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ABSTRACT: With the advent of robots in human life, such as self-driving cars and unnamed aerial 
vehicles, developing effective methods to improve the performance of these autonomous systems 
has become one of the most attractive research areas in recent years. One of the most fundamental 
challenges of mobile robots is applying and developing an appropriate and effective navigation strategy. 
The concept of navigation deals with subjects such as finding the current position in the environment, 
planning appropriate actions to reach the target, and controlling the actuators to track the desired actions. 
Therefore, the concept of navigation has different aspects, and the promotion of these aspects leads to the 
development of good guidance for autonomous robot systems. The first step in developing the navigation 
unit is identifying the related and correlated areas. This article performs a bibliographic analysis on the 
development rate, finding sources, and high-occurrence keywords. The required data are obtained from 
the Scopus database between 2015 and 2025. The most frequent keywords in the last eight years specify 
the most effective and relevant areas in the concept of navigation. Then, by qualitatively examining the 
most important keywords, the current position, challenges, and progress are determined.
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1- Introduction
In recent years, the field of robotics has achieved 

remarkable progress due to its wide range of capabilities 
and applications. Robots are now extensively employed 
in factories, laboratories, warehouses, and many other 
environments, where they can either collaborate with humans 
or operate autonomously. Many of these systems are able to 
make decisions and perform tasks without human intervention. 
Owing to their diverse applications in both industrial and non-
industrial domains, robots have consistently been a central 
focus of research and development.

Among the various types of robots, wheeled mobile robots 
(WMRs) represent one of the most widely used categories. 
Their structural simplicity, adaptability, and efficiency 
make them suitable for diverse environments and operating 
conditions. 

WMRs have been applied in numerous fields, including 
surveillance, planetary exploration, patrolling, emergency 
rescue, reconnaissance, petrochemical industries, industrial 
automation, construction, entertainment, museum guidance, 
personal assistance, extreme environment interventions, 
transportation, and medical care, among others. According to 
previous studies, navigation is a fundamental element in the 
design and functionality of mobile robots [1]. The navigation 
process typically consists of three main components. 

The first is localization, which identifies the robot’s 

position and orientation using sensors and cameras. In more 
complex environments, particularly dynamic or unknown 
ones, localization also involves generating maps of the 
surroundings. The second component is path planning, where 
a collision-free trajectory is determined based on the robot’s 
current position, target location, and the presence of obstacles 
[2]. 

The third component is motion control, which ensures 
that the robot can effectively follow the planned path [3]. 
Therefore, the navigation unit integrates essential subsystems 
such as localization [1], [4], sensor fusion and vision systems 
[5], [6], path planning [2], [7], and motion tracking control 
[3], [8]. Localization addresses the fundamental question, 
“Where am I?”, while sensor fusion techniques are used to 
reduce accumulated errors caused by internal sensors [9]. 

The choice of path-planning method strongly depends 
on the type of environment. Although path planning in static 
environments is generally straightforward, achieving reliable 
and collision-free navigation in dynamic and unknown 
environments remains a major challenge in recent years [10], 
[11]. The efficiency of any navigation strategy is directly 
influenced by the accuracy of environmental information 
[12]. At the motion control level, kinematic and dynamic 
constraints of mobile robots must be considered. 

These constraints are typically classified into holonomic 
and non-holonomic categories. Kinematic analysis focuses 
on the robot’s position and orientation, whereas dynamic 
analysis also considers forces and torques, providing a more 
realistic framework for practical implementation. Selecting *Corresponding author’s email: farrokhi@iust.ac.ir
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an appropriate control approach thus depends on how the 
robot’s system is modeled and interpreted. This review aims 
to highlight critical aspects of navigation in wheeled mobile 
robots, focusing on key concepts, algorithms, and technical 
considerations. In particular, the study seeks to identify the 
strengths and limitations of existing approaches. 

A bibliometric analysis is also conducted to examine 
publication trends, citation patterns, and keyword evolution 
in this field. Such an approach helps uncover the most 
influential research directions, identify emerging hotspots, 
and reveal promising areas for future investigation. 

Accordingly, the remainder of this article is structured as 
follows. Section II presents a bibliometric review to trace the 
progression and orientation of published works on mobile 
robot navigation. Section III provides a qualitative analysis of 
the most frequently used keywords, highlighting fundamental 
issues and research priorities in this domain.

2- Quantitative Analysis
This section presents a bibliometric analysis of mobile 

robot navigation. The bibliographic data were collected 

on December 23, 2024, from two major databases: Web of 
Science (WoS) and Scopus. According to [13], WoS offers a 
reliable dataset; however, Scopus provides broader coverage 
and richer document collections for bibliometric studies (FIG. 
1). To ensure accuracy and efficiency, the database search 
was performed using meaningful keyword combinations. 
Specifically, the query “mobile robot” AND (“navigation” 
OR “localization”) was applied in both WoS and Scopus.

As shown in FIG. 1, Scopus was selected as the reference 
database for this study, containing 103,634 documents. To 
focus on recent developments, only works published between 
2015 and 2024 were considered, excluding documents before 
2015 and those indexed in 2025. Consequently, the final 
dataset was limited to 54,212 documents. FIG. 1 illustrates 
the document selection process following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) flow diagram.

The publication trend is presented in FIG. 2, which 
demonstrates the continuous growth of studies in the field 
of navigation. The increasing number of documents reflects 
the growing research activities, discussions, and demand 
for further developments. Since 2000, the publication rate 

 

Fig. 1. The PRISMA diagram for the quantitative analysis of the navigation concept for mobile robots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Id
en

tif
ic

at
io

n 
 

Sc
re

en
in

g 
 

Topic search by 
(“mobile robot” AND 

(“navigation” OR 
“localization”)) 
through Scopus 

database: 103,634 

Topic search by 
(“mobile robot” AND 

(“navigation” OR 
“localization”)) 
through WoS 

database: 30,972 

Scopus database is selected because it is more 
comprehensive: 103,634 

Total number of documents: 103,634 

Total number of 
documents: 54,438 

documents 
before 2015 are 

omitted 

Total number of 
documents: 54,212 

documents from 
2025 are 
omitted 

Total number of documents: 54,212 
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has risen significantly, driven by expanding resources and 
institutional support. An analysis of the most active countries 
reveals the global distribution of research capacity. 

Between 2015 and 2024, the top five contributors were 
China, the United States, India, Germany, and Japan. In terms 
of disciplinary contributions, Computer Science, Engineering, 
Mathematics, Physics and Astronomy, and Materials Science 
emerged as the leading fields publishing documents related 
to mobile robot navigation. Identifying these active domains 
is important for fostering interdisciplinary collaboration, 

which can help address limitations and enhance the quality 
of research outcomes. 

Finally, the types of published documents are summarized 
in Fig. 3, providing insight into the distribution of articles, 
conference papers, reviews, and other document categories.

Keyword analysis provides valuable insights into research 
interests, emerging challenges, and potential application 
areas in the field. Table 1 presents the most frequently used 
keywords identified in this study. 

The analysis reveals that navigation is closely associated 

 
Fig. 2. The annual number of publications on the subject of navigation for mobile robots from 2015 to 2025. 
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Fig. 2. The annual number of publications on the subject of navigation for mobile robots from 
2015 to 2025.

 

Fig. 3. Type of documents, Blue: From 1975 to 2025, Red: From 2015 to 2024. 
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with several related concepts, including robot types, path 
planning, machine learning, and motion tracking control. 
This indicates that the development of effective navigation 
methods requires comprehensive knowledge and integration 
of these interconnected domains. 

Overall, the keyword analysis underscores the 
interdisciplinary nature of mobile robot navigation and 
highlights the importance of combining techniques from 
multiple research fields to address current challenges and 
advance future developments. Furthermore, FIG. 4 illustrates 
the relative contribution of each major research field related 
to mobile robot navigation, highlighting the interdisciplinary 
nature of the topic.

Fig. 5 illustrates the percentage growth of documents 
published in the top 10 sources over the past seven years. 

The analysis indicates that journals such as IEEE Access, 
IEEE Robotics and Automation Letters, and Robotics and 
Autonomous Systems have shown a steady increase in 
publications related to mobile robot navigation during the 
last three years. This trend suggests that these journals are 
becoming prominent outlets for research in this domain, 
making them particularly relevant for scholars aiming to 
disseminate their work on mobile robot navigation.

3- Qualitative Analysis 
3- 1- Types of Robots

Robots are developed to enhance human performance, 
simplify complex tasks, and reduce operational risks. Their 
design and structure are determined by their intended purpose 
and mission. In this article, robots are categorized as illustrated 

Table 1. Occurrence of top keywords for mobile robots’ navigation from 2015 to 2024.Table 1. Occurrence of top keywords for mobile robots’ navigation from 2015 to 2024. 

# Keyword Occurrence # Keyword Occurrence 

1 Robots 10,367 11 Cameras 2,612 
2 Mobile Robots 9,217 12 Agricultural Robots 2,607 

3 Robotics 8,913 13 Mapping 2,559 

4 Navigation 6,927 14 Computer Vision 2,496 

5 Motion Planning 5,654 15 Deep Learning 2,483 

6 Robot Programming 4,958 16 Collision Avoidance 2,458 

7 Intelligent Robots 2,941 17 Antennas 2,453 

8 Controllers 2,848 18 Reinforcement Learning 2,018 

9 Path Planning 2,708 19 Vehicles 2,010 

10 Indoor Positioning Systems 2,615 20 Optimization 1,799 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The share of the top 4 keywords in the concept of mobile robot navigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control 
System

38%

Motion 
Planning

28%

Machine 
Learning 

15%

Localization
19%

Fig. 4. The share of the top 4 keywords in the concept of mobile robot navigation.



M. Ataollahi and M. Farrokhi, AUT J. Elec. Eng., 58(1) (2026) 3-30, DOI: 10.22060/eej.2025.24755.5759

7

in Fig. 6.
Ground robots are the most widely employed type. They 

include domestic, security, environmental exploration (e.g., 
disaster response and wildlife monitoring), industrial, and 
medical robots. Industrial and medical robots are generally 
classified as fixed manipulators, while mobile ground 
robots are designed for more dynamic and versatile tasks. 
Among them, wheeled mobile robots (WMRs) are one of 
the most influential categories, offering diverse designs, 
tasks, and sizes depending on application requirements. 
The most notable types include differential-drive robots, 

autonomous vehicles, omnidirectional WMRs, and synchro-
drive robots. The number and type of wheels significantly 
affect a robot’s kinematic and dynamic properties, as well 
as its maneuverability. Typically, four types of wheels are 
employed: fixed standard wheels, castor wheels, Swedish 
wheels, and spherical wheels. 

According to [14], [15], three wheels are sufficient 
to ensure stability, although two-wheeled configurations 
are also feasible. Two- and three-wheeled robots offer 
advantages such as simpler design, lower complexity, ease 
of control, and guaranteed stability [16]. Tracked mobile 

 

 

FIG. 5. Published documents in the top 10 sources between 2015 and 2025 
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robots are primarily employed for exploration tasks due to 
their robust wheel structure. Legged robots, on the other 
hand, provide better energy efficiency, stability, and mobility 
compared with wheeled robots [17]. However, they are 
generally more expensive and complex, with kinematic 
and dynamic stability being their primary challenge. These 
robots can be designed with one or multiple legs. Hybrid 
robots are developed for specific purposes, such as mobile 
manipulators equipped with arms [18] or water-based robots 
with multiple legs [19]. Water-based and aerial robots also 
constitute common categories of robots. Another important 
distinction lies between unmanned robots and autonomous 
robots. Unmanned robots are typically remotely controlled by 
human operators, while autonomous robots operate without 
direct human intervention [20].

In this study, the focus is on wheeled mobile robots. 
Accordingly, the following sections address key issues related 
to their design and operation.

3- 1- 1- Sensors for Wheeled Mobile Robots
Wheeled mobile robots require sensors tailored to their 

operational environment and task complexity. One of their 
major challenges is achieving autonomy, which is partially 
addressed through the integration of diverse sensors. 
Generally, WMRs rely on sensors for three primary purposes: 
localization, environmental perception, and motion control. 
Sensors and cameras are used to gather different types of 
information, and their interpretation varies depending on 
the application. For navigation, robots typically employ 
both internal sensors (e.g., position sensors, encoders, 
accelerometers) and external sensors (e.g., sonars, laser 
sensors, ultrasonic sensors, and proximity sensors) [21], [22]. 
These systems enhance accuracy, reduce accumulated errors, 
and enrich the data required for reliable navigation [23].

3- 1- 2- Visual Sensors
Visual systems play a central role in mobile robot 

navigation. Commonly used devices include RGB cameras 
[25], event-based cameras [26], thermal cameras [27], 3D 
cameras [28], and stereo cameras [29], [30]. RGB cameras 
provide color information, enabling detailed scene analysis 
and improving system reliability.

Event-based cameras measure pixel brightness changes 
asynchronously, encoding time, location, and intensity. They 
offer high temporal resolution, wide dynamic range, low 
energy consumption, high bandwidth, and reduced motion 
blur [31].

Thermal cameras operate in the infrared spectrum, 
allowing object detection in low-light conditions (e.g., 
nighttime), though they generally offer lower resolution than 
RGB cameras [32]. Stereo cameras employ multiple lenses 
to reduce occlusion and enable accurate depth measurement, 
thereby improving scene interpretation [33]. 3D cameras 
capture volumetric information, enabling three-dimensional 
environmental perception [34]. Visual sensors provide 
rich information, color perception, and relatively low cost. 
However, their performance deteriorates in adverse weather 

conditions (e.g., rain or fog), and they require advanced 
image-processing software.

3- 1- 3- Laser-Based and Active Sensors
Laser-based sensors, available in both 2D and 3D formats, 

provide high accuracy and fast processing, with 3D systems 
offering richer environmental data. Their main drawback is 
their relatively high cost [35]. 

Active sensors, such as ultrasonic systems and cameras 
with integrated illumination, are widely used in autonomous 
WMRs for obstacle detection and mapping. While they 
provide reliable information for collision avoidance, they are 
highly sensitive to lighting conditions, which reduces their 
effectiveness in extreme environments.

3- 1- 4- Sensor Fusion
To overcome the limitations of individual sensors, sensor 

fusion is widely applied in mobile robot navigation. Fusion 
techniques integrate data from multiple sensors to reduce 
uncertainty, increase accuracy, and improve overall system 
reliability. Additional benefits include extended spatial and 
temporal coverage, enhanced resolution, and reduced system 
complexity [5].

The most powerful fusion methods include maximum 
likelihood estimation, Kalman filtering, and particle filtering 
[35], each of which offers distinct strengths depending on the 
application context.

3- 2- Concept and Approaches of Localization 
The first step in operating wheeled mobile robots in known 

or unknown environments is finding the current location. The 
problem of localization can be divided into three parts: 1) 
position tracking, which has the most studies (55%), 2) global 
positioning/localization is in the second place (26%), and 3) 
kidnapped robots (19%) [36]. Wheeled mobile robots employ 
internal sensors to track their movements in the environment. 
Due to measurement and accumulation errors, it is necessary 
to use information from external sensors to determine their 
position relative to the map. According to [37], the most 
effective positioning methods are odometry, although it is the 
most straightforward way. However, the problem is positional 
drift due to slipping wheels [38]. Inertial navigation does 
not depend on the environmental conditions or view of the 
environment; however, its exact implementation is costly 
[39]. 

Magnetic compasses are resistant to environmental and 
Earth’s magnetic field effects. Nevertheless, they are usually 
deflected by the Earth’s magnetic field near power lines or 
steel structures [40]. Active beacons and global positioning 
systems are always available, but their accuracy is low, and the 
efficiency decreases in closed environments [41]. Landmark 
navigations are usually easily recognizable, but most of 
them are in fixed and specified positions. In the next step, 
the localization algorithm must specify the robot’s position 
on the map. The accuracy of the map is entirely related to 
the task and the accuracy required for the wheeled mobile 
robot. In some applications, the map needs to be updated, or 
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even a map of the environment must be created. Therefore, 
localization methods can be divided into two categories 
based on a predetermined map: 1) probabilistic approaches 
and 2) autonomous map building. There are three common 
perspectives for implementing probability-based localization 
[37]:
•	 Markov localization: The current position is estimated 

based on the robot’s previous positions and odometer 
(prediction phase). Then, by combining information from 
the external sensors with the estimated current position, 
which is obtained by the internal sensors, the robot’s 
current position is modified (perception phase). The 
capabilities of this approach can be appropriate to solve 
three problems 1) localization, 2) the ability to run from 
an unknown position, and 3) the ability to track multiple 
points by the robot. This method needs to describe the 
space discretely to update the probability of possible 
situations. Nevertheless, limited memory is required due 
to the description of discrete space [42], [43]. Moreover, 
this technique can use any probability distribution 
function to display the robot’s position [44].

•	 Kalman Filter (KF) localization: This technique only 
uses the Gaussian probability distribution function to 
estimate the position [37]. In the prediction phase, an 
estimate of the motion model is obtained along with 
the measurement uncertainty of the internal sensors 
(Gaussian error). Then, in the perception phase, the 
assessments are updated based on the weighted average, 
leading to an increase in the estimate’s accuracy. This 
approach is based on a sensor fusion approach that can 
effectively solve the problem of position tracking [36]. 
The limitation of this method is that the initial position 
of the tracking needs to be known. This method can also 
be implemented in the continuous world [45]. The KF is 
developed for linear systems. However, many systems 
are nonlinear. Hence, the Extended Kalman filter (EKF) 
was introduced to overcome the problem of nonlinearity. 
In the EKF, the system is linearized around the operating 
point. Comparing the KF and the EKF [49] shows that 
the EKF is more efficient than the KF in estimating the 
robot’s position. In this trend, the Unscented Kalman 
Filter (UKF) was developed, which uses an unscented 
transform for linearization. To update the perspective on 
multi-sensor fusion and sensor comparisons in mobile-
robot localization, a recent comprehensive review is also 
available [181]. A review study provides a comparison 
based on the practical data between the EKF and UKF, 
which shows that the EKF works as well as the UKF for 
the localization aim of the mobile robot [50].

•	 Monte Carlo Localization (MCL): This approach is 
also known as Particle Filter (PF) localization [46], 
which selects a set of possible positions from the total 
set of possible positions to construct the robot belief. 
This method reduces the number of updates and thus 
the reduction in complexity. A specific PF is introduced 
by combining the Markov chain Monte Carlo sampling 
technique and the Differential Evolution method to 

minimize a fitness function online. It can apply effective 
localization in conditions such as dynamic and unmodeled 
obstacles [47]. Reference [48] introduces a new Markov 
Vision-based localization approach for challenges in 
visual conditions and complex roadways. 
For more information on probabilistic approaches, recent 

studies, challenges, and developments, the reader may refer 
to [51]. Due to the dynamics of the environment in many 
applications, the idea of autonomous map building has 
received much attention. The wheeled mobile robot localizes 
itself in three stages: “starting exploration from a random 
location”, “identifying the environment through sensors”, 
and “making a map based on information received from the 
surroundings” [52]. Since the quality and accuracy of the map 
depend on identifying the environment, the type and manner 
of fusion of the information received from the sensors are 
influential. 

With the development of visual systems, the possibility 
of accessing rich data has been provided, and has taken a big 
step in developing autonomous map-building strategies [53]. 
A concept called Simultaneous Localization and Mapping 
(SLAM) has been proposed to create a map automatically 
by the wheeled mobile robot. Creating a map has advantages 
such as the possibility of path planning, limiting the estimating 
error of the position of the robot, and dead-reckoning (limiting 
the error using a loop closure [54]) [55]. Initially, the SLAM 
problem was introduced as probabilistic formulations and 
was developed based on the KFs and PFs [56] and [57]. The 
first SLAM was formulated based on EKF, which used an 
extended vector including robot pose and the position of all 
environment features [36]. The “Robocentric Map Joining 
algorithm” was introduced to overcome the uncertainty of 
the vehicle movement and sensor model conditions in the 
implementation of the EKF-SLAM, which is a concept based 
on creating a sequence of independent local maps by robot-
centered representation in each regional map [58]. On the 
other hand, the UKF-SLAM approach has advantages such 
as increasing the accuracy of state estimation, reducing the 
effects of linearization, and proper estimation of variance and 
mean linearity as compared with the EKF-SLAM approach. 
However, its disadvantages include cubic computational 
complexity in the number of states and inconsistency 
of the state estimates. The introduction of SLAM based 
on Observability-Constrained UKF (OC-UKF) reduced 
calculations’ complexity and increased accuracy of the state 
estimates [59]. Ref. [60] presented a comparison between the 
EKF and UKF based on the results. These two filters perform 
relatively well in reconstructing the robot’s position because 
the nonlinearities of the model are not severe enough to 
highlight the fundamental differences. Fast localization and 
mapping (FastSLAM) is based on particle filtering and has 
been considered in many articles. However, two important 
problems of particle filters are “impoverishment” and 
“degeneracy”. 

Evolutionary methods such as Particle Swarm 
Optimization (PSO) and bat-inspired optimization are used 
to improve these problems. To overcome the impoverishment 
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problem due to particle depletion in the resampling phase in 
FastSLAM, an improved PSO-based resampling method was 
proposed for the pose convergence of the particle set instead 
of rejection and replication. In fact, utilizing the improved 
PSO-based resampling method leads to better accuracy 
than the standard FastSLAM [61]. Currently, the concept 
of SLAM is significantly improved by computer vision, 
signal processing, geometry, graph theory, optimization, 
probabilistic estimation, and system integration, sensor 
calibration [62]. By introducing a predictive model-based 
SLAM framework using the control switching mechanism, 
the concepts of “increasing performance by reducing SLAM 
uncertainty” and “area coverage work” in obtaining a 
collision-free path were satisfied. In fact, the graph topology 
approximates the original problem to a constrained nonlinear 
least-squares problem, leading to reduced SLAM uncertainty. 
Moreover, a sequential quadratic programming method 
addresses the area coverage task [63]. 

A brain-robot interface (BRI) based on a control system 
is proposed in [64], where a combination of RGB-D (to gain 
rich information), optical flow (to track feature points in 
real-time accurately), and deep learning (for object-detection 
purposes and to reduce localization error) is performed. It has 
been presented to achieve navigation and control of a wheeled 
mobile robot in unknown environments. For comprehensive 
information on SLAM, especially vision-based SLAM, the 
reader may refer to [62]. Moreover, [65] reviews wheeled 
mobile robots’ solutions, challenges, and applications in 
dynamic human-presence environments. A recent trend 
review on autonomous mobile-robot path planning provides 
an updated overview of search, sampling-, and curve-based 
methods [66]. A turning-points-based method for generating 
smooth paths in known environments with stationary 
obstacles is proposed in [67]. An open-access version is also 

available [68].
Using LiDAR allows obtaining 3D images and checking 

conditions that affect the quality of the received information. 
Moreover, due to the advancement of LiDAR technology, its 
cost is decreasing. In addition, [69] compares several vision-
based and LiDAR-based SLAM algorithms on the NASA 
UAS (Unmanned Aircraft System) flight test data. Two types 
of solid-state LiDAR and mechanical LiDAR have been 
investigated to locate and map simultaneously. According 
to [70], the localization accuracy of the solid-state LiDAR 
was lower than that of the mechanical LiDAR in challenging 
conditions. In conditions of small changes in the field of view 
and jerking along a straight path, the localization accuracy 
of solid-state LiDAR was higher than that of the mechanical 
LiDAR. For wheel-legged robots, an indoor LiDAR-inertial 
SLAM integrating the kinematic model has been introduced 
[71]. Another comprehensive survey specifically covers 
advances in LiDAR odometry [72]. An additional update 
introduces adaptive-intensity feature extraction within 
LiDAR-inertial SLAM to enhance robustness [73]. Another 
continuous-time LiDAR-inertial SLAM framework targeting 
real-time navigation has been proposed [74]. For highly 
dynamic legged-robot scenarios, a robust RGB-D-inertial 
fusion SLAM has been proposed [75]. A comprehensive 
comparison of localization and SLAM methods, with their 
respective strengths, weaknesses, and applications, is 
presented in Appendix A (Table A1).

3- 3- Machine Learning Applications
Machine learning, as a relatively new and rapidly 

expanding concept, has permeated many aspects of modern 
technology and is now considered one of the most significant 
components of robotic research.  Figure 7 illustrates the 
growth in publications related to the application of machine 

 

Fig. 7. Annual number and annual contribution of publications in machine learning for wheeled mobile robots’ 
applications. 
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learning in wheeled mobile robots. This notable upward trend 
reflects the fundamental potential of ML in addressing diverse 
robotic challenges. The top 20 machine learning keywords 
in robotics for 2024 are listed in TABLE 2, showing the 
breadth of its applications. Keyword analysis indicates that 
deep learning and reinforcement learning are the most widely 
adopted branches within this domain.

According to the Scopus database, the most common 
robotic platforms employing ML techniques are agricultural 
robots, unmanned aerial vehicles (UAVs), and industrial 
robots. Machine learning is typically classified into 
supervised, unsupervised, and reinforcement learning. 
Supervised learning is commonly used for classification and 
regression tasks, whereas unsupervised learning supports 
clustering, dimensionality reduction, and uncovering latent 
data structures. As reported in TABLE 2, the majority of 
research efforts focus on machine vision, navigation, path 
planning, and control. FIG. 8 presents the categorization of 
current ML methods based on learning type.

Machine learning has numerous applications across 
robotics. In machine vision, supervised classification methods 
play a central role, enhancing environmental perception and 
navigation efficiency. For example, transformer models have 
recently been introduced for vision-based robot navigation 
[76]. In [77], multivariate adaptive regression splines 
were applied to address challenges in camera-based robot 
navigation. Similarly, a vision-integrated regression approach 
was implemented on humanoid robots to overcome the 
limitations of earlier regression-based methods [78]. Logistic 

regression has also been employed to predict collisions 
from acceleration data [79]. The k-nearest neighbor (KNN) 
algorithm, known for its robustness to nonlinear data [80], 
has been combined with deep-stacked autoencoders for object 
detection from sensor data [81]. In [82], Support Vector 
Machine (SVM)-based classifiers were applied to optimize 
feature dimensions, improving environmental recognition. 
Additionally, SVM classifiers have been integrated with 
decision trees to estimate human upper-body orientation 
[83]. Bayesian optimization has been further utilized for path 
planning, enabling reliable navigation using low-cost camera 
systems [84].

Neural networks have become indispensable for 
environmental recognition, decision-making, and control 
in wheeled mobile robots. For instance, the Multi-Layer 
Perceptron (MLP) network provides near-optimal collision-
free path planning, suitable for real-time navigation tasks [86]. 
A hierarchical sensor fusion technique utilizing an MLP was 
proposed to improve robot self-localization [87]. Moreover, 
comparative studies have assessed the performance of fuzzy 
logic and back-propagation neural networks in navigation 
tasks such as wall-following [50].

Recent developments highlight the increasing importance 
of hybrid methods that combine machine learning with 
traditional control and optimization approaches. These 
methods leverage the adaptability of ML while ensuring 
the stability and interpretability of classical models, making 
them particularly effective for real-time navigation and 
safety-critical robotics. Nevertheless, several challenges 

Table 2. The occurrence of top keywords of machine learning related to wheeled mobile robotsTable 2. The occurrence of top keywords of machine learning related to wheeled mobile robots 

# Keyword Occurrence # Keyword Occurrence 

1 
 

Deep Learning 3,394 11 Decision Making 656 

2 Reinforcement Learning 2,670 12 
Object Detection/ 
Object Recognition 

859/ 
599 

3 Motion Planning 1,820 13 
Deep Reinforcement 
Learning 

447 

4 Navigation 1,602 14 Image Segmentation 445 

5 Computer Vision 1,095 15 Classification 394 

6 Deep neural Network 995 16 Feature Extraction 371 

7 Path Planning  899 17 Autonomous Driving 354 

8 
Convolutional Neural 
Networks 

797 18 
Support Vector 
Machines 

294 

9 Controllers 769 19 Transfer Learning 220 

10 Collision Avoidance  674 20 
Model Predictive 
Control 

206 
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remain, including dependency on large datasets, high 
computational cost, and limited generalization to dynamic 
and unstructured environments. Addressing these challenges 
will require lightweight learning models, efficient training 
strategies, and robust multi-sensor integration. Looking 
ahead, machine learning is expected to play a central role in 
advancing autonomy, adaptability, and robustness in wheeled 
mobile robots. This trajectory underscores the importance 
of interdisciplinary collaboration across robotics, artificial 
intelligence, computer vision, and control engineering.

The comparative study in [50] shows that the overall 
performance of wheeled mobile robots remains similar when 
applying fuzzy logic and back-propagation neural networks. 
However, the back-propagation approach enables the robot to 
move at a higher speed than the fuzzy logic system. In [88], a 
comparison between the A* algorithm and the Hopfield neural 
network for time-optimized path planning was presented. 
Results demonstrated that A* offered superior performance 
in terms of efficiency, although the Hopfield network showed 
potential for reducing execution time under certain conditions, 
suggesting room for further improvements. 

In multi-robot systems, one of the most critical challenges 
is establishing effective group coordination strategies. Recent 
studies have explored deep reinforcement learning (DRL)-
based approaches for achieving collaborative behaviors in 
multi-robot environments [89]. Such methods enable adaptive 
decision-making in dynamic and uncertain conditions. 
Similarly, Hopfield networks have been applied to model 
cooperative strategies in multi-agent robotic systems [90]. 

For motion tracking and control, adaptive control 
strategies based on the Radial Basis Function (RBF) network 
have been introduced to handle model uncertainties [91]. 
These approaches demonstrate robustness in both kinematic 
[92], [93] and dynamic [94] scenarios, leading to enhanced 
localization accuracy [95]. Moreover, the integration of 
learning-based adaptive controllers is increasingly being used 
to address challenges in real-time environments with noise 
and disturbances. 

With the rapid advancement of processors and 
computational capabilities, deep learning methods have 
gained widespread adoption in wheeled mobile robot 
applications [96–99]. Deep convolutional neural networks, 
recurrent neural networks, and hybrid architectures are 
increasingly utilized for tasks such as end-to-end navigation, 
environment recognition, and real-time path planning. These 
techniques not only improve robustness and adaptability but 
also open new avenues for integrating semantic understanding 
of the environment into navigation pipelines. 

Furthermore, a growing trend in recent literature focuses 
on combining classical optimization-based methods (e.g., 
A* and Dijkstra) with deep learning models to balance 
interpretability, optimality, and adaptability. Such hybrid 
approaches represent a promising research direction, 
particularly in safety-critical scenarios where both efficiency 
and reliability are required.

Among the various branches of deep learning, the most 
significant architectures include autoencoders, deep belief 

networks (DBNs), convolutional neural networks (CNNs), 
and recurrent neural networks (RNNs) [100]. Autoencoders 
are particularly suitable for handling unlabeled data in 
unsupervised learning settings. One of their primary 
advantages is dimensionality reduction through learning 
compact representations of input data [101]. 

Furthermore, autoencoders can accelerate training 
processes by providing effective parameter initialization 
for recurrent neural networks [102]. DBNs also operate 
in an unsupervised manner, offering hierarchical feature 
learning capabilities [103]. For example, an improved SLAM 
framework combining RGB-D and LiDAR inputs with 
parallel noise filtering for 2D navigation has been developed, 
leveraging such architectures [104].

CNNs and DBNs have been widely applied for obstacle 
detection and collision avoidance [105]. In [106], two high-
resolution depth-color cameras (RGB-D and TOF) were 
integrated, combining high-resolution visual input with 
low-resolution depth sensing to construct accurate maps. A 
Fully Convolutional Network (FCN) was further employed 
for semantic segmentation. Unlike autoencoders and DBNs, 
CNNs require extensive offline training using large-scale 
datasets, but they provide powerful advantages, including 
robust feature extraction and invariance to rotation and 
translation.

 Applications of CNNs span image and video recognition 
[105–107], classification [110], semantic segmentation [111], 
[112], and even recommender systems [113]. Building on 
these capabilities, the Robot with Artificial Intelligence-based 
Cognition (RAICO) system integrated CNN-based perception 
to achieve reliable object recognition with efficient inference 
speed [114]. RNNs differ in that their neuron connections are 
directional, enabling the use of internal memory to process 
sequential data, which is critical for tasks requiring temporal 
dependencies, such as trajectory prediction. For more details 
on RNN architectures and their applications, readers are 
referred to [115].

The third major branch of machine learning, reinforcement 
learning (RL), has gained significant traction in robotic 
navigation, particularly for path planning and control 
strategies [116–119]. A recent review emphasizes the role of 
deep reinforcement learning (DRL) in enabling multimodal 
perception integration and real-time decision-making [120]. 
For instance, DRL-based self-exploration methods that fuse 
LiDAR and camera data have been demonstrated [121], 
with subsequent official corrections published to refine prior 
results [122]. Classical Q-learning has been successfully 
applied to obtain feasible paths in structured environments 
[123–125]. However, its performance is limited by the curse 
of dimensionality in complex state-action spaces, making 
collision-free navigation challenging. The Dyna Q-learning 
variant improves path quality by integrating planning with 
learning, yet the dimensional constraints of the Q-table persist. 
To address these limitations, model-based RL approaches 
have been introduced, offering accelerated learning and 
improved generalization in navigation tasks [126]. To extend 
RL into continuous state-action spaces, integration with deep 
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learning has been pursued [127–129]. In these hybrid models, 
deep networks are employed for feature extraction and 
function approximation, resulting in improved path quality 
and adaptability [130], [131]. DRL has also been utilized to 
design advanced controllers capable of handling nonlinear 
dynamics and uncertainties [132], [133]. Beyond traditional 
architectures, graph neural networks (GNNs) have recently 
been applied to model spatial relationships and support 
navigation in complex topologies [134]. Complementing 
these advances, explainable AI techniques have been 
proposed to increase the transparency of decision-making in 
DRL-based navigation systems [135], addressing concerns of 
interpretability and trust in autonomous systems.

To provide a more comprehensive perspective, a 
comparative analysis of the most prominent machine learning 
approaches applied to wheeled mobile robots is included in 
Appendix B (Table B1). This extended table summarizes the 
main applications, strengths, weaknesses, and key references 
of traditional machine learning, deep learning, reinforcement 
learning, hybrid approaches, and explainable AI methods. 
The insights highlight trade-offs between interpretability, 
adaptability, and computational efficiency, serving as a useful 
reference for future research directions.

3- 4- Planning Phase
Path planning is a fundamental problem in mobile robotics 

and refers to determining a sequence of points that guide the 
robot from its current or initial position to the desired target 
location. One of the primary requirements of path planning 
is ensuring collision-free motion, which involves avoiding 
both static and dynamic obstacles. Depending on the type 
of environment and the specific task of the wheeled mobile 
robot, an appropriate path-planning strategy must be selected. 
Environments are typically categorized based on two criteria:
•	 Information availability: known versus unknown 

environments.
•	 Dynamics: static environments (with fixed objects) versus 

dynamic environments (with moving agents).
In static and fully known environments, motion planning 

can be performed offline, where the path is computed before 
execution. In contrast, when the environment contains 
unknown regions or dynamic agents, the robot requires online 
(real-time) planning to continually re-evaluate and generate 
safe trajectories in response to new information. From a 
computational perspective, online methods are generally 
less complex than offline global planners, allowing real-time 
path generation even with limited onboard processing power. 
Global path planning thus refers to the offline determination 
of a complete path before execution, while local path 
planning focuses on dynamically adjusting the trajectory 
based on continuously updated sensor data from the robot’s 
surroundings. In the literature, multiple terminologies are 
used:
•	 Path planning typically refers to the geometric computation 

of a feasible path without considering time or dynamics.
•	 Trajectory planning incorporates kinematic and dynamic 

constraints of the actuators, ensuring feasible motion 
along the planned path.

•	 The integration of path and trajectory planning is generally 
termed motion planning. 

•	 Motion tracking represents a related concept where the 
robot (follower) continuously adjusts its trajectory to 
follow another agent (leader).
Several optimization criteria have been proposed to 

improve motion planning strategies. Common objectives 
include minimizing travel time, reducing energy consumption 
or actuator effort, limiting jerk (for smoother motion), and 
combining multiple objectives into hybrid criteria [136]. 
Furthermore, in human-populated environments, crowd-
aware path-planning frameworks have been introduced to 
enhance safety and social compliance, enabling robots to 
navigate smoothly while avoiding discomfort or risk to 
pedestrians [137].

So far, various methods have been proposed for the 
motion planning of wheeled mobile robots. TABLE 3 lists 
some crucial characteristics of the main motion planning 
methods. Another up-to-date survey categorizes and compares 
mobile-robot path-planning methods [143]. The classical 
methods of path planning are typically offline and require 
environment modeling. However, increasing the dimensions 
of the environment increases the complexity of calculations. 
Sample-based methods have been very successful, and many 
efforts have improved them. One of the most significant 
features of the sample-based methods is guaranteeing at least 
one successful path [144]. A joint path-planning and path-
tracking framework for static and dynamic environments 
has also been proposed [145]. A comprehensive survey on 
coverage path planning in dynamic environments is provided 
in [146].

The Rapidly Random Tree (RRT) method cannot yield 
an optimal path. Then, the RRT* method was developed that 
produces an optimal path. However, the RRT* requires more 
memory than RRT [147]. The RRT* Fixed Nodes (RRT* 
FN) method was introduced in [148], where the problem of 
RRT* was solved, but could only be implemented for known 
and fixed environments. It was also shown that the RRT* 
method can generate a shorter path than the proposed RRT* 
FN method.

For more information on RRT and the developed 
strategies, [149] provides a comprehensive and valuable 
review. Grid-based methods can design high-quality paths.

The Dijkstra method can create the optimal path in terms of 
minimum distance, but it decreases its efficiency due to a large 
number of nodes [150]. The A* method is employed in many 
fields due to its completeness, optimality, and remarkable 
performance. Still, this method is also not very efficient due 
to the large number of nodes. The A* search method was 
introduced for dealing with efficient node searching that, in 
addition to creating an optimal path, requires less memory 
to store nodes [151]. An enhanced A* with staged heuristics 
and artificial potential fields for complex environments is 
presented in [152].
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Table 3. Well-known methods for motion planning of wheeled mobile robots, C: Classic, S: Sample-based, 
G: Grid-based, A: Artificial intelligent, D: Directional approach, M: Machine learning

Table 3. Well-known methods for motion planning of wheeled mobile robots, C: Classic, S: Sample-based, 

G:  

Problems 
Path planning 

A
lgorithm

 

Method # 
Local Global 

-High temporal complexity [138]  * C Visibility graph 1 

-Mutational site [139]  * C Voronoi graph 2 

-High possibility of collision  * C Tangent graph 3 

-Assignment of the borders [140]  * C Cell Decomposition Approach 4 

-Environment with sparse obstacles,  
-Difficult re-modification   * C Topological method 5 

-Narrow passage problem [141]  * S Probabilistic roadmap 6 

-Not results in the shortest path [142]  * S Rapidly exploring random trees 7 

-Discrete environment   * G Dijkstra Algorithm 8 

-Discrete environment  * * G A* Algorithm 9 

-Discrete environment  * * G D* Algorithm 10 

-Complexity of adjusting weights * * A Neural network 11 

-Definition of rules * * A Fuzzy logic 12 

-Incline to premature convergence 
-Low convergence speed and high temporal 
complexity in the final stage 

* * E Genetic algorithm 13 

-Incline to premature convergence,  
-Low convergence speed and high temporal 
complexity in the early stage 

* * E Ant colony optimization 14 

-Local minima * * E Particle swarm optimization 15 

-Local minima 
-Low convergence speed and high temporal 
complexity in the final stage 

* * D Artificial potential field 16 

-The optimal path is not guaranteed,  
-Local minima * * - Rolling windows 17 

-Limitation of the Q-table’s dimension, 
-Possibility of collision due to improper definition 
of states, 

-Limitation on applicable actions 

* * M Reinforcement learning 18 

-Temporal complexity in real-time planning, 
- Proper network training * * M Deep learning 19 
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The D* algorithm can create a shorter optimal path than 
the A* and deal well with unknown or unpredictable threats. 
However, its weakness is the possibility of failure when the 
motion target is uncertain153[  ]. Neural networks, despite 
their complexity, have always been considered in motion 
planning. The input information acquired from the sensors is 
fed to the neural network to adjust the weights to optimize the 
cost function. One of the most important features of neural 
networks is their constant adaptability to the environment. The 
online learning of the neural networks for motion planning 
can only be implemented in some situations and for particular 
structures of the networks. The modified pulse-coupled neural 
network model presents a real-time and optimal motion 
planning method in dynamic environments [154]. In [155], 
by introducing a novel dynamic neural network, an efficient 
method for obtaining real-time and collision-free motion has 
been proposed without the need for any process of learning 
and estimating collisions at any stage of the movement, based 
only on neural connections within the network. Moreover, the 
stability of the network has been proved by qualitative analysis 
and the Lyapunov approach [156]. Using the motion-planning 
algorithm based on incremental sampling as a near-optimal 
rapid random tree exploration, the effect of nonlinear kinematic 
and dynamic constraints on the motion was investigated 
in [157], where a neural network is employed to predict the 
cost function. One of the most important advantages of fuzzy 
systems is the model-free solving approach, which significantly 
reduces the computational complexity of the planning unit. 
Combining the neural network with a fuzzy system creates 
an adaptive neuro-fuzzy inference system (e.g., ANFIS) that 
can approximate nonlinear functions as a universal estimator 
for motion planning [158]. In recent years, evolutionary 
algorithms have been the subject of the most significant 
studies related to motion planning [136]. The purpose of these 
algorithms is multi-objective optimization. However, it has 
disadvantages, such as getting trapped in the local minima and 
not guaranteeing the optimal global solution. 

The most widely used method among the evolutionary 
algorithms is the Genetic Algorithm (GA). The GA is the 
most effective method in motion planning that was developed 
with an improved crossover operator to prevent premature 
convergence. In addition, finding a better path can increase the 
convergence speed [159]. The Ant Colony algorithm, which 
is another type of evolutionary algorithm, was introduced 
for the wheeled mobile robot in [160], where the algorithm 
converges rapidly even in complex environments according 
to simulations [161]. The PSO was first introduced in [162]. 
In this method, finding the optimal solution is not guaranteed. 
However, the Conventional PSO was introduced in [163] to 
find the optimal path in non-convex environments with the 
help of the random sampling method [164]. The adaptive PSO 
algorithm was presented in [165] to create an online path. The 
simulations show that this method can better avoid collisions 
with obstacles and reach the goal faster than the conventional 
PSO. The main purpose of the “nature-inspired algorithms” is 
to solve a constraint optimization problem. However, most of 
these methods are not able to find the global optimal solution. 

In [166], a hybrid method using the FA and GA was presented 
to design a global path for wheeled mobile robots. The FA 
part finds the local optimal solution, which is the subject of 
selection, crossover, and mutation operations in the GA that 
finds the global optimal response. The results indicate that the 
calculation ability and the reaction speed of the mobile robot 
have been improved [167]. The Artificial Potential Field (AFP) 
method is one of the most popular path design methods. 

To overcome the local minima, [168] introduced a novel 
concept named “black-hole force”. Then, the problem was 
solved by adjusting the repulsive force parameters [169], 
[170]. In [171], by using ANFIS, it was shown that the robot 
is never caught in local minima. Reinforcement Learning (RL) 
is one of the remarkable approaches for learning and finding 
an appropriate path. The classical Q-learning allows learning 
without the need for a previous model of the environment. 
However, it has disadvantages such as limitations in the 
number of states and actions, slow convergence to the optimal 
solution, and a proper definition of the reward function. 
Therefore, to increase the efficiency of the classical Q-learning 
in known and unknown environments, the APF method has 
been used to improve the convergence rate of the classical 
approach to the optimal solution. Furthermore, to check the 
performance and effectiveness of the proposed method, the 
parameters of the path length, smoothness of the path, and 
learning time were considered. The results of this method 
showed better performance than the classical Q-learning [172]. 
In [173] and [174], RL and APF have been used to obtain a 
suitable motion and overcome local minima in the potential 
field. For motion planning purposes, deep learning is used to 
approximate functions. New benchmarking frameworks for 
comparing RL algorithms in mobile robot navigation have 
been developed [175]. In [176], to improve the definition of the 
reward function in the classical QL, the structure of the reward 
function is generalized using environmental spatiotemporal 
information and the structure of the operating environment so 
that each member of the group avoids other wheeled mobile 
robots or dynamic objects. Also, in [177], the Adaptive APF 
(A-APF) method was introduced, which solved the local 
minima problem by adjusting the virtual obstacle’s repulsive 
force parameters using the model reference adaptive system 
method. Then, improved Q-learning (IQL) was introduced to 
solve the lack of generalization of experience between states 
and the long time to gain experience problems. This led to 
an increase in convergence speed to the optimal action. The 
A-APF method was then utilized as a supervisor of the IQL to 
ensure the collision avoidance of static and dynamic obstacles 
in unknown environments. Safe reinforcement learning 
approaches for reducing collisions in unknown environments 
have been proposed [178]. In [179], an efficient method for 
exploring a wheeled mobile robot in an unknown environment 
using deep reinforcement learning was presented. Due to the 
unpredictable structure of the environment for exploration and 
rescue operations, deep learning has also been used to extract 
suitable features for path planning and frontier exploration, 
and thus helps approximate a function to access the optimal 
policy [180]. 
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The dynamic window method (DWA) controls the wheeled 
mobile robot’s motion using the optimal speed in real-time by 
transforming the path-planning problem into a constrained 
optimization problem of the velocity space. This method is 
considered an effective method for local planning. The most 
important disadvantages of this method are “insufficiency 
of evaluation functions” and “absence of a weight selection 
algorithm for evaluation functions”. To solve these two 
problems, two new evaluation functions were introduced to 
consider more complex situations and improve the robot’s 
behavior in complex environments. Then, the Q-learning was 
used to adjust the DWA parameters adaptively based on the 
structure of the unknown environment [181]. A combination 
of the path planning and SLAM has also been proposed to 
improve the navigation quality. The dueling deep Q-learning 
algorithm created a collision-free path by a fully convolutional 
neural network for obstacle reorganization [182]. The 2D 
representation obtained from the environment is based on 
FastSLAM. Deep Reinforcement Learning method has been 
employed to find the shortest path by considering the motion 
constraints of the vehicle in simulations and in real-world 
applications [183]. Deep learning has been used in [184] to 
avoid collisions and to determine a suitable control input for 
the actuators. In this work, the required sample set is obtained 
by using the potential field and the ant colony algorithm 
[185]. With an asynchronous deep reinforcement learning 
method, the path planning (without hand-designed features 
and prior representation) was performed to move the robot 
in an unknown and dynamic environment, and only with 
limited horizon capability [186]. Most existing methods are 
based on understanding the interactions between the robot and 
the surrounding environment. However, understanding the 
interactions between the environmental factors can provide 
meaningful information to the behavior design unit. In [187], 
using a decentralized structured RNN network with coarse-
grained local maps (LM-SRNN), robot-human interactions 
were modeled through spatiotemporal graphs. Moreover, the 

human-human interactions were modeled through coarse-
grained local maps that enable safe movement in crowded 
environments. By using RGB frames as the input, it was 
shown in [188] that it is possible to plan a safe path and to 
estimate the position on the map. Since deep Q-learning can 
only consider state-space continuously (continuous space) and 
the number of actions that can be performed is limited (discrete 
space), this approach is mainly used to create a meaningful 
and better understanding of the environment. Methods such as 
the asynchronous advantage actor-critic algorithm [189] and 
soft actor-critic [190] have been used to achieve a continuous 
state-action space, which has led to a smoother and more 
efficient path. Since real environments are usually unknown 
and/or dynamic, [191] presented a comprehensive review 
of two categories of classical (e.g., APF and Roadmap) and 
heuristic (e.g., GA, PSO, and Fuzzy Logic) algorithms that can 
be applied in dynamic environments. Bio-inspired algorithms 
for mobile robot path planning have also been developed 
[192]. Hybrid swarm intelligence and graph-based algorithms 
have also been proposed [193]. It also presented the general 
advantages and disadvantages of each method by examining 
the criteria of “path planning in cluttered areas”, “detection 
and tracking of moving targets”, “prediction of the direction 
of moving objects”, and “effect of the speed of obstacles in 
decision-making”. Ref. [194] provides the “random tree*” 
algorithm with real-time exploration for obstacle avoidance 
to detect 3D objects. Then, the output of the path-design unit 
is considered as the input of the model prediction controller 
to achieve safe movements. Table 4 shows the top 10 popular 
methods for path planning from 2015 to 2024 according to the 
Scopus dataset. A recent special issue focusing on mobile-robot 
navigation—including perception, localization, and SLAM—
has been organized as well [195]. A detailed comparison of 
the main motion planning methods for wheeled mobile robots, 
including their advantages, limitations, and key references, is 
provided in Appendix C (Table C1).

Table 4. The occurrence of the top 10 keywords of path planning methods for wheeled mobile robotsTable 4. The occurrence of the top 10 keywords of path planning methods for wheeled mobile robots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# Keyword Occurrence # Keyword Occurrence 

1 Reinforcement learning 1,288 6 Artificial potential fields 512 

2 Optimization 1,065 7 Fuzzy logic 449 

3 Deep learning 939 8 Neural networks 423 

4 Particle swarm optimization  573 9 Ant Colony optimization 402 

5 Genetic algorithms 559 10 Machine learning 368 
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3- 5- Motion Tracking Controllers
In the final stage of the navigation architecture, an 

efficient controller is required to ensure reliable trajectory 
tracking and stable execution of the path generated by the 
planning unit. Among the major challenges in the domain of 
wheeled mobile robots (WMRs) is the design of robust and 
adaptive tracking controllers that can cope with nonlinear 
kinematics, dynamic uncertainties, actuator constraints, and 
real-time environmental disturbances. While the motion-
planning unit can be regarded as the behavior design unit, 
the control system is responsible for translating this planned 
behavior into executable motion [195]. The control unit 
receives its inputs from two sources: (i) the motion-planning 
unit and (ii) surround sensing systems. The primary objective 
is to minimize the tracking error, defined as the difference 
between the desired trajectory and the real-time robot state 
measured by sensors.

Classical and Theory-Based Controllers
Traditional control approaches have been categorized into 

three broad groups [197]:

•	 Global linearization-based control, which transforms 
the nonlinear robot dynamics into equivalent linear state-
space systems through coordinate transformations.

•	 Approximate linearization-based control, which 
relies on linearization around local operating points or 
equilibria.

•	 Lyapunov theory-based control methods, which 
directly guarantee stability through Lyapunov function 
construction.
Although these controllers provide theoretical stability 

guarantees, they often suffer from sensitivity to parameter 
variations and modeling uncertainties. To address this, 
adaptive control methods have emerged as one of the most 
effective solutions for WMRs.

Adaptive and Nonlinear Controllers
Adaptive strategies exploit online parameter estimation to 

handle time-varying and uncertain dynamics. Methods such 
as Lyapunov-based adaptive control [198], backstepping 
re-parameterization [199], and switching control combined 
with Lyapunov stability theory [200] have shown success 
in reducing parameter thrust and actuator saturation issues. 
Novel adaptive feedback controllers have been proposed for 
WMRs under wheel slip and dynamic constraints [201].

Integration with machine learning has expanded adaptive 
control capabilities. Neural networks and wavelet networks, 
with their universal function approximation properties, are 
able to model nonlinear robot dynamics online and enhance 
controller robustness [202]. Hybrid NN–PID controllers 
[194] and recurrent neural network–based optimal controllers 
[203] have further improved adaptability in unstructured 
environments.

Sliding-Mode Controllers (SMC)
SMC techniques remain popular for WMR tracking 

control due to their robustness against model uncertainties 

and external disturbances. High-frequency switching enables 
reduced invariant tracking errors [204]. To mitigate chattering 
and enhance performance, intelligent SMC frameworks 
combined with radial basis function (RBF) neural networks 
have been reported [205].

Model Predictive Controllers (MPC)
Model predictive control has gained substantial attention 

due to its ability to handle multi-constraint optimization 
problems in real time. By formulating the tracking-error 
kinematics into finite-horizon quadratic programming (QP) 
problems, primal–dual neural networks have been utilized to 
accelerate convergence [176]. Recent works demonstrate the 
success of MPC in:
•	 Tracking and obstacle avoidance in dynamic 

environments [208, 209].
•	 Robust MPC under parametric uncertainties [210–

212].
•	 Integration of deep learning with MPC for vision-based 

and data-driven navigation [213, 214].
•	 Hybrid global–local planning frameworks coupled 

with MPC further ensure adaptability in non-stationary 
environments [209].

Intelligent and Learning-Based Controllers
The recent paradigm shift in robot control focuses on 

intelligent, data-driven, and learning-based strategies:
•	 Reinforcement learning (RL) has been employed 

to optimize control policies directly from interaction 
data, enabling adaptive behavior in previously unseen 
environments. Safe RL approaches have been introduced 
to guarantee collision avoidance under uncertainty.

•	 Deep learning–enhanced controllers, especially when 
combined with MPC or SMC, have shown remarkable 
results in high-dimensional state-action spaces.

•	 Vision-based and multimodal control architectures, 
which integrate RGB-D, LiDAR, and inertial sensors, are 
paving the way for fully autonomous adaptive control.

•	 Explainable AI (XAI) in control has been explored to 
enhance transparency and trust in autonomous systems 
[215].

Future Directions
Despite the progress, open challenges remain in designing 

controllers that combine robustness, adaptability, real-time 
efficiency, and explainability. Promising research trends 
include:
•	 Nonlinear adaptive control with neural approximation 

[216].
•	 Intelligent sliding-mode control with NN-based 

compensation [217].
•	 Safe learning-based MPC for navigation in dynamic 

human–robot interaction scenarios.
•	 Hierarchical control architectures that unify planning, 

perception, and control under a common learning-based 
framework.
For completeness, a comprehensive comparison of the 

main control strategies applied in wheeled mobile robots 
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is provided in Appendix C (Table C2). This comparative 
analysis outlines their theoretical foundations, advantages, 
limitations, and typical application domains. As shown in 
the table, the choice of control strategy strongly depends on 
the trade-off between robustness, adaptability, computational 
complexity, and real-time feasibility. While adaptive and 
sliding-mode controllers are often preferred for their 
robustness and stability guarantees, model predictive control 
and reinforcement learning–based approaches have recently 
gained increasing attention due to their capability of handling 
highly dynamic and uncertain environments.

4- Conclusions
This paper presents a qualitative analysis of the navigation 

of wheeled mobile robots. The number of WoS and Scopus 
documents was compared, with more documents in the Scopus 
database from 2015 to the end of 2024. In the bibliographic 
analysis section, the process of publishing documents indicates 
the growing demand for research and development in wheeled 
mobile robot navigation. By examining the most frequent 
keywords in the concept of navigation, the most effective and 
important aspects related to it were identified: localization, 
machine learning, motion planning, and control systems, 
respectively. Then, in the qualitative analysis, the most 
widely used types of wheeled mobile robots were reviewed, 
and wheeled mobile robots were selected as one of the most 
popular types of robots for reasons such as design, structure, 
and uncomplicated control in the industry. The concept of 
localization as the first part of the navigation concept was 
divided into two categories: probabilistic approaches and 
autonomous map building based on the presence or absence 
of knowledge about the environment (map). It is essential and 
challenging to discuss the type of sensors and the combination 
of information received from them. Cameras can generate 
rich details, and to achieve this goal, the concept of computer 
vision is introduced. By investigating machine learning as 
the most widely used machine vision method in wheeled 
mobile robots, deep learning, reinforcement learning, and 
classic learning were identified to meet decision-making, 
object recognition, classification, semantics, and collision 
avoidance goals. Then, for the concept of path planning in 
the related literature, motion optimization perspectives, types 
of methods, and their advantages and disadvantages were 
discussed. The motion-planning unit is known as the decision 
level to plan appropriate behavior in various environmental 
conditions. Finally, the control unit was examined at the 
actuator level. Controller design approaches were divided 
into three categories based on purpose: global linearization-
based control, approximate linearization-based control, 
and Lyapunov theory-based control. Moreover, adaptive 
control, neural networks, sliding-mode control, and model 
predictive control methods were studied as the most popular 
ones. Finally, the tables that indicate the number of keyword 
occurrences show researchers’ interest in these research 
backgrounds. This may be due to the possibility of further 
progress in future studies, greater effectiveness, and better 
performance. Therefore, the development or combination of 

the methods mentioned in Tables 1, 2, and 4 is suggested to 
focus on future research.
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Appendices — Supplementary Comparative Tables on Machine Learning, Navigation, and 
Localization Methods in Wheeled Mobile Robots  

Appendix A. Localization and SLAM Approaches 

Table A1. Comparative overview of SLAM methods 

Method Advantages Limitations Key 
References 

Odometry 
Simple to implement; no need for 

external infrastructure; works in real 
time 

Accumulated drift due to wheel 
slip and measurement noise; not 

reliable over long distances 
[37], [38] 

Inertial 
Navigation 

(IMU-based) 

Independent of environment; robust 
to lighting/texture conditions 

High cost; drift accumulates 
quickly; requires frequent 

calibration 
[39] 

Magnetic 
Compass 

Resistant to environmental effects; 
low cost 

Distorted near power lines or 
steel structures; low precision [40] 

GPS / Beacons Global availability; robust outdoors 
Low accuracy (meter-level); poor 

performance in indoor/urban 
canyon environments 

[41] 

Landmark-
based 

Localization 

High accuracy if landmarks are 
known and fixed; simple detection in 

structured environments 

Limited to pre-mapped 
landmarks; poor generalization in 

dynamic/unstructured spaces 
[40] 

Markov 
Localization 

Handles global localization and 
multi-hypothesis tracking; robust to 

noisy sensors 

Requires discretization (high 
memory demand); computational 
cost grows with environment size 

[42], [43], 
[44] 

Kalman Filter 
(KF) 

Efficient for linear Gaussian systems; 
low computational cost 

Assumes linearity; needs known 
initial position [36], [45] 

Extended 
Kalman Filter 

(EKF) 

Handles nonlinear models by 
linearization; widely used in mobile 

robotics 

Approximation errors; sensitive 
to model inaccuracies; 

computationally expensive for 
large maps 

[49] 

Unscented 
Kalman Filter 

(UKF) 

Better accuracy than EKF; no 
explicit linearization; effective in 

moderate non-linearities 

Higher computational complexity 
(cubic in state dimension); 
inconsistency in estimates 

[50], [59], 
[60] 

Particle Filter 
(MCL) 

Works with arbitrary distributions; 
robust in dynamic environments; can 

represent multi-modal beliefs 

Computationally expensive with 
a large state space; particle 

degeneracy and impoverishment 

[46], [47], 
[48] 

FastSLAM 
(PF-based) 

Efficient with large-scale maps; 
separates robot pose and landmark 

estimation 

Particle depletion; degeneracy; 
requires resampling 

improvements 
[56], [61] 

PSO-
/Evolutionary-
based SLAM 

Reduces particle degeneracy; 
improves resampling; better pose 

accuracy 

Higher computational overhead; 
parameter tuning required [61] 

Vision-based 
SLAM 

Rich feature extraction enables loop-
closure; scalable with computer 

vision progress 

Sensitive to lighting, occlusion, 
and dynamic objects 

[53], [62], 
[63] 

LiDAR-based 
SLAM 

Accurate 3D environment 
reconstruction; robust in low-light 

Expensive sensors (though prices 
are dropping); affected by 

reflective/absorptive surfaces 

[69], [70], 
[72], [73] 

LiDAR–
Inertial Fusion 

SLAM 

Robust in dynamic environments; 
combines complementary modalities 

Complex integration requires 
calibration; computationally 

heavy 
[71], [74] 

RGB-D / 
Multimodal 

SLAM 

Rich semantic understanding; 
supports human–robot interaction 

and high-level navigation 

High computational 
requirements; limited range of 

RGB-D sensors 
[64], [75] 

Graph-based 
SLAM 

(Optimization-
based) 

Reduces SLAM uncertainty via 
graph optimization; scalable; robust 

loop closure 

Solving large nonlinear least-
squares problems requires 

efficient solvers 
[63] 
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Appendix B. Machine Learning Methods in Robotics 
Table B1. Comparative Analysis of Machine Learning Approaches for Wheeled Mobile Robots. 

Method / Algorithm Key Applications in 
WMR Main Advantages Limitations / 

Challenges 
Key 

References 

Supervised Learning 
(Regression, Logistic 

Regression, SVM, 
KNN, Decision Trees) 

Object detection, 
collision prediction, 
human orientation 

estimation, and 
feature optimization 

Simple implementation, 
interpretable, effective for 

classification & 
regression, robust in 

structured environments 

Requires large 
labeled datasets; 

limited adaptability 
in 

dynamic/unstructured 
environments 

[76]– [83] 

Unsupervised 
Learning 

(Autoencoders, DBN, 
Clustering, 

Dimensionality 
Reduction) 

Feature extraction 
from sensory data, 

SLAM enhancement, 
sensor fusion (RGB-

D + LiDAR), 
anomaly detection 

Learns from unlabeled 
data, dimensionality 
reduction, useful for 

sensor fusion, 
initialization for RNNs 

Computationally 
intensive, limited 

direct control 
application, post-
processing often 

required 

[100]– [104] 

Deep Neural 
Networks (CNNs, 

FCN, DBN) 

Obstacle detection, 
semantic 

segmentation, end-to-
end navigation, 

object recognition 

Robust feature extraction, 
invariance to 

noise/rotation, strong 
performance in perception 

tasks 

Requires massive 
training datasets, 

high computational 
demand, prone to 

overfitting, and low 
interpretability 

[105]– [114] 

Recurrent Neural 
Networks (RNN, 

LSTM, GRU) 

Trajectory prediction, 
temporal sequence 

modeling, path 
tracking 

Exploits temporal 
dependencies, suitable for 

sequential decision-
making 

Training instabilities 
(vanishing 

gradients), resource-
intensive, harder to 

optimize 

[115] 

Hybrid ML + 
Classical Algorithms 

(A, Dijkstra + DL, 
Bayesian 

Optimization, 
Regression + SLAM) 

Optimal path 
planning, navigation 

under constraints, and 
real-time decision 

support 

Combines the 
interpretability & stability 
of classical methods with 
the adaptability of ML; 

better real-time feasibility 

Integration 
complexity, trade-off 

between accuracy 
and speed, is still 
computationally 

heavy 

[84], [88], 
[104] 

Reinforcement 
Learning (Q-

Learning, Dyna-Q, 
Model-Based RL) 

Policy learning, 
adaptive obstacle 

avoidance, navigation 
in structured/partially 

unknown 
environments 

Model-free learning, 
adaptability to dynamics, 
and APF-enhanced RL 
improve convergence 

Curse of 
dimensionality, slow 
convergence, limited 

generalization 

[116]– [126] 

Deep Reinforcement 
Learning (DQN, 

A3C, SAC, Actor–
Critic, GNN-based 

RL) 

Autonomous 
navigation in 
unstructured 

environments, multi-
robot coordination, 

and continuous 
control 

Handles nonlinearities, 
multimodal fusion 

(LiDAR + camera), 
continuous state-action 

spaces, scalable 

Sample inefficiency, 
safety & stability 

concerns, high 
training costs, 

interpretability issues 

[120]– [135] 

Neuro-Fuzzy & 
Hybrid Learning 
Controllers (RBF 
Networks, ANFIS, 
Adaptive Neuro-

Controllers) 

Adaptive tracking, 
robust control under 

uncertainties, and 
real-time disturbance 

rejection 

Model-free adaptability, 
robust under noise, 

combines learning with 
stability guarantees 

Complexity of hybrid 
models, risk of 

instability, tuning 
overhead 

[91]– [95] 

Explainable AI (XAI) 
applied to ML & 

DRL 

Enhancing 
transparency in 

decision-making, 
safety-critical 

navigation, human–
robot interaction 

Improves trust and 
interpretability, supports 

accountability in 
autonomous systems 

Still emerging, may 
reduce performance 

in exchange for 
transparency 

[135] 
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Appendix C. Path Planning and Control Methods 

Table C1. Advantages and limitations of the main path planning approaches for wheeled mobile robots

Based Method Advantages Limitations Key 
References 

Dijkstra (Graph-
based) 

Guarantees the shortest path 
(optimal in distance); simple and 

deterministic. 

Computationally expensive in large 
environments; poor scalability. [150] 

A* 
Complete, optimal, efficient 

with heuristics; widely used in 
robotics. 

Requires large memory for node 
storage; performance decreases in 

high-dimensional spaces. 
[151], [152] 

D* 
Adaptive to changes in the 

environment; shorter paths than 
A*. 

May fail when the target is uncertain; 
higher computational complexity. [153] 

RRT (Sampling-
based) 

Scalable to high-dimensional 
spaces; probabilistically 

complete. 

Path is not optimal; random 
exploration may lead to inefficiency. [147], [149] 

RRT* 
Asymptotically optimal; 

guarantees improved path 
quality. 

High memory usage; slow in large 
environments. [147], [148] 

RRT* FN Memory-efficient version of 
RRT*. 

Limited to static and known 
environments. [148] 

Neural Networks Adaptive learning from sensor 
inputs; real-time applicability. 

Require extensive training; limited 
generalization; network complexity. [154]– [157] 

Fuzzy Logic Model-free; low computational 
cost; intuitive reasoning. 

Limited scalability; less accurate in 
dynamic environments. [158] 

ANFIS (Neuro-
Fuzzy) 

Universal approximator; handles 
nonlinearities; adaptive. 

Training complexity requires careful 
rule design. [158] 

Genetic 
Algorithm (GA) 

Effective in global optimization; 
avoids local minima (with 

modifications). 

Premature convergence risk; 
computationally heavy. [159] 

Ant Colony 
Optimization 

(ACO) 

Fast convergence; efficient in 
complex environments. 

Prone to stagnation; sensitive to 
parameter tuning. [160], [161] 

Particle Swarm 
Optimization 

(PSO) 

Simple, efficient, good for 
multi-objective optimization. 

May trap in local minima; cannot 
guarantee global optimum. [162]– [165] 

Firefly Algorithm 
(FA) + GA 
(Hybrid) 

Balances global/local search; 
improves responsiveness. Increased algorithmic complexity. [166], [167] 

Artificial 
Potential Field 

(APF) 

Simple and real-time; intuitive 
design. 

Local minima problem; oscillations 
near obstacles. [168]– [171] 

Q-Learning 
(Classical RL) 

Model-free; adaptive to 
unknown environments. 

Limited by state/action discretization; 
slow convergence. [172]– [176] 

Improved RL 
(IQL, Hybrid 

RL+ APF) 
Faster convergence. Still sensitive to reward function 

design. [177] 

Improved RL 
(IQL, Hybrid RL 
+ Adaptive APF) 

Faster convergence than [177]; 
better generalization; avoids 

local minima; Improved APF; 
supervisor learning; collision 

avoidance guaranteed 

Requires more computational 
resources than classical RL [176] 

Deep RL (DQN, 
A3C, SAC) 

Handles continuous state-action 
spaces; scalable; robust in 

dynamic environments. 

Requires high computational 
resources; data-hungry. [178]– [190] 
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Table C1. Continue

Based Method Advantages Limitations Key 
References 

Dynamic 
Window 

Approach (DWA) 

Real-time velocity-based 
optimization; effective in local 

planning. 

Evaluation function limitations; 
weight selection issues. [181] 

Hybrid SLAM + 
DRL 

Combines mapping with 
adaptive planning; robust in 

real-world applications. 

High complexity; requires 
multimodal sensor data. [182]– [186] 

Crowd-Aware / 
Socially 

Compliant 
Planning 

Safe navigation in human-
populated spaces; considers 

robot-human interaction. 

Complex modeling; requires large 
datasets. 

[137], [187], 
[188] 

Bio-inspired & 
Hybrid Swarm-
Graph Methods 

Effective in dynamic and 
uncertain environments; 

scalable. 

Lack of global optimality guarantees; 
sensitive to swarm dynamics. [192], [193] 

 

Table C2. Comparison of major control strategies for wheeled mobile robots 

 

Control 
Method Main Idea Advantages Limitations Typical Applications 

Adaptive 
Control 

Online 
parameter 

estimation and 
model re-

parameterization 

Handles parameter 
uncertainties, ensures 

stability with 
Lyapunov/backstepping, 

suitable for nonlinear 
models 

Sensitive to fast 
dynamics and noise; 
tuning complexity 

Trajectory tracking 
under uncertain 
dynamics, slip 
compensation 

Sliding-Mode 
Control 
(SMC) 

Discontinuous 
switching to 
force system 
states onto 

sliding surface 

Strong robustness to 
modeling errors and 

external disturbances; 
ensures finite-time 

convergence 

Chattering 
phenomenon; 
performance 

degradation with 
actuator constraints 

Robust tracking in 
uncertain terrains; 

disturbance rejection 

Model 
Predictive 

Control 
(MPC) 

Optimization of 
control input 

over a 
prediction 

horizon subject 
to constraints 

Explicit handling of 
input/state constraints, 
high tracking accuracy, 

flexible to nonlinear 
extensions 

Computationally 
expensive; requires 

accurate models; 
scalability issues 

Obstacle avoidance, 
dynamic trajectory 

tracking, hybrid 
global–local planning 

Neural 
Network–

Based Control 

Universal 
function 

approximation 
for dynamics 

and 
uncertainties 

Online learning ability, 
strong adaptability, 

nonlinear compensation 

Requires large 
training data; 

potential stability 
concerns 

Adaptive NN-PID, 
wavelet networks for 
slip dynamics, RNN-
based optimal control 

Reinforcement 
Learning 

(RL)–Based 
Control 

Policy learning 
through 

interaction with 
environment 
using reward 

functions 

Learns directly from 
data, no need for 

explicit modeling, 
adaptable to unknown 

environments 

High sample 
complexity, reward 
shaping challenges, 

limited safety 
guarantees 

Path tracking in 
dynamic 

environments, 
adaptive navigation, 
safe RL for human–

robot interaction 

Hybrid 
Methods (e.g., 

NN+SMC, 
MPC+DL, 

Neuro-Fuzzy) 

Combining 
complementary 
techniques to 

balance 
robustness, 

adaptability, and 
efficiency 

Exploits strengths of 
multiple controllers, 
improved robustness, 
better generalization 

Increased design and 
computational 

complexity 

Safe navigation in 
cluttered spaces, 

multi-objective control 
(energy, smoothness, 

accuracy) 
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