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vehicles, developing effective methods to improve the performance of these autonomous systems
has become one of the most attractive research areas in recent years. One of the most fundamental
challenges of mobile robots is applying and developing an appropriate and effective navigation strategy.
The concept of navigation deals with subjects such as finding the current position in the environment,

planning appropriate actions to reach the target, and controlling the actuators to track the desired actions.
Therefore, the concept of navigation has different aspects, and the promotion of these aspects leads to the
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1- Introduction

In recent years, the field of robotics has achieved
remarkable progress due to its wide range of capabilities
and applications. Robots are now extensively employed
in factories, laboratories, warchouses, and many other
environments, where they can either collaborate with humans
or operate autonomously. Many of these systems are able to
make decisions and perform tasks without human intervention.
Owing to their diverse applications in both industrial and non-
industrial domains, robots have consistently been a central
focus of research and development.

Among the various types of robots, wheeled mobile robots
(WMRs) represent one of the most widely used categories.
Their structural simplicity, adaptability, and efficiency
make them suitable for diverse environments and operating
conditions.

WMRs have been applied in numerous fields, including
surveillance, planetary exploration, patrolling, emergency
rescue, reconnaissance, petrochemical industries, industrial
automation, construction, entertainment, museum guidance,
personal assistance, extreme environment interventions,
transportation, and medical care, among others. According to
previous studies, navigation is a fundamental element in the
design and functionality of mobile robots [1]. The navigation
process typically consists of three main components.

The first is localization, which identifies the robot’s
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position and orientation using sensors and cameras. In more
complex environments, particularly dynamic or unknown
ones, localization also involves generating maps of the
surroundings. The second component is path planning, where
a collision-free trajectory is determined based on the robot’s
current position, target location, and the presence of obstacles
[2].

The third component is motion control, which ensures
that the robot can effectively follow the planned path [3].
Therefore, the navigation unit integrates essential subsystems
such as localization [ 1], [4], sensor fusion and vision systems
[5], [6], path planning [2], [7], and motion tracking control
[3], [8]. Localization addresses the fundamental question,
“Where am 1?7, while sensor fusion techniques are used to
reduce accumulated errors caused by internal sensors [9].

The choice of path-planning method strongly depends
on the type of environment. Although path planning in static
environments is generally straightforward, achieving reliable
and collision-free navigation in dynamic and unknown
environments remains a major challenge in recent years [10],
[11]. The efficiency of any navigation strategy is directly
influenced by the accuracy of environmental information
[12]. At the motion control level, kinematic and dynamic
constraints of mobile robots must be considered.

These constraints are typically classified into holonomic
and non-holonomic categories. Kinematic analysis focuses
on the robot’s position and orientation, whereas dynamic
analysis also considers forces and torques, providing a more
realistic framework for practical implementation. Selecting
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an appropriate control approach thus depends on how the
robot’s system is modeled and interpreted. This review aims
to highlight critical aspects of navigation in wheeled mobile
robots, focusing on key concepts, algorithms, and technical
considerations. In particular, the study seeks to identify the
strengths and limitations of existing approaches.

A bibliometric analysis is also conducted to examine
publication trends, citation patterns, and keyword evolution
in this field. Such an approach helps uncover the most
influential research directions, identify emerging hotspots,
and reveal promising areas for future investigation.

Accordingly, the remainder of this article is structured as
follows. Section II presents a bibliometric review to trace the
progression and orientation of published works on mobile
robot navigation. Section III provides a qualitative analysis of
the most frequently used keywords, highlighting fundamental
issues and research priorities in this domain.

2- Quantitative Analysis
This section presents a bibliometric analysis of mobile
robot navigation. The bibliographic data were collected

on December 23, 2024, from two major databases: Web of
Science (WoS) and Scopus. According to [13], WoS offers a
reliable dataset; however, Scopus provides broader coverage
and richer document collections for bibliometric studies (FIG.
1). To ensure accuracy and efficiency, the database search
was performed using meaningful keyword combinations.
Specifically, the query “mobile robot” AND (“navigation”
OR “localization”) was applied in both WoS and Scopus.

As shown in FIG. 1, Scopus was selected as the reference
database for this study, containing 103,634 documents. To
focus on recent developments, only works published between
2015 and 2024 were considered, excluding documents before
2015 and those indexed in 2025. Consequently, the final
dataset was limited to 54,212 documents. FIG. 1 illustrates
the document selection process following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow diagram.

The publication trend is presented in FIG. 2, which
demonstrates the continuous growth of studies in the field
of navigation. The increasing number of documents reflects
the growing research activities, discussions, and demand
for further developments. Since 2000, the publication rate
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Fig. 1. The PRISMA diagram for the quantitative analysis of the navigation concept for mobile robots.
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Fig. 2. The annual number of publications on the subject of navigation for mobile robots from
2015 to 2025.
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Fig. 3. Type of documents, Blue: From 1975 to 2025, Red: From 2015 to 2024.

has risen significantly, driven by expanding resources and
institutional support. An analysis of the most active countries
reveals the global distribution of research capacity.

Between 2015 and 2024, the top five contributors were
China, the United States, India, Germany, and Japan. In terms
of disciplinary contributions, Computer Science, Engineering,
Mathematics, Physics and Astronomy, and Materials Science
emerged as the leading fields publishing documents related
to mobile robot navigation. Identifying these active domains
is important for fostering interdisciplinary collaboration,

which can help address limitations and enhance the quality
of research outcomes.

Finally, the types of published documents are summarized
in Fig. 3, providing insight into the distribution of articles,
conference papers, reviews, and other document categories.

Keyword analysis provides valuable insights into research
interests, emerging challenges, and potential application
areas in the field. Table 1 presents the most frequently used
keywords identified in this study.

The analysis reveals that navigation is closely associated
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Table 1. Occurrence of top keywords for mobile robots’ navigation from 2015 to 2024.

# Keyword Occurrence | # Keyword Occurrence
1 Robots 10,367 11 Cameras 2,612
2 Mobile Robots 9,217 12 Agricultural Robots 2,607
3 Robotics 8,913 13 Mapping 2,559
4 Navigation 6,927 14 Computer Vision 2,496
5 Motion Planning 5,654 15 Deep Learning 2,483
6 Robot Programming 4,958 16 Collision Avoidance 2,458
7 Intelligent Robots 2,941 17 Antennas 2,453
8 Controllers 2,848 18 Reinforcement Learning 2,018
9 Path Planning 2,708 19 Vehicles 2,010
10 Indoor Positioning Systems 2,615 20 Optimization 1,799
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Fig. 4. The share of the top 4 keywords in the concept of mobile robot navigation.

with several related concepts, including robot types, path
planning, machine learning, and motion tracking control.
This indicates that the development of effective navigation
methods requires comprehensive knowledge and integration
of these interconnected domains.

Overall, the keyword analysis underscores the
interdisciplinary nature of mobile robot navigation and
highlights the importance of combining techniques from
multiple research fields to address current challenges and
advance future developments. Furthermore, FIG. 4 illustrates
the relative contribution of each major research field related
to mobile robot navigation, highlighting the interdisciplinary
nature of the topic.

Fig. 5 illustrates the percentage growth of documents
published in the top 10 sources over the past seven years.

The analysis indicates that journals such as IEEE Access,
IEEE Robotics and Automation Letters, and Robotics and
Autonomous Systems have shown a steady increase in
publications related to mobile robot navigation during the
last three years. This trend suggests that these journals are
becoming prominent outlets for research in this domain,
making them particularly relevant for scholars aiming to
disseminate their work on mobile robot navigation.

3- Qualitative Analysis
3- 1- Types of Robots

Robots are developed to enhance human performance,
simplify complex tasks, and reduce operational risks. Their
design and structure are determined by their intended purpose
and mission. In this article, robots are categorized as illustrated
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Ground robots are the most widely employed type. They
include domestic, security, environmental exploration (e.g.,
disaster response and wildlife monitoring), industrial, and
medical robots. Industrial and medical robots are generally
classified as fixed manipulators, while mobile ground
robots are designed for more dynamic and versatile tasks.
Among them, wheeled mobile robots (WMRs) are one of
the most influential categories, offering diverse designs,
tasks, and sizes depending on application requirements.
The most notable types include differential-drive robots,

autonomous vehicles, omnidirectional WMRs, and synchro-
drive robots. The number and type of wheels significantly
affect a robot’s kinematic and dynamic properties, as well
as its maneuverability. Typically, four types of wheels are
employed: fixed standard wheels, castor wheels, Swedish
wheels, and spherical wheels.

According to [14], [15], three wheels are sufficient
to ensure stability, although two-wheeled configurations
are also feasible. Two- and three-wheeled robots offer
advantages such as simpler design, lower complexity, ease
of control, and guaranteed stability [16]. Tracked mobile
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robots are primarily employed for exploration tasks due to
their robust wheel structure. Legged robots, on the other
hand, provide better energy efficiency, stability, and mobility
compared with wheeled robots [17]. However, they are
generally more expensive and complex, with kinematic
and dynamic stability being their primary challenge. These
robots can be designed with one or multiple legs. Hybrid
robots are developed for specific purposes, such as mobile
manipulators equipped with arms [18] or water-based robots
with multiple legs [19]. Water-based and aerial robots also
constitute common categories of robots. Another important
distinction lies between unmanned robots and autonomous
robots. Unmanned robots are typically remotely controlled by
human operators, while autonomous robots operate without
direct human intervention [20].

In this study, the focus is on wheeled mobile robots.
Accordingly, the following sections address key issues related
to their design and operation.

3- 1- 1- Sensors for Wheeled Mobile Robots

Wheeled mobile robots require sensors tailored to their
operational environment and task complexity. One of their
major challenges is achieving autonomy, which is partially
addressed through the integration of diverse sensors.
Generally, WMRs rely on sensors for three primary purposes:
localization, environmental perception, and motion control.
Sensors and cameras are used to gather different types of
information, and their interpretation varies depending on
the application. For navigation, robots typically employ
both internal sensors (e.g., position sensors, encoders,
accelerometers) and external sensors (e.g., sonars, laser
sensors, ultrasonic sensors, and proximity sensors) [21], [22].
These systems enhance accuracy, reduce accumulated errors,
and enrich the data required for reliable navigation [23].

3- 1- 2- Visual Sensors

Visual systems play a central role in mobile robot
navigation. Commonly used devices include RGB cameras
[25], event-based cameras [26], thermal cameras [27], 3D
cameras [28], and stereo cameras [29], [30]. RGB cameras
provide color information, enabling detailed scene analysis
and improving system reliability.

Event-based cameras measure pixel brightness changes
asynchronously, encoding time, location, and intensity. They
offer high temporal resolution, wide dynamic range, low
energy consumption, high bandwidth, and reduced motion
blur [31].

Thermal cameras operate in the infrared spectrum,
allowing object detection in low-light conditions (e.g.,
nighttime), though they generally offer lower resolution than
RGB cameras [32]. Stereo cameras employ multiple lenses
to reduce occlusion and enable accurate depth measurement,
thereby improving scene interpretation [33]. 3D cameras
capture volumetric information, enabling three-dimensional
environmental perception [34]. Visual sensors provide
rich information, color perception, and relatively low cost.
However, their performance deteriorates in adverse weather

conditions (e.g., rain or fog), and they require advanced
image-processing software.

3- 1- 3- Laser-Based and Active Sensors

Laser-based sensors, available in both 2D and 3D formats,
provide high accuracy and fast processing, with 3D systems
offering richer environmental data. Their main drawback is
their relatively high cost [35].

Active sensors, such as ultrasonic systems and cameras
with integrated illumination, are widely used in autonomous
WMRs for obstacle detection and mapping. While they
provide reliable information for collision avoidance, they are
highly sensitive to lighting conditions, which reduces their
effectiveness in extreme environments.

3- 1- 4- Sensor Fusion

To overcome the limitations of individual sensors, sensor
fusion is widely applied in mobile robot navigation. Fusion
techniques integrate data from multiple sensors to reduce
uncertainty, increase accuracy, and improve overall system
reliability. Additional benefits include extended spatial and
temporal coverage, enhanced resolution, and reduced system
complexity [5].

The most powerful fusion methods include maximum
likelihood estimation, Kalman filtering, and particle filtering
[35], each of which offers distinct strengths depending on the
application context.

3- 2- Concept and Approaches of Localization

The first step in operating wheeled mobile robots in known
or unknown environments is finding the current location. The
problem of localization can be divided into three parts: 1)
position tracking, which has the most studies (55%), 2) global
positioning/localization is in the second place (26%), and 3)
kidnapped robots (19%) [36]. Wheeled mobile robots employ
internal sensors to track their movements in the environment.
Due to measurement and accumulation errors, it is necessary
to use information from external sensors to determine their
position relative to the map. According to [37], the most
effective positioning methods are odometry, although it is the
most straightforward way. However, the problem is positional
drift due to slipping wheels [38]. Inertial navigation does
not depend on the environmental conditions or view of the
environment; however, its exact implementation is costly
[39].

Magnetic compasses are resistant to environmental and
Earth’s magnetic field effects. Nevertheless, they are usually
deflected by the Earth’s magnetic field near power lines or
steel structures [40]. Active beacons and global positioning
systems are always available, but their accuracy is low, and the
efficiency decreases in closed environments [41]. Landmark
navigations are usually easily recognizable, but most of
them are in fixed and specified positions. In the next step,
the localization algorithm must specify the robot’s position
on the map. The accuracy of the map is entirely related to
the task and the accuracy required for the wheeled mobile
robot. In some applications, the map needs to be updated, or
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even a map of the environment must be created. Therefore,

localization methods can be divided into two categories

based on a predetermined map: 1) probabilistic approaches
and 2) autonomous map building. There are three common
perspectives for implementing probability-based localization

[37]:

e Markov localization: The current position is estimated
based on the robot’s previous positions and odometer
(prediction phase). Then, by combining information from
the external sensors with the estimated current position,
which is obtained by the internal sensors, the robot’s
current position is modified (perception phase). The
capabilities of this approach can be appropriate to solve
three problems 1) localization, 2) the ability to run from
an unknown position, and 3) the ability to track multiple
points by the robot. This method needs to describe the
space discretely to update the probability of possible
situations. Nevertheless, limited memory is required due
to the description of discrete space [42], [43]. Moreover,
this technique can use any probability distribution
function to display the robot’s position [44].

e Kalman Filter (KF) localization: This technique only
uses the Gaussian probability distribution function to
estimate the position [37]. In the prediction phase, an
estimate of the motion model is obtained along with
the measurement uncertainty of the internal sensors
(Gaussian error). Then, in the perception phase, the
assessments are updated based on the weighted average,
leading to an increase in the estimate’s accuracy. This
approach is based on a sensor fusion approach that can
effectively solve the problem of position tracking [36].
The limitation of this method is that the initial position
of the tracking needs to be known. This method can also
be implemented in the continuous world [45]. The KF is
developed for linear systems. However, many systems
are nonlinear. Hence, the Extended Kalman filter (EKF)
was introduced to overcome the problem of nonlinearity.
In the EKF, the system is linearized around the operating
point. Comparing the KF and the EKF [49] shows that
the EKF is more efficient than the KF in estimating the
robot’s position. In this trend, the Unscented Kalman
Filter (UKF) was developed, which uses an unscented
transform for linearization. To update the perspective on
multi-sensor fusion and sensor comparisons in mobile-
robot localization, a recent comprehensive review is also
available [181]. A review study provides a comparison
based on the practical data between the EKF and UKF,
which shows that the EKF works as well as the UKF for
the localization aim of the mobile robot [50].

e Monte Carlo Localization (MCL): This approach is
also known as Particle Filter (PF) localization [46],
which selects a set of possible positions from the total
set of possible positions to construct the robot belief.
This method reduces the number of updates and thus
the reduction in complexity. A specific PF is introduced
by combining the Markov chain Monte Carlo sampling
technique and the Differential Evolution method to

minimize a fitness function online. It can apply effective

localization in conditions such as dynamic and unmodeled

obstacles [47]. Reference [48] introduces a new Markov

Vision-based localization approach for challenges in

visual conditions and complex roadways.

For more information on probabilistic approaches, recent
studies, challenges, and developments, the reader may refer
to [51]. Due to the dynamics of the environment in many
applications, the idea of autonomous map building has
received much attention. The wheeled mobile robot localizes
itself in three stages: “starting exploration from a random
location”, “identifying the environment through sensors”,
and “making a map based on information received from the
surroundings” [52]. Since the quality and accuracy of the map
depend on identifying the environment, the type and manner
of fusion of the information received from the sensors are
influential.

With the development of visual systems, the possibility
of accessing rich data has been provided, and has taken a big
step in developing autonomous map-building strategies [53].
A concept called Simultaneous Localization and Mapping
(SLAM) has been proposed to create a map automatically
by the wheeled mobile robot. Creating a map has advantages
such as the possibility of path planning, limiting the estimating
error of the position of the robot, and dead-reckoning (limiting
the error using a loop closure [54]) [55]. Initially, the SLAM
problem was introduced as probabilistic formulations and
was developed based on the KFs and PFs [56] and [57]. The
first SLAM was formulated based on EKF, which used an
extended vector including robot pose and the position of all
environment features [36]. The “Robocentric Map Joining
algorithm” was introduced to overcome the uncertainty of
the vehicle movement and sensor model conditions in the
implementation of the EKF-SLAM, which is a concept based
on creating a sequence of independent local maps by robot-
centered representation in each regional map [58]. On the
other hand, the UKF-SLAM approach has advantages such
as increasing the accuracy of state estimation, reducing the
effects of linearization, and proper estimation of variance and
mean linearity as compared with the EKF-SLAM approach.
However, its disadvantages include cubic computational
complexity in the number of states and inconsistency
of the state estimates. The introduction of SLAM based
on Observability-Constrained UKF (OC-UKF) reduced
calculations’ complexity and increased accuracy of the state
estimates [59]. Ref. [60] presented a comparison between the
EKF and UKF based on the results. These two filters perform
relatively well in reconstructing the robot’s position because
the nonlinearities of the model are not severe enough to
highlight the fundamental differences. Fast localization and
mapping (FastSLAM) is based on particle filtering and has
been considered in many articles. However, two important
problems of particle filters are “impoverishment” and
“degeneracy”.

Evolutionary methods such as Particle Swarm
Optimization (PSO) and bat-inspired optimization are used
to improve these problems. To overcome the impoverishment
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problem due to particle depletion in the resampling phase in
FastSLAM, an improved PSO-based resampling method was
proposed for the pose convergence of the particle set instead
of rejection and replication. In fact, utilizing the improved
PSO-based resampling method leads to better accuracy
than the standard FastSLAM [61]. Currently, the concept
of SLAM is significantly improved by computer vision,
signal processing, geometry, graph theory, optimization,
probabilistic estimation, and system integration, sensor
calibration [62]. By introducing a predictive model-based
SLAM framework using the control switching mechanism,
the concepts of “increasing performance by reducing SLAM
uncertainty” and ‘“area coverage work” in obtaining a
collision-free path were satisfied. In fact, the graph topology
approximates the original problem to a constrained nonlinear
least-squares problem, leading to reduced SLAM uncertainty.
Moreover, a sequential quadratic programming method
addresses the area coverage task [63].

A brain-robot interface (BRI) based on a control system
is proposed in [64], where a combination of RGB-D (to gain
rich information), optical flow (to track feature points in
real-time accurately), and deep learning (for object-detection
purposes and to reduce localization error) is performed. It has
been presented to achieve navigation and control of a wheeled
mobile robot in unknown environments. For comprehensive
information on SLAM, especially vision-based SLAM, the
reader may refer to [62]. Moreover, [65] reviews wheeled
mobile robots’ solutions, challenges, and applications in
dynamic human-presence environments. A recent trend
review on autonomous mobile-robot path planning provides
an updated overview of search, sampling-, and curve-based
methods [66]. A turning-points-based method for generating
smooth paths in known environments with stationary
obstacles is proposed in [67]. An open-access version is also
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available [68].

Using LiDAR allows obtaining 3D images and checking
conditions that affect the quality of the received information.
Moreover, due to the advancement of LiDAR technology, its
cost is decreasing. In addition, [69] compares several vision-
based and LiDAR-based SLAM algorithms on the NASA
UAS (Unmanned Aircraft System) flight test data. Two types
of solid-state LiDAR and mechanical LiDAR have been
investigated to locate and map simultaneously. According
to [70], the localization accuracy of the solid-state LiDAR
was lower than that of the mechanical LiDAR in challenging
conditions. In conditions of small changes in the field of view
and jerking along a straight path, the localization accuracy
of solid-state LIDAR was higher than that of the mechanical
LiDAR. For wheel-legged robots, an indoor LiDAR-inertial
SLAM integrating the kinematic model has been introduced
[71]. Another comprehensive survey specifically covers
advances in LiDAR odometry [72]. An additional update
introduces adaptive-intensity feature extraction within
LiDAR-inertial SLAM to enhance robustness [73]. Another
continuous-time LiDAR-inertial SLAM framework targeting
real-time navigation has been proposed [74]. For highly
dynamic legged-robot scenarios, a robust RGB-D-inertial
fusion SLAM has been proposed [75]. A comprehensive
comparison of localization and SLAM methods, with their
respective  strengths, weaknesses, and applications, is
presented in Appendix A (Table Al).

3- 3- Machine Learning Applications

Machine learning, as a relatively new and rapidly
expanding concept, has permeated many aspects of modern
technology and is now considered one of the most significant
components of robotic research. Figure 7 illustrates the
growth in publications related to the application of machine
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Fig. 7. Annual number and annual contribution of publications in machine learning for wheeled
mobile robots’ applications.
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Table 2. The occurrence of top keywords of machine learning related to wheeled mobile robots

# Keyword Occurrence # Keyword Occurrence
1 Deep Learning 3,394 11 Decision Making 656
ject Detecti
2 Reinforcement Learning 2,670 12 ObJ.eC cree 1(.)1?/ 859/
Object Recognition 599
3 Motion Planning 1,820 13 Deep Relnforcement 447
Learning
4 Navigation 1,602 14 Image Segmentation 445
5 Computer Vision 1,095 15 Classification 394
6 Deep neural Network 995 16 Feature Extraction 371
7 Path Planning 899 17 Autonomous Driving 354
Convolutional Neural Support Vector
1 294
8 Networks 97 8 Machines ?
9 Controllers 769 19 Transfer Learning 220
10 Collision Avoidance 674 g0 Model Predictive 206
Control

learning in wheeled mobile robots. This notable upward trend
reflects the fundamental potential of ML in addressing diverse
robotic challenges. The top 20 machine learning keywords
in robotics for 2024 are listed in TABLE 2, showing the
breadth of its applications. Keyword analysis indicates that
deep learning and reinforcement learning are the most widely
adopted branches within this domain.

According to the Scopus database, the most common
robotic platforms employing ML techniques are agricultural
robots, unmanned aerial vehicles (UAVs), and industrial
robots. Machine learning is typically classified into
supervised, unsupervised, and reinforcement learning.
Supervised learning is commonly used for classification and
regression tasks, whereas unsupervised learning supports
clustering, dimensionality reduction, and uncovering latent
data structures. As reported in TABLE 2, the majority of
research efforts focus on machine vision, navigation, path
planning, and control. FIG. 8 presents the categorization of
current ML methods based on learning type.

Machine learning has numerous applications across
robotics. In machine vision, supervised classification methods
play a central role, enhancing environmental perception and
navigation efficiency. For example, transformer models have
recently been introduced for vision-based robot navigation
[76]. In [77], multivariate adaptive regression splines
were applied to address challenges in camera-based robot
navigation. Similarly, a vision-integrated regression approach
was implemented on humanoid robots to overcome the
limitations of earlier regression-based methods [78]. Logistic

11

regression has also been employed to predict collisions
from acceleration data [79]. The k-nearest neighbor (KNN)
algorithm, known for its robustness to nonlinear data [80],
has been combined with deep-stacked autoencoders for object
detection from sensor data [81]. In [82], Support Vector
Machine (SVM)-based classifiers were applied to optimize
feature dimensions, improving environmental recognition.
Additionally, SVM classifiers have been integrated with
decision trees to estimate human upper-body orientation
[83]. Bayesian optimization has been further utilized for path
planning, enabling reliable navigation using low-cost camera
systems [84].

Neural networks have become indispensable for
environmental recognition, decision-making, and control
in wheeled mobile robots. For instance, the Multi-Layer
Perceptron (MLP) network provides near-optimal collision-
free path planning, suitable for real-time navigation tasks [86].
A hierarchical sensor fusion technique utilizing an MLP was
proposed to improve robot self-localization [87]. Moreover,
comparative studies have assessed the performance of fuzzy
logic and back-propagation neural networks in navigation
tasks such as wall-following [50].

Recent developments highlight the increasing importance
of hybrid methods that combine machine learning with
traditional control and optimization approaches. These
methods leverage the adaptability of ML while ensuring
the stability and interpretability of classical models, making
them particularly effective for real-time navigation and
safety-critical robotics. Nevertheless, several challenges
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remain, including dependency on large datasets, high
computational cost, and limited generalization to dynamic
and unstructured environments. Addressing these challenges
will require lightweight learning models, efficient training
strategies, and robust multi-sensor integration. Looking
ahead, machine learning is expected to play a central role in
advancing autonomy, adaptability, and robustness in wheeled
mobile robots. This trajectory underscores the importance
of interdisciplinary collaboration across robotics, artificial
intelligence, computer vision, and control engineering.

The comparative study in [50] shows that the overall
performance of wheeled mobile robots remains similar when
applying fuzzy logic and back-propagation neural networks.
However, the back-propagation approach enables the robot to
move at a higher speed than the fuzzy logic system. In [88], a
comparison between the A* algorithm and the Hopfield neural
network for time-optimized path planning was presented.
Results demonstrated that A* offered superior performance
in terms of efficiency, although the Hopfield network showed
potential for reducing execution time under certain conditions,
suggesting room for further improvements.

In multi-robot systems, one of the most critical challenges
is establishing effective group coordination strategies. Recent
studies have explored deep reinforcement learning (DRL)-
based approaches for achieving collaborative behaviors in
multi-robot environments [89]. Such methods enable adaptive
decision-making in dynamic and uncertain conditions.
Similarly, Hopfield networks have been applied to model
cooperative strategies in multi-agent robotic systems [90].

For motion tracking and control, adaptive control
strategies based on the Radial Basis Function (RBF) network
have been introduced to handle model uncertainties [91].
These approaches demonstrate robustness in both kinematic
[92], [93] and dynamic [94] scenarios, leading to enhanced
localization accuracy [95]. Moreover, the integration of
learning-based adaptive controllers is increasingly being used
to address challenges in real-time environments with noise
and disturbances.

With the rapid advancement of processors and
computational capabilities, deep learning methods have
gained widespread adoption in wheeled mobile robot
applications [96-99]. Deep convolutional neural networks,
recurrent neural networks, and hybrid architectures are
increasingly utilized for tasks such as end-to-end navigation,
environment recognition, and real-time path planning. These
techniques not only improve robustness and adaptability but
also open new avenues for integrating semantic understanding
of the environment into navigation pipelines.

Furthermore, a growing trend in recent literature focuses
on combining classical optimization-based methods (e.g.,
A* and Dijkstra) with deep learning models to balance
interpretability, optimality, and adaptability. Such hybrid
approaches represent a promising research direction,
particularly in safety-critical scenarios where both efficiency
and reliability are required.

Among the various branches of deep learning, the most
significant architectures include autoencoders, deep belief
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networks (DBNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs) [100]. Autoencoders
are particularly suitable for handling unlabeled data in
unsupervised learning settings. One of their primary
advantages is dimensionality reduction through learning
compact representations of input data [101].

Furthermore, autoencoders can accelerate training
processes by providing effective parameter initialization
for recurrent neural networks [102]. DBNs also operate
in an unsupervised manner, offering hierarchical feature
learning capabilities [103]. For example, an improved SLAM
framework combining RGB-D and LiDAR inputs with
parallel noise filtering for 2D navigation has been developed,
leveraging such architectures [104].

CNNs and DBNs have been widely applied for obstacle
detection and collision avoidance [105]. In [106], two high-
resolution depth-color cameras (RGB-D and TOF) were
integrated, combining high-resolution visual input with
low-resolution depth sensing to construct accurate maps. A
Fully Convolutional Network (FCN) was further employed
for semantic segmentation. Unlike autoencoders and DBNSs,
CNNs require extensive offline training using large-scale
datasets, but they provide powerful advantages, including
robust feature extraction and invariance to rotation and
translation.

Applications of CNNs span image and video recognition
[105-107], classification [110], semantic segmentation [111],
[112], and even recommender systems [113]. Building on
these capabilities, the Robot with Artificial Intelligence-based
Cognition (RAICO) system integrated CNN-based perception
to achieve reliable object recognition with efficient inference
speed [114]. RNNs differ in that their neuron connections are
directional, enabling the use of internal memory to process
sequential data, which is critical for tasks requiring temporal
dependencies, such as trajectory prediction. For more details
on RNN architectures and their applications, readers are
referred to [115].

The third major branch of machine learning, reinforcement
learning (RL), has gained significant traction in robotic
navigation, particularly for path planning and control
strategies [116—119]. A recent review emphasizes the role of
deep reinforcement learning (DRL) in enabling multimodal
perception integration and real-time decision-making [120].
For instance, DRL-based self-exploration methods that fuse
LiDAR and camera data have been demonstrated [121],
with subsequent official corrections published to refine prior
results [122]. Classical Q-learning has been successfully
applied to obtain feasible paths in structured environments
[123—-125]. However, its performance is limited by the curse
of dimensionality in complex state-action spaces, making
collision-free navigation challenging. The Dyna Q-learning
variant improves path quality by integrating planning with
learning, yet the dimensional constraints of the Q-table persist.
To address these limitations, model-based RL approaches
have been introduced, offering accelerated learning and
improved generalization in navigation tasks [126]. To extend
RL into continuous state-action spaces, integration with deep
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learning has been pursued [127-129]. In these hybrid models,
deep networks are employed for feature extraction and
function approximation, resulting in improved path quality
and adaptability [130], [131]. DRL has also been utilized to
design advanced controllers capable of handling nonlinear
dynamics and uncertainties [132], [133]. Beyond traditional
architectures, graph neural networks (GNNs) have recently
been applied to model spatial relationships and support
navigation in complex topologies [134]. Complementing
these advances, explainable Al techniques have been
proposed to increase the transparency of decision-making in
DRL-based navigation systems [135], addressing concerns of
interpretability and trust in autonomous systems.

To provide a more comprehensive perspective, a
comparative analysis of the most prominent machine learning
approaches applied to wheeled mobile robots is included in
Appendix B (Table B1). This extended table summarizes the
main applications, strengths, weaknesses, and key references
of traditional machine learning, deep learning, reinforcement
learning, hybrid approaches, and explainable Al methods.
The insights highlight trade-offs between interpretability,
adaptability, and computational efficiency, serving as a useful
reference for future research directions.

3- 4- Planning Phase

Path planning is a fundamental problem in mobile robotics
and refers to determining a sequence of points that guide the
robot from its current or initial position to the desired target
location. One of the primary requirements of path planning
is ensuring collision-free motion, which involves avoiding
both static and dynamic obstacles. Depending on the type
of environment and the specific task of the wheeled mobile
robot, an appropriate path-planning strategy must be selected.
Environments are typically categorized based on two criteria:

* Information availability: known versus unknown
environments.

» Dynamics: static environments (with fixed objects) versus
dynamic environments (with moving agents).

In static and fully known environments, motion planning
can be performed offline, where the path is computed before
execution. In contrast, when the environment contains
unknown regions or dynamic agents, the robot requires online
(real-time) planning to continually re-evaluate and generate
safe trajectories in response to new information. From a
computational perspective, online methods are generally
less complex than offline global planners, allowing real-time
path generation even with limited onboard processing power.
Global path planning thus refers to the offline determination
of a complete path before execution, while local path
planning focuses on dynamically adjusting the trajectory
based on continuously updated sensor data from the robot’s
surroundings. In the literature, multiple terminologies are
used:

 Pathplanning typically refers to the geometric computation
of a feasible path without considering time or dynamics.
» Trajectory planning incorporates kinematic and dynamic
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constraints of the actuators, ensuring feasible motion

along the planned path.

* The integration of path and trajectory planning is generally
termed motion planning.

* Motion tracking represents a related concept where the
robot (follower) continuously adjusts its trajectory to
follow another agent (leader).

Several optimization criteria have been proposed to
improve motion planning strategies. Common objectives
include minimizing travel time, reducing energy consumption
or actuator effort, limiting jerk (for smoother motion), and
combining multiple objectives into hybrid criteria [136].
Furthermore, in human-populated environments, crowd-
aware path-planning frameworks have been introduced to
enhance safety and social compliance, enabling robots to
navigate smoothly while avoiding discomfort or risk to
pedestrians [137].

So far, various methods have been proposed for the
motion planning of wheeled mobile robots. TABLE 3 lists
some crucial characteristics of the main motion planning
methods. Another up-to-date survey categorizes and compares
mobile-robot path-planning methods [143]. The classical
methods of path planning are typically offline and require
environment modeling. However, increasing the dimensions
of the environment increases the complexity of calculations.
Sample-based methods have been very successful, and many
efforts have improved them. One of the most significant
features of the sample-based methods is guaranteeing at least
one successful path [144]. A joint path-planning and path-
tracking framework for static and dynamic environments
has also been proposed [145]. A comprehensive survey on
coverage path planning in dynamic environments is provided
in [146].

The Rapidly Random Tree (RRT) method cannot yield
an optimal path. Then, the RRT* method was developed that
produces an optimal path. However, the RRT* requires more
memory than RRT [147]. The RRT* Fixed Nodes (RRT*
FN) method was introduced in [148], where the problem of
RRT* was solved, but could only be implemented for known
and fixed environments. It was also shown that the RRT*
method can generate a shorter path than the proposed RRT*
FN method.

For more information on RRT and the developed
strategies, [149] provides a comprehensive and valuable
review. Grid-based methods can design high-quality paths.

The Dijkstra method can create the optimal path in terms of
minimum distance, but it decreases its efficiency due to a large
number of nodes [150]. The A* method is employed in many
fields due to its completeness, optimality, and remarkable
performance. Still, this method is also not very efficient due
to the large number of nodes. The A* search method was
introduced for dealing with efficient node searching that, in
addition to creating an optimal path, requires less memory
to store nodes [151]. An enhanced A* with staged heuristics
and artificial potential fields for complex environments is
presented in [152].
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Table 3. Well-known methods for motion planning of wheeled mobile robots, C: Classic, S: Sample-based,
G: Grid-based, A: Artificial intelligent, D: Directional approach, M: Machine learning

2 Path planning
UQ —————————————————————
# Method 5,- Problems
g Global Local
1 Visibility graph C * -High temporal complexity [138]
2 Voronoi graph C * -Mutational site [139]
3 Tangent graph C * -High possibility of collision
4 Cell Decomposition Approach  C * -Assignment of the borders [140]
. -Environment with sparse obstacles
* ’
3 Topological method ¢ -Difficult re-modification
6 Probabilistic roadmap S * -Narrow passage problem [141]
7 Rapidly exploring random trees S * -Not results in the shortest path [142]
8 Dijkstra Algorithm G * -Discrete environment
9 A* Algorithm G * *  -Discrete environment
10 D* Algorithm G * *  -Discrete environment
11 Neural network A * *  -Complexity of adjusting weights
12 Fuzzy logic A * *  -Definition of rules
-Incline to premature convergence
13 Genetic algorithm E * *  -Low convergence speed and high temporal
complexity in the final stage
-Incline to premature convergence,
14 Ant colony optimization E * *  -Low convergence speed and high temporal
complexity in the early stage
15 Particle swarm optimization E * *  -Local minima
-Local minima
16 Artificial potential field D * *  -Low convergence speed and high temporal
complexity in the final stage
17 Rolling windows i " « -The optlmgl path is not guaranteed,
-Local minima
-Limitation of the Q-table’s dimension,
18 Reinforcement learning M " « -Possibility of collision due to improper definition
of states,
-Limitation on applicable actions
19 Deep learning M " « -Temporal complexity in real-time planning,

- Proper network training
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The D* algorithm can create a shorter optimal path than
the A* and deal well with unknown or unpredictable threats.
However, its weakness is the possibility of failure when the
motion target is uncertain153] ]. Neural networks, despite
their complexity, have always been considered in motion
planning. The input information acquired from the sensors is
fed to the neural network to adjust the weights to optimize the
cost function. One of the most important features of neural
networks is their constant adaptability to the environment. The
online learning of the neural networks for motion planning
can only be implemented in some situations and for particular
structures of the networks. The modified pulse-coupled neural
network model presents a real-time and optimal motion
planning method in dynamic environments [154]. In [155],
by introducing a novel dynamic neural network, an efficient
method for obtaining real-time and collision-free motion has
been proposed without the need for any process of learning
and estimating collisions at any stage of the movement, based
only on neural connections within the network. Moreover, the
stability of the network has been proved by qualitative analysis
and the Lyapunov approach [156]. Using the motion-planning
algorithm based on incremental sampling as a near-optimal
rapid random tree exploration, the effect of nonlinear kinematic
and dynamic constraints on the motion was investigated
in [157], where a neural network is employed to predict the
cost function. One of the most important advantages of fuzzy
systems is the model-free solving approach, which significantly
reduces the computational complexity of the planning unit.
Combining the neural network with a fuzzy system creates
an adaptive neuro-fuzzy inference system (e.g., ANFIS) that
can approximate nonlinear functions as a universal estimator
for motion planning [158]. In recent years, evolutionary
algorithms have been the subject of the most significant
studies related to motion planning [136]. The purpose of these
algorithms is multi-objective optimization. However, it has
disadvantages, such as getting trapped in the local minima and
not guaranteeing the optimal global solution.

The most widely used method among the evolutionary
algorithms is the Genetic Algorithm (GA). The GA is the
most effective method in motion planning that was developed
with an improved crossover operator to prevent premature
convergence. In addition, finding a better path can increase the
convergence speed [159]. The Ant Colony algorithm, which
is another type of evolutionary algorithm, was introduced
for the wheeled mobile robot in [160], where the algorithm
converges rapidly even in complex environments according
to simulations [161]. The PSO was first introduced in [162].
In this method, finding the optimal solution is not guaranteed.
However, the Conventional PSO was introduced in [163] to
find the optimal path in non-convex environments with the
help of the random sampling method [164]. The adaptive PSO
algorithm was presented in [165] to create an online path. The
simulations show that this method can better avoid collisions
with obstacles and reach the goal faster than the conventional
PSO. The main purpose of the “nature-inspired algorithms” is
to solve a constraint optimization problem. However, most of
these methods are not able to find the global optimal solution.
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In [166], a hybrid method using the FA and GA was presented
to design a global path for wheeled mobile robots. The FA
part finds the local optimal solution, which is the subject of
selection, crossover, and mutation operations in the GA that
finds the global optimal response. The results indicate that the
calculation ability and the reaction speed of the mobile robot
have been improved [167]. The Artificial Potential Field (AFP)
method is one of the most popular path design methods.

To overcome the local minima, [168] introduced a novel
concept named “black-hole force”. Then, the problem was
solved by adjusting the repulsive force parameters [169],
[170]. In [171], by using ANFIS, it was shown that the robot
is never caught in local minima. Reinforcement Learning (RL)
is one of the remarkable approaches for learning and finding
an appropriate path. The classical Q-learning allows learning
without the need for a previous model of the environment.
However, it has disadvantages such as limitations in the
number of states and actions, slow convergence to the optimal
solution, and a proper definition of the reward function.
Therefore, to increase the efficiency of the classical Q-learning
in known and unknown environments, the APF method has
been used to improve the convergence rate of the classical
approach to the optimal solution. Furthermore, to check the
performance and effectiveness of the proposed method, the
parameters of the path length, smoothness of the path, and
learning time were considered. The results of this method
showed better performance than the classical Q-learning [172].
In [173] and [174], RL and APF have been used to obtain a
suitable motion and overcome local minima in the potential
field. For motion planning purposes, deep learning is used to
approximate functions. New benchmarking frameworks for
comparing RL algorithms in mobile robot navigation have
been developed [175]. In [176], to improve the definition of the
reward function in the classical QL, the structure of the reward
function is generalized using environmental spatiotemporal
information and the structure of the operating environment so
that each member of the group avoids other wheeled mobile
robots or dynamic objects. Also, in [177], the Adaptive APF
(A-APF) method was introduced, which solved the local
minima problem by adjusting the virtual obstacle’s repulsive
force parameters using the model reference adaptive system
method. Then, improved Q-learning (IQL) was introduced to
solve the lack of generalization of experience between states
and the long time to gain experience problems. This led to
an increase in convergence speed to the optimal action. The
A-APF method was then utilized as a supervisor of the IQL to
ensure the collision avoidance of static and dynamic obstacles
in unknown environments. Safe reinforcement learning
approaches for reducing collisions in unknown environments
have been proposed [178]. In [179], an efficient method for
exploring a wheeled mobile robot in an unknown environment
using deep reinforcement learning was presented. Due to the
unpredictable structure of the environment for exploration and
rescue operations, deep learning has also been used to extract
suitable features for path planning and frontier exploration,
and thus helps approximate a function to access the optimal
policy [180].
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The dynamic window method (DWA) controls the wheeled
mobile robot’s motion using the optimal speed in real-time by
transforming the path-planning problem into a constrained
optimization problem of the velocity space. This method is
considered an effective method for local planning. The most
important disadvantages of this method are “insufficiency
of evaluation functions” and “absence of a weight selection
algorithm for evaluation functions”. To solve these two
problems, two new evaluation functions were introduced to
consider more complex situations and improve the robot’s
behavior in complex environments. Then, the Q-learning was
used to adjust the DWA parameters adaptively based on the
structure of the unknown environment [181]. A combination
of the path planning and SLAM has also been proposed to
improve the navigation quality. The dueling deep Q-learning
algorithm created a collision-free path by a fully convolutional
neural network for obstacle reorganization [182]. The 2D
representation obtained from the environment is based on
FastSLAM. Deep Reinforcement Learning method has been
employed to find the shortest path by considering the motion
constraints of the vehicle in simulations and in real-world
applications [183]. Deep learning has been used in [184] to
avoid collisions and to determine a suitable control input for
the actuators. In this work, the required sample set is obtained
by using the potential field and the ant colony algorithm
[185]. With an asynchronous deep reinforcement learning
method, the path planning (without hand-designed features
and prior representation) was performed to move the robot
in an unknown and dynamic environment, and only with
limited horizon capability [186]. Most existing methods are
based on understanding the interactions between the robot and
the surrounding environment. However, understanding the
interactions between the environmental factors can provide
meaningful information to the behavior design unit. In [187],
using a decentralized structured RNN network with coarse-
grained local maps (LM-SRNN), robot-human interactions
were modeled through spatiotemporal graphs. Moreover, the

human-human interactions were modeled through coarse-
grained local maps that enable safe movement in crowded
environments. By using RGB frames as the input, it was
shown in [188] that it is possible to plan a safe path and to
estimate the position on the map. Since deep Q-learning can
only consider state-space continuously (continuous space) and
the number of actions that can be performed is limited (discrete
space), this approach is mainly used to create a meaningful
and better understanding of the environment. Methods such as
the asynchronous advantage actor-critic algorithm [189] and
soft actor-critic [190] have been used to achieve a continuous
state-action space, which has led to a smoother and more
efficient path. Since real environments are usually unknown
and/or dynamic, [191] presented a comprehensive review
of two categories of classical (e.g., APF and Roadmap) and
heuristic (e.g., GA, PSO, and Fuzzy Logic) algorithms that can
be applied in dynamic environments. Bio-inspired algorithms
for mobile robot path planning have also been developed
[192]. Hybrid swarm intelligence and graph-based algorithms
have also been proposed [193]. It also presented the general
advantages and disadvantages of each method by examining
the criteria of “path planning in cluttered areas”, “detection
and tracking of moving targets”, “prediction of the direction
of moving objects”, and “effect of the speed of obstacles in
decision-making”. Ref. [194] provides the “random tree*”
algorithm with real-time exploration for obstacle avoidance
to detect 3D objects. Then, the output of the path-design unit
is considered as the input of the model prediction controller
to achieve safe movements. Table 4 shows the top 10 popular
methods for path planning from 2015 to 2024 according to the
Scopus dataset. A recent special issue focusing on mobile-robot
navigation—including perception, localization, and SLAM—
has been organized as well [195]. A detailed comparison of
the main motion planning methods for wheeled mobile robots,
including their advantages, limitations, and key references, is
provided in Appendix C (Table C1).

Table 4. The occurrence of the top 10 keywords of path planning methods for wheeled mobile robots

# Keyword Occurrence # Keyword Occurrence
1 Reinforcement learning 1,288 6 Artificial potential fields 512
2 Optimization 1,065 7 Fuzzy logic 449
3 Deep learning 939 8 Neural networks 423
4  Particle swarm optimization 573 9 Ant Colony optimization 402
5 Genetic algorithms 559 10 Machine learning 368
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3- 5- Motion Tracking Controllers

In the final stage of the navigation architecture, an
efficient controller is required to ensure reliable trajectory
tracking and stable execution of the path generated by the
planning unit. Among the major challenges in the domain of
wheeled mobile robots (WMRs) is the design of robust and
adaptive tracking controllers that can cope with nonlinear
kinematics, dynamic uncertainties, actuator constraints, and
real-time environmental disturbances. While the motion-
planning unit can be regarded as the behavior design unit,
the control system is responsible for translating this planned
behavior into executable motion [195]. The control unit
receives its inputs from two sources: (i) the motion-planning
unit and (ii) surround sensing systems. The primary objective
is to minimize the tracking error, defined as the difference
between the desired trajectory and the real-time robot state
measured by sensors.

Classical and Theory-Based Controllers
Traditional control approaches have been categorized into
three broad groups [197]:

¢ Global linearization-based control, which transforms
the nonlinear robot dynamics into equivalent linear state-
space systems through coordinate transformations.

e Approximate linearization-based control, which
relies on linearization around local operating points or
equilibria.

e Lyapunov theory-based control methods, which
directly guarantee stability through Lyapunov function
construction.

Although these controllers provide theoretical stability
guarantees, they often suffer from sensitivity to parameter
variations and modeling uncertainties. To address this,
adaptive control methods have emerged as one of the most
effective solutions for WMRs.

Adaptive and Nonlinear Controllers

Adaptive strategies exploit online parameter estimation to
handle time-varying and uncertain dynamics. Methods such
as Lyapunov-based adaptive control [198], backstepping
re-parameterization [199], and switching control combined
with Lyapunov stability theory [200] have shown success
in reducing parameter thrust and actuator saturation issues.
Novel adaptive feedback controllers have been proposed for
WMRs under wheel slip and dynamic constraints [201].

Integration with machine learning has expanded adaptive
control capabilities. Neural networks and wavelet networks,
with their universal function approximation properties, are
able to model nonlinear robot dynamics online and enhance
controller robustness [202]. Hybrid NN-PID controllers
[194] and recurrent neural network—based optimal controllers
[203] have further improved adaptability in unstructured
environments.

Sliding-Mode Controllers (SMC)
SMC techniques remain popular for WMR tracking
control due to their robustness against model uncertainties

and external disturbances. High-frequency switching enables
reduced invariant tracking errors [204]. To mitigate chattering
and enhance performance, intelligent SMC frameworks
combined with radial basis function (RBF) neural networks
have been reported [205].

Model Predictive Controllers (MPC)

Model predictive control has gained substantial attention
due to its ability to handle multi-constraint optimization
problems in real time. By formulating the tracking-error
kinematics into finite-horizon quadratic programming (QP)
problems, primal—dual neural networks have been utilized to
accelerate convergence [176]. Recent works demonstrate the
success of MPC in:

e Tracking and obstacle

environments [208, 209].

* Robust MPC under parametric uncertainties [210-

212].

o Integration of deep learning with MPC for vision-based

and data-driven navigation [213, 214].

e Hybrid global-local planning frameworks coupled
with MPC further ensure adaptability in non-stationary

environments [209].

avoidance in dynamic

Intelligent and Learning-Based Controllers
The recent paradigm shift in robot control focuses on

intelligent, data-driven, and learning-based strategies:

¢ Reinforcement learning (RL) has been employed
to optimize control policies directly from interaction
data, enabling adaptive behavior in previously unseen
environments. Safe RL approaches have been introduced
to guarantee collision avoidance under uncertainty.

* Deep learning—enhanced controllers, especially when
combined with MPC or SMC, have shown remarkable
results in high-dimensional state-action spaces.

¢ Vision-based and multimodal control architectures,
which integrate RGB-D, LiDAR, and inertial sensors, are
paving the way for fully autonomous adaptive control.

¢ Explainable AI (XAI) in control has been explored to
enhance transparency and trust in autonomous systems
[215].

Future Directions
Despite the progress, open challenges remain in designing

controllers that combine robustness, adaptability, real-time

efficiency, and explainability. Promising research trends
include:

* Nonlinear adaptive control with neural approximation
[216].

 Intelligent sliding-mode
compensation [217].

» Safe learning-based MPC for navigation in dynamic
human-robot interaction scenarios.

* Hierarchical control architectures that unify planning,
perception, and control under a common learning-based
framework.

For completeness, a comprehensive comparison of the
main control strategies applied in wheeled mobile robots

control with NN-based
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is provided in Appendix C (Table C2). This comparative
analysis outlines their theoretical foundations, advantages,
limitations, and typical application domains. As shown in
the table, the choice of control strategy strongly depends on
the trade-off between robustness, adaptability, computational
complexity, and real-time feasibility. While adaptive and
sliding-mode controllers are often preferred for their
robustness and stability guarantees, model predictive control
and reinforcement learning—based approaches have recently
gained increasing attention due to their capability of handling
highly dynamic and uncertain environments.

4- Conclusions

This paper presents a qualitative analysis of the navigation
of wheeled mobile robots. The number of WoS and Scopus
documents was compared, with more documents in the Scopus
database from 2015 to the end of 2024. In the bibliographic
analysis section, the process of publishing documents indicates
the growing demand for research and development in wheeled
mobile robot navigation. By examining the most frequent
keywords in the concept of navigation, the most effective and
important aspects related to it were identified: localization,
machine learning, motion planning, and control systems,
respectively. Then, in the qualitative analysis, the most
widely used types of wheeled mobile robots were reviewed,
and wheeled mobile robots were selected as one of the most
popular types of robots for reasons such as design, structure,
and uncomplicated control in the industry. The concept of
localization as the first part of the navigation concept was
divided into two categories: probabilistic approaches and
autonomous map building based on the presence or absence
of knowledge about the environment (map). It is essential and
challenging to discuss the type of sensors and the combination
of information received from them. Cameras can generate
rich details, and to achieve this goal, the concept of computer
vision is introduced. By investigating machine learning as
the most widely used machine vision method in wheeled
mobile robots, deep learning, reinforcement learning, and
classic learning were identified to meet decision-making,
object recognition, classification, semantics, and collision
avoidance goals. Then, for the concept of path planning in
the related literature, motion optimization perspectives, types
of methods, and their advantages and disadvantages were
discussed. The motion-planning unit is known as the decision
level to plan appropriate behavior in various environmental
conditions. Finally, the control unit was examined at the
actuator level. Controller design approaches were divided
into three categories based on purpose: global linearization-
based control, approximate linearization-based control,
and Lyapunov theory-based control. Moreover, adaptive
control, neural networks, sliding-mode control, and model
predictive control methods were studied as the most popular
ones. Finally, the tables that indicate the number of keyword
occurrences show researchers’ interest in these research
backgrounds. This may be due to the possibility of further
progress in future studies, greater effectiveness, and better
performance. Therefore, the development or combination of
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the methods mentioned in Tables 1, 2, and 4 is suggested to
focus on future research.
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Appendices — Supplementary Comparative Tables on Machine Learning, Navigation, and

Localization Methods in Wheeled Mobile Robots
Appendix A. Localization and SLAM Approaches

Table Al1. Comparative overview of SLAM methods

Method Advantages Limitations Key
References
Simple to implement; no need for Accumulated drift due to wheel
Odometry external infrastructure; works in real slip and measurement noise; not [371, [38]
time reliable over long distances
In('artu}l Independent of environment; robust ngh cos.t; drlf.t accumulates
Navigation to lighting/texture conditions quickly; requires frequent [39]
(IMU-based) ghtng calibration
Magnetic Resistant to environmental effects; Distorted near power lines or [40]
Compass low cost steel structures; low precision
Low accuracy (meter-level); poor
GPS /Beacons | Global availability; robust outdoors performance in indoor/urban [41]
canyon environments
Landmark- High accuracy if landmarks are Limited to pre-mapped
based known and fixed; simple detection in | landmarks; poor generalization in [40]
Localization structured environments dynamic/unstructured spaces
Markov Hapdles globgl local.lzaFlon and Requires dlscreFlzatlon (hlgh [42], [43],
.. multi-hypothesis tracking; robust to | memory demand); computational
Localization . . . . [44]
No1sy Sensors cost grows with environment size
Kalman Filter | Efficient for linear Gaussian systems; | Assumes linearity; needs known
. - .. [36], [45]
(KF) low computational cost initial position
Extended Handles nonlinear models by Ap PrOXIMAtion errors; sensitive
i . . . . . to model inaccuracies;
Kalman Filter | linearization; widely used in mobile computationallv expensive for [49]
(EKF) robotics P y exp
large maps
Unscented Better accuracy than EKF; no Higher computational complexity (501, [59]
Kalman Filter explicit linearization; effective in (cubic in state dimension); [60] ’
(UKF) moderate non-linearities inconsistency in estimates
Particle Filter Workg with arb.ltrary Adlstrlbutlc?ns; Computationally exp'en51v§ with [46]. [47],
(MCL) robust in dynamic environments; can a large state space; particle [48]
represent multi-modal beliefs degeneracy and impoverishment
Efficient with large-scale maps; Particle depletion; degeneracy;
FastSLAM . .
separates robot pose and landmark requires resampling [56], [61]
(PF-based) S .
estimation improvements
PS,O_ . Reduces part1cl§ degeneracy; Higher computational overhead,;
/Evolutionary- improves resampling; better pose arameter tunine required [61]
based SLAM accuracy P greq
Vision-based Rlz}llof;,ﬁ[;r:c:l(;ﬁ?@&f réﬁesuigsp- Sensitive to lighting, occlusion, [53], [62],
SLAM T p and dynamic objects [63]
vision progress
LiDAR-based Accurate 3D environment Exp :rnesti\;f) Selil;o)rlssglgfg l]))rlces [69], [70],
SLAM reconstruction; robust in low-light ropping), a y [72], [73]
reflective/absorptive surfaces
LI.DAR_. Robust in dynamic environments; Cor.nple>.< integration requires
Inertial Fusion combines complementary modalitics calibration; computationally [71], [74]
SLAM P Y heavy
RGB-D/ Rich semantic understanding; High computational
Multimodal supports human—robot interaction requirements; limited range of [64], [75]
SLAM and high-level navigation RGB-D sensors
Gra;[:ll;gzsed Reduces SLAM uncertainty via Solving large nonlinear least-
P graph optimization; scalable; robust squares problems requires [63]
(Optimization- .
based) loop closure efficient solvers
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Appendix B. Machine Learning Methods in Robotics

Table B1. Comparative Analysis of Machine Learning Approaches for Wheeled Mobile Robots.

Learning, Dyna-Q,
Model-Based RL)

in structured/partially
unknown
environments

and APF-enhanced RL
improve convergence

convergence, limited
generalization

. Key Applications in . Limitations / Key
Method / Algorithm WMR Main Advantages Challenges References
. . . . . Requires large
Supervised Learning Obj ?Ct detec.t ton, . Simple 1mplement'f1t10n, labeled datasets;
. . . collision prediction, | interpretable, effective for e .-
(Regression, Logistic . . . . limited adaptability
. human orientation classification & . [76]-[83]
Regression, SVM, .. . . in
.. estimation, and regression, robust in .
KNN, Decision Trees) L . dynamic/unstructured
feature optimization structured environments .
environments
Unsuper'wsed Feature extraction Learns from unlabeled 'Comp'utatlf)ne'llly
Learning from sensory data, data. dimensionalit intensive, limited
(Autoencoders, DBN, | SLAM enhancement, > y direct control
. . reduction, useful for NP [100]-[104]
Clustering, sensor fusion (RGB- . application, post-
. . : . sensor fusion, .
Dimensionality D + LiDAR), TP processing often
. ; initialization for RNNs .
Reduction) anomaly detection required
Obstacle detection, Robust feature extraction, Reqqlres massive
. . . training datasets,
Deep Neural semantic invariance to hich computational
Networks (CNNs, segmentation, end-to- noise/rotation, strong & P [105]-[114]
L . . demand, prone to
FCN, DBN) end navigation, performance in perception .
. .. overfitting, and low
object recognition tasks . o
interpretability
. - . Training instabilities
Recurrent Neural Trajectory prediction, Explmtts temporal (vanishing
temporal sequence dependencies, suitable for .
Networks (RNN, modeline. path sequential decision- gradients), resource- [115]
LSTM, GRU) &P q . intensive, harder to
tracking making D
optimize
Hybrld ML.+ Optimal path Combines the Intggratlon
Classical Algorithms . . . o - complexity, trade-off
.. planning, navigation | interpretability & stability
(A, Dijkstra + DL, . . . between accuracy [84], [88],
. under constraints, and | of classical methods with .
Bayesian . . - ) and speed, is still [104]
S real-time decision the adaptability of ML; ;
Optimization, support better real-time feasibilit computationally
Regression + SLAM) pp Y heavy
Policy learning,
Reinforcement adaptive obstacle Model-free learning, Curse of
Learning (Q- avoidance, navigation | adaptability to dynamics, | dimensionality, slow [116]-[126]

Deep Reinforcement
Learning (DQN,
A3C, SAC, Actor—
Critic, GNN-based
RL)

Autonomous
navigation in
unstructured
environments, multi-
robot coordination,
and continuous
control

Handles nonlinearities,
multimodal fusion
(LiDAR + camera),
continuous state-action
spaces, scalable

Sample inefficiency,
safety & stability
concerns, high
training costs,
interpretability issues

[120]-[135]

Neuro-Fuzzy &

Adaptive tracking,

DRL

safety-critical
navigation, human—
robot interaction

accountability in
autonomous systems

in exchange for
transparency

Hybrid Learning Model-free adaptability, | Complexity of hybrid
robust control under . .
Controllers (RBF . robust under noise, models, risk of
uncertainties, and . . . . - . [91]-[95]
Networks, ANFIS, . . combines learning with instability, tuning
. real-time disturbance -
Adaptive Neuro- reiection stability guarantees overhead
Controllers) .
Enhancing
. transparency in Improves trust and Still emerging, may
EXpla".lable Al (XAD decision-making, interpretability, supports reduce performance
applied to ML & [135]
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Appendix C. Path Planning and Control Methods

Table C1. Advantages and limitations of the main path planning approaches for wheeled mobile robots

Based Method Advantages Limitations Key
References
. Guarantees the shortest path . .
Dijkstra (Graph- (optimal in distance); simple and Comp}ltatlonally expensive 19'1arge [150]
based) L environments; poor scalability.
deterministic.
Complete, optimal, efficient Requires large memory for node
A* with heuristics; widely used in storage; performance decreases in [151], [152]
robotics. high-dimensional spaces.
Adaptive to changes in the . . .
D* environment; shorter paths than May fail when the.target s unce1.*ta1n, [153]
A higher computational complexity.
RRT (Sampling- Scalable FO h1gh-dlm§n310nal Path is not optimal; random
spaces; probabilistically . . . [147], [149]
based) exploration may lead to inefficiency.
complete.
Asymptotically optimal; . ) .
RRT* guarantees improved path High memory usage; slow inlarge | ) 47y ) 41
quality. environments.
RRT* FN Memory—efﬁcwilt version of Limited to.stauc and known [148]
RRT*. environments.
Neural Networks Adaptl.ve lear.nlng from sensor Requ1r§ ex.ten.swe training; hmlt.ed [154]- [157]
inputs; real-time applicability. generalization; network complexity.
. Model-free; low computational Limited scalability; less accurate in
Fuzzy Logic cost; intuitive reasonin d i i t [158]
; 8. ynamic environments.
ANFIS (Neuro- | Universal approximator; handles | Training complexity requires careful [158]
Fuzzy) nonlinearities; adaptive. rule design.
. Effective in global optimization; .
Genetic ids local mini i Premature convergence risk;
Algorithm (GA) avoids oca’ miima (wit computationally heavy [159]
modifications). :
An? C.OIOI.ly Fast convergence; efficient in Prone to stagnation; sensitive to
Optimization complex environments arameter tunin [160], [161]
Partl.cle.Sw.a rm Simple, efficient, good for May trap in local minima; cannot
Optimization ST N . [162]-[165]
(PSO) multi-objective optimization. guarantee global optimum.
Firefly Algorithm .
(FA) + GA Bglances global/loc.al search; Increased algorithmic complexity. [166], [167]
. improves responsiveness.
(Hybrid)
Artificial . R .. TTIr
Potential Field Simple and gzzli—trllme, intuitive Local mlngrel:rpggls)gsglésoscﬂlatlons (1681 [171]
(APF) gn '
Q-Learning Model-free; adaptive to Limited by state/action discretization; [172] [176]
(Classical RL) unknown environments. slow convergence.
Improved RL . i .
(IQL, Hybrid Faster convergence. Still sensmvz(t;;ir(;ward function [177]
RL+ APF) gn-
Faster convergence than [177];
Improved RL better generalization; avoids Requires more computational
(IQL, Hybrid RL local minima; Improved APF; recslources than clasiical RL [176]
+ Adaptive APF) supervisor learning; collision
avoidance guaranteed
Handles continuous state-action
Deep RL (DQN, spaces; scalable; robust in
A3C, SACQ)

dynamic environments.

Requires high computational

resources; data-hungry.

[178]- [190]
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Table C1. Continue
ce . Key
Based Method Advantages Limitations
References
Dy.namlc Real-time velocity-based Evaluation function limitations;
Window optimization; effective in local weicht selection issues [181]
Approach (DWA) planning. & )

Hybrid SLAM +
DRL

Combines mapping with
adaptive planning; robust in
real-world applications.

High complexity; requires

multimodal sensor data.

[182]-[186]

Crowd-Aware /

Safe navigation in human-

Socially populated spaces: considers Complex modeling; requires large [137], [187],
Compliant L . datasets. [188]
. robot-human interaction.
Planning
Bio-inspired & Effective in dynamic and N )
Hybrid Swarm- uncertain environments; Lack of gl'obal optimality guarvantees, [192], [193]
Graph Methods scalable. sensitive to swarm dynamics.

Table C2. Comparison of major control strategies for wheeled mobile robots

Control . R . Lo
Method Main Idea Advantages Limitations Typical Applications
. Handles parameter
Online S . .
uncertainties, ensures " Trajectory tracking
. parameter o . Sensitive to fast .
Adaptive L stability with . . under uncertain
estimation and . dynamics and noise; . .
Control Lyapunov/backstepping, . . dynamics, slip
model re- . : tuning complexity .
. suitable for nonlinear compensation
parameterization
models
Discontinuous Strong robustness to Chattering
Sliding-Mode switching to modeling errors and phenomenon; Robust tracking in
Control force system external disturbances; performance uncertain terrains;
(SMC) states onto ensures finite-time degradation with disturbance rejection
sliding surface convergence actuator constraints
Optimization of - .
. Explicit h; . .
Model control input _sxpct andhnglof Computationally Obstacle avoidance,
D input/state constraints, . . . .
Predictive over a . . expensive; requires dynamic trajectory
s high tracking accuracy, . .
Control prediction . . accurate models; tracking, hybrid
. . flexible to nonlinear e .
(MPC) horizon subject . scalability issues global-local planning
. extensions
to constraints
Universal
Neural func'tlon‘ Online learning ability, Requqes large Adaptive NN-PID,
approximation oy training data; wavelet networks for
Network— . strong adaptability, . o . .
for dynamics . ; potential stability slip dynamics, RNN-
Based Control nonlinear compensation .
and concerns based optimal control
uncertainties
Poli i . . ing i
. olicy learning Learns directly from High sample Path tracklp gm
Reinforcement through ) dynamic
. . . . data, no need for complexity, reward .
Learning interaction with L. . - environments,
. explicit modeling, shaping challenges, ) S
(RL)-Based environment e adaptive navigation,
. adaptable to unknown limited safety
Control using reward . safe RL for human—
) environments guarantees . .
functions robot interaction
Combining
Hybrid comple?mentary Exploits strengths of . Safe navigation in
Methods (e.g., techniques to . Increased design and cluttered spaces,
multiple controllers, ) R
NN+SMC, balance . computational multi-objective control
improved robustness, .
MPC+DL, robustness, S complexity (energy, smoothness,
- better generalization
Neuro-Fuzzy) | adaptability, and accuracy)
efficiency
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