.
From
To
X1 X2 X3
X1 0 0 0
X2 1 0 0
X3 1 1 0

(MI) for the original and surrogate data falls within a similar
range. In contrast, for nonlinear relationships, the MI of the
original data does not align with that of the surrogate data. the
mutual information (MI) for both the original signal pairs and
their surrogate data.

This outcome is expected because nonlinear relationships
are not preserved in the surrogate data, leading to a significant
difference in their mutual information (MI) values. These
findings highlight the effectiveness of the normalization
procedure, particularly in distinguishing between linear
and nonlinear relationships. To further investigate the
performance of MI, we calculate it for various values of “c”
and “p,” resulting in Tables 2 and 3.

ym)=x(n-D+cx(n—-17 +&(n) (13)

Based on the information in Table 2, it seems that the
accuracy of relationship-type assessments using surrogate
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2= /M of dataset of nonlinear connection
l-MI of dataset of linear connection

Fig. 5. Distribution of mutual information (MI) for 200 pairs of linear and nonlinear signal rela-
tionships. The difference in the range of MI values corresponding to linear and nonlinear relation-
ships helps us identify the type of relationship between real signals.

12 T T T T T T

I | of surrogate dataset of nonlinear connection
* Ml of orginal dataset of nonlinear connection

Frequency
[«)]

MI (bit)

Fig. 6. MI related to the real signals x and y, as well as their surrogate data, is presented here. The

red star and blue histogram represent the MI value associated with the nonlinear relationship

between x and y and their surrogate data. The difference in the MI value ranges between the real

signals x, y and the associated surrogate data, as shown in Figure 5, indicates that the relationship
between x and y is nonlinear(S>1.65).
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I M of surrogate dataset of linear connection
* Ml of orginal dataset of linear connection

Frequency

MI(bit)

Fig. 7. The red star and blue histogram indicate the MI for the linear relationship between x and

y and their surrogate data. Using a similar approach, due to the overlap in the range of MI values

between the signals x, y, and the surrogate data, we conclude that the relationship between x and
y is linear(S<1.65).

data-based mutual information is influenced by the
gradient of the relationship. Specifically, as the degree of
nonlinearity between the two signals increases (as indicated
by the power term in Equation 13), the accuracy of
predicting nonlinear relationships also rises, and vice versa.
In other words, the ability to distinguish between linear and
nonlinear relationships improves with the strength of the
nonlinearity. This observation indicates that the method is
effective in discerning the nature of the relationship between
signals based on their mutual information. The presence of
a significant nonlinear component seems to enhance the
accuracy in determining whether the relationship is linear
or nonlinear.

Next, let’s apply these methods to recorded data from
epilepsy patients.

To start, EEG, MEG, and MEEG data were collected from
a single patient. Following the preprocessing steps outlined
in Section II and solving the inverse problem, effective

Table 2. Assessment of relationship types using surrogate
data-based mutual information for various values of “c”

and “p”.
Parameters Nonlinearity prediction accuracy
c=10,p=2 68%
c=10,p=3 94%
c=10,p=4 100%
c=10,p=5 100%

relationships between brain regions of interest (ROIs) were
established, as illustrated below. The region that exhibits the
most effective connectivity with others is referred to as the
dominant region (DR).

Table 3. The accuracy of nonlinearity measurement with different values of ¢ and a fixed value of p
(where p=3) using MI and surrogate data.

Parameters c=05p=3 c=1,p=3 c¢=2,p=3 c=4,p=3 c=8,p=3
Nonlinearity
prediction accuracy  34% 53% 76% 95% 97%
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Fig. 8. The regions of interest (ROIs) related to the MEG data for patient EP0088 are illustrated, showing the power
of signals from different areas of the brain across the sagittal, axial, and coronal planes. The ParaHippocampal R
region has been identified as the dominant area due to its most effective relationships with other ROIs, which in-

clude: 1. Fusiform_R, 2. Frontal Med_Orb_R, 3. OFCant_R, 4. ParaHippocampal R, and 5. OFCant_L.

Table 4. Results related to DRs for all epilepsy patients across the EEG, MEG, and MEEG datasets.

Patiens MEG EEG MEEG IE*
Calcarine L
EP0088 ParaHippocampal R Temporal Pole Mid R R
Precentral R
Frontal Sup Medial R
EP0180 Temporal Mid L Temporal Inf R L
Olfactory L
Fusiform L
EP1041 Temporal Inf R OFClat R Temporal Pole Mid L R
Temporal Mid R
Angular L
EP1045 OFCant R Temporal_Pole_Mid OFCant R R
- Parietal Sup L
Calcarine L
EP1158 Fusiform L Postcentral L R

SupraMarginal L

* 1E; Intracranial evaluation

The table indicates that the reported hemispheres for
seizure foci exhibit similarities across different recording
methods in some instances—suggesting consistency in
localization—while in other cases, discrepancies are
observed, which may be due to methodological differences,
variability in seizure propagation, or limitations in the
accuracy of certain techniques.
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The subsequent table presents the assessment of the types
of effective relationships for each reported dominant region
(DR) in Table 4, along with the calculated significance
level (S) values. As mentioned earlier, relationships are
classified as linear when S is less than 1.65, and nonlinear
otherwise. Additionally, Table 5 provides an example of
connectivity between the DR area and other regions in some
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Table 5. Values for the type of connectivity measurements between the dominant region (DR) and other
brain regions for all patients.

Patient Data DR *R1 R2 R3 R4 RS R6
MEG ParaHippocampal R 5.8 0.8 3.5 39
3 Calcarine L 16.9 153
% FEG Precentral R 17.3 23.4
MEEG Temporal Pole Mid R 5.5 6.3 5.8 53 10.8
Frontal Sup Medial R 11.9 9.6 11 10.4 10.2
2 MEG Olfactory L 10.4 10.7 54 9.6 4.5
% EEG Temporal Mid L 0.9 32 1.4 1.8 0.8
MEEG Temporal Inf R 6.7 5.6 4.7 2.7 1.9
Fusiform L 1.8 22 0.7 2.1 3 3
_ MEG Temporal Inf R 1 0.7 0.1 0.2 0.6 1
§ Temporal Mid R 1.9 0.6 1.9 0.1 23 1.9
& EEG OFClat R 0.2 0.3 2.5 2 2.3 22
MEEG Temporal Pole Mid L 24 2.1 23 3.6 2.7
EEG OFCant R 0.4 1.8 1.8 1.7 1.7
- MEG Temporal Pole Mid L 0.3 0.5 3.6 0.1 14 23
3 Angular L 2 24 21 32 14 26
& MEEG OFCant R 2 0.1 2.1 2.7 1.3 2.4
Parietal Sup L 2.5 2 24 24 2.7 14
EEG Fusiform L 3.5 2.8 2.7 2.8 1.9
3 MEG Calcarine L 0 1.5 1.7 0.3
é MEEG SupraMarginal L 1.8 1 1.1 0.9
Postcentral L 5.2 6.3 4.5 6.8

patients. In this case, we focus on patient EP1045, where the
significance levels of S for all patients are shown. The types
of effective relationships between the DR and other areas
related to MEG exhibit varying S values, such as 1.78 and
1.68, among others.

4- Discussion

The dominant areas for all the patients in the case of
EEG, MEG, and MEEG datasets were obtained. The results
demonstrated that the reported DRs were not necessarily
located in the common hemisphere of the brain. This suggests
that using both EEG and MEG datasets simultaneously will
not be efficient in detecting the dominant spots for epilepsy.
For instance, in patient EP0088, the DRs identified from EEG,
MEG, and MEEG were Precentral R, ParaHippocampal R,
and Temporal Pole Mid R, respectively—all located in the
right hemisphere. In contrast, patient EP0180 exhibited DRs
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in Temporal Mid L, Olfactory L, and Temporal Inf R for
EEG, MEG, and MEEG, respectively, indicating a lack of
hemispheric consistency. These results, detailed in Table 4,
highlight the complexity and variability of DR localization
across different modalities.

On the other hand, based on the values presented in Tables
2 and 3, it can be inferred that a relationship characterized
by an S-value less than 1.65 is not necessarily purely linear.
The S-index is sensitive to the gradient of the nonlinear
component (power p), which influences the nonlinearity
in the relationship between two signals. Therefore, even
relationships classified as linear by this threshold may contain
anon-negligible nonlinear contribution. Taken together, these
findings suggest that the simultaneous analysis of EEG and
MEG data does not inherently improve the reliability of DR
detection.

In a study in 2018, DR values were measured using only
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MEG data with the ANFISGC method in epileptic patients.
In contrast with our study, only one DR was reported for
each patient [6]. Another difference with this study is that,
in addition to determining cause and effect relationships
between brain regions, we have determined the type of
these relationships, which means which ones are linear and
which ones are nonlinear. The measurement of the type of
communication has also been done in research in 2019, in
which the amount of participation of the linear and non-linear
parts in an effective relationship has been calculated in a
specific way, and the intensity of each is determined [11].

During research in the same year, the coefficient of
participation of the linear part in an effective non-linear
relationship was calculated, which provides information from
both the linear and non-linear parts in the same relationship.
The measurement of the type of relationship in our study
was done in a binary way, which means that we assumed the
relationship is either linear or non-linear. A weakness of our
method is that the degrees of participation of the linear and
non-linear parts are not calculated. There is no information
about the effective relationship. For example, in Table
5, the significance level of S is shown for all patients. We
consider patient EP1045 as an example. The type of effective
relationships between DR and other areas related to MEG has
adopted variable S with values of 1.78, 1.68, etc. According
to our default, all these relationships are considered non-
linear due to the large S value of 1.65, but on the other hand,
these values are not much different from the threshold limit
of 1.65, and this is indicative of the fact that the linear part
can be involved in these effective relationships. In the next
step of the study, the surrogate data results based on mutual
information were implemented on the simulated data with
different coefficients (intensity) and powers, and we obtained
different accuracies of intensity (coefficient c). In these
cases, it is better to express the result in this way that the
intensity of the non-linear part, both in terms of the gradient
and the coefficient, is much less, to the point where it may be
completely zero, and only the linear part is involved in the
effective relationship. However, due to the binary nature of
the test, we do not know it.

5- Conclusion

The study examined dominant areas in patients using
EEG, MEG, and MEEG datasets to identify regions associated
with epilepsy. Results indicated that these dominant regions
(DRs) were not always in the same hemisphere, suggesting
that using EEG and MEG data together may not enhance the
detection of epileptic areas. For instance, patient EP0088
showed DRs in the right hemisphere, while EP0180 had areas
across both hemispheres, complicating the diagnosis.

The research also identified both linear and nonlinear
relationships. However, it pointed out that the binary
classification (linear or nonlinear) used in this analysis did
not capture the degree of involvement of each relationship
type. Further testing showed that even relationships deemed
linear might still contain significant nonlinear components,
emphasizing the limitations of the current analytical approach.
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6- Future Work

To more comprehensively measure the type of effective
relationships in the study of the brain network of epilepsy
patients, we can obtain a relationship that maps the input
signals to the output signal for prediction, and by using
methods such as z-transformation and Taylor expansion, we
can determine the linear and non-linear parts of this input-
output relationship. In this way, in addition to the participation
rate of each compartment, we can have a comparison with
what the mutual information method obtains. The reports
obtained for the DR of epileptic patients completely depend
on the interictal interval or IED, which is detected during
the time series of the EEG signal by an epileptologist. It is
necessary to perform this operation accurately to obtain
the correct results for the dominant brain regions of the
patients. In determining the type of effective relationships,
it is possible to create histograms for each of the identified
effective relationships by using mutual information and
surrogate data techniques, such as measuring the validity
of effective relationships, to conduct a more comprehensive
study of the brain networks of epilepsy patients.
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