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ABSTRACT: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that severely 
impairs cognitive function and disrupts brain connectivity. Early and accurate diagnosis is crucial for 
effective intervention, yet identifying discriminative features from complex electroencephalography 
(EEG) signals remains a challenge. Resting-state EEG provides a non-invasive and cost-effective tool 
for AD detection, but its diagnostic utility is highly dependent on the quality of extracted features. This 
study introduces a novel feature extraction approach that uses Mel-Frequency Spectrum Features (MFS) 
and the Hilbert Transform (HT) to enhance both spectral and temporal feature representation of EEG 
signals. The proposed Hilbert-Mel Frequency Spectrum (HMFS) framework captures subtle variations 
in phase and amplitude, providing a rich and complementary set of descriptors. Principal Component 
Analysis (PCA) is employed to reduce dimensionality while retaining key information, enabling more 
efficient and accurate classification. A 5-fold cross-validation approach was employed to assess model 
performance and generalizability. The extracted features are classified using various machine learning 
models, with K-Nearest Neighbors (KNN) achieving the highest performance. The proposed method 
reached an accuracy of 99.24% with a perfect recall of 100%, precision of 98.61%, specificity of 
98.39%, F1-score of 99.30%, and geometric mean score of 99.31%. Compared to existing EEG-based 
AD detection techniques, the HMFS method surpasses previous approaches in accuracy and recall, and 
it achieves higher performance. The integration of spectral and temporal features results in a more robust 
feature space, thereby improving generalization. This approach provides a reliable, efficient framework 
for early AD diagnosis with potential clinical applications.
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1- Introduction
Dementia is a collective term encompassing various 

conditions that negatively affect memory, cognitive function, 
and daily life [1]. Among the different types of dementia, 
Alzheimer’s disease (AD) is the most prevalent form. With 
the global prevalence of AD steadily increasing, early 
detection plays a crucial role in preventing memory loss and 
cognitive decline. The World Health Organization (WHO) 
estimates that more than 55 million people worldwide suffer 
from dementia [2]. In 2020, approximately 50 million people 
were affected by AD, and projections indicate that this figure 
will double every five years, reaching 75 million by 2030 and 
152 million by 2050 [3, 4]. Electroencephalography (EEG), a 
non-invasive and cost-effective neuroimaging technique, has 
emerged as a promising tool for early AD diagnosis [5]. EEG 
captures brain activity with high temporal resolution, enabling 
the detection of subtle neural abnormalities associated with 
AD. Over the past decade, researchers have developed a 
range of computational methods to analyze EEG signals for 

AD detection. These include traditional signal processing 
techniques such as wavelet coherence, fractal dimension, and 
visibility graphs [6], alongside more recent advances in deep 
learning and signal decomposition [7].

A variety of computational approaches have been 
employed to extract relevant features and improve 
classification accuracy. For example, deep learning models 
have been developed to capture patterns in short EEG 
segments by analyzing spectral, complexity, and synchrony 
characteristics. Song et al. in [8], use a three-path deep 
encoder combined with a transfer learning-based model 
and a modified generative adversarial module. Additionally, 
signal decomposition methods such as empirical mode 
decomposition (EMD) and discrete wavelet transform (DWT) 
have demonstrated high accuracy in differentiating between 
EEG recordings from AD patients and healthy individuals 
[9].

In [5] A low-complexity wavelet filter bank 
(LCOWFBs-v) was evaluated using fractal dimension 
features, specifically Higuchi’s fractal dimension (HFD) and 
Katz’s fractal dimension (KFD). The importance of these *Corresponding author’s email: h.marvi@shahroodut.ac.ir
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features was assessed with the Kruskal-Wallis test, and a 
cubic support vector machine (SVM) classifier achieved an 
accuracy of 98.5% via 10-fold cross-validation. Similarly, 
in [10], decomposition techniques including brain frequency 
band filtering, DWT, and EMD were paired with classifiers 
such as SVM, K-nearest neighbors (KNN), and regularized 
linear discriminant analysis (RLDA). To address the 
challenges posed by limited and imbalanced EEG datasets, 
data augmentation methods such as variational autoencoders 
(VAEs) and noise injection have also been employed [11].

Puri et al. in [12] applied EMD to generate nine intrinsic 
mode functions (IMFs) from EEG signals, extracting ten 
statistical and nonlinear features from them. Key features were 
selected using the Kruskal-Wallis test, focusing on Hjorth 
parameters—activity, mobility, and complexity. Other signal 
processing methods, such as wavelet coherence, quadratic 
entropy, quantile graphs, and visibility graphs, have also 
proven effective in differentiating AD patients from healthy 
controls [13]. In [14], Biomarkers extracted from resting-
state EEG achieved over 70% accuracy in classifying healthy 
controls, mild cognitive impairment (MCI) patients, and 
AD patients. The study concluded that combining EEG data 
with cerebrospinal fluid (CSF) biomarkers and demographic 
information yielded the best results. AlSharabi et al. in [15] 
used an elliptical digital bandpass filter to clean EEG signals 
and applied DWT to extract features from different frequency 
bands. Features such as logarithmic band power, standard 
deviation, and kurtosis were used to enhance diagnostic 
accuracy.

Xia et al. in [16] introduced a classification framework 
using resting-state EEG from AD, MCI, and healthy control 
groups. To mitigate data scarcity and overfitting, they applied 
overlapping sliding windows for augmentation and trained 
a modified deep pyramid convolutional neural network 
(DPCNN), achieving 97.10% average accuracy with 5-fold 
cross-validation. Houmani et al. in [17] created an automated 
EEG diagnostic system for clinical settings, using data from 
169 patients with various cognitive impairments, including 
subjective cognitive impairment (SCI), MCI, possible AD, 
and other conditions. They found that two features, epoch-
based entropy and bump modeling, effectively distinguished 
between these groups.

Chen et al. in [18] introduced a hybrid model combining 
CNNs and vision transformers (ViTs) to enhance feature 
extraction in EEG data. Their Dual-Branch feature fusion 
network (DBN) integrates CNN and ViT components to 
capture texture and global semantics. Spatial attention (SA) 
and channel attention (CA) were incorporated to improve 
the detection of abnormal EEG patterns, supported by a two-
factor decision strategy for enhanced prediction accuracy. 
Recurrent neural networks (RNNs) [19] and LSTMs [20] 
are also commonly used in EEG analysis due to their ability 
to model temporal dependencies and handle variable-length 
inputs. However, their high computational complexity and 
long training times make them less practical for large-scale 
EEG datasets. The choice of classification architecture is 
therefore often influenced by trade-offs between accuracy, 

scalability, and training efficiency. Table 1 summarizes key 
EEG-based approaches for AD diagnosis.

Although EEG-based diagnosis of AD has attracted 
increasing research attention, several critical methodological 
and interpretive challenges remain unaddressed. A majority 
of prior studies treat spectral and temporal features in 
isolation, overlooking their potential synergy in capturing 
robust biomarkers of AD. This fragmented treatment 
undermines both the interpretability of EEG-derived 
features and their diagnostic reliability. Moreover, few 
studies conduct systematic comparisons of different signal 
processing pipelines, making it difficult to determine optimal 
configurations. Although multiband and hybrid feature 
extraction methods hold promise for integrating fine-grained 
frequency information with transient temporal dynamics, 
such approaches remain underexplored and underdeveloped. 
Additionally, the use of ensemble learning and advanced 
time-frequency representations is still limited, while 
commonly used techniques like wavelet transforms suffer 
from redundancy and sensitivity to parameter tuning. These 
gaps highlight the need for comprehensive frameworks that 
integrate spectral and temporal representations in a scalable, 
interpretable, and diagnostically robust manner.

To address these limitations, we propose a novel dual-
domain framework that integrates both spectral and temporal 
features of EEG signals in a unified and computationally 
efficient manner. Our approach combines the MFS, which 
captures perceptually relevant spectral information, with 
HT, which extracts envelope and phase dynamics from the 
time domain. This combination enables a more holistic 
representation of EEG activity, overcoming the limitations of 
conventional single-domain analyses. To enhance efficiency 
and reduce redundancy, PCA is applied for dimensionality 
reduction, preserving key discriminative features while 
ensuring scalability. The effectiveness of the proposed 
features is validated through a comparative analysis of 
various classifiers, with the KNN algorithm achieving 
superior performance in distinguishing AD patients from 
healthy individuals. Moreover, by applying a 5-fold cross-
validation strategy on a publicly available and sufficiently 
large dataset, the study ensures rigorous performance 
evaluation and avoids common pitfalls such as data leakage 
and overfitting.

The remainder of the paper is structured as follows. 
Section 2 presents the proposed dual-domain feature 
extraction framework in detail, along with the dataset and 
preprocessing steps. Section 3 reports the experimental 
results and performance comparison across classifiers. 
Section 4 discusses the implications of the findings in the 
context of existing literature. Section 5 concludes the paper 
with a summary and directions for future research.

2- Methodology
The proposed framework for AD detection presents a 

novel methodology that uses Mel Cepstrum and the HT 
to achieve robust and comprehensive feature extraction 
from EEG signals. This approach addresses key limitations 
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of conventional methods, which often prioritize either 
spectral or temporal characteristics in isolation, leading to 
incomplete signal representations. By combining the spectral 
decomposition capabilities of the Mel Cepstrum with the 
phase and instantaneous energy analysis enabled by HT, 
the proposed framework captures both complementary and 
nuanced signal features critical for accurate AD detection. 
The model employs sequential layers designed to extract and 
integrate multiscale patterns across spectral and temporal 
domains, providing a comprehensive representation of EEG 
signals. Such hierarchical feature synthesis enables the 
identification of subtle signal variations and higher-order 
abstractions that are challenging to discern using traditional 
approaches.

The methodological pipeline, as illustrated in Fig. 1, 
consists of five critical stages: (1) data acquisition, (2) 
pre-processing, (3) feature extraction, (4) dimensionality 
reduction, and (5) classification. Each stage plays a critical 
role in ensuring accurate and scalable EEG-based AD 
detection. The overall framework is designed to integrate 
spectral and temporal information in a unified manner, 
enhance signal quality, reduce feature space complexity, and 
optimize classification accuracy. Detailed descriptions of 

each component are provided in the subsequent sections.
To evaluate the effectiveness of the extracted features, 

multiple classifiers were employed, including KNN, SVM, 
Decision Trees (DT), AdaBoost, GradientBoost, and Random 
Forest (RF). These classifiers, widely recognized in the field 
of biomedical signal processing for their effectiveness and 
computational efficiency, were rigorously optimized through 
experimental evaluation to ensure robust performance. 
Further technical details, including parameter configurations 
and implementation specifics, are provided in [27-29].

2- 1- Dataset and pre-processing
The EEG dataset used in this study, known as the AZD 

dataset, is publicly available and was collected by the 
University Hospital of Valladolid in Spain. The dataset 
includes 23 individuals: 12 with AD and 11 with HC 
were enrolled [30-32]. Subjects belonging to both classes 
were recruited from the Alzheimer’s Patients’ Relatives 
Association of Valladolid. Rigorous screening was 
conducted to ensure that HC participants had no current or 
prior neurological conditions. The 16-channel (Fp1, Fp2, 
P3, P4, C3, C4, O1, O2, T3, T4, T5, T6, F3, F4, F7, and 
F8) EEG recorder built in accordance with the international 

Table 1. Summary of recent EEG-based AD detection studies, including methods, features, and datasets.Table 1. Summary of recent EEG-based AD detection studies, including methods, features, and datasets. 
 

Authors Method Dataset 

Puri et al., 2023 [5] low-complexity orthogonal wavelet filter banks 
Higuchi’s fractal dimension, Katz’s fractal dimension, SVM  

23 subjects 
(AD-12, NC-11) 

Vicchietti et al., 2023 [13] Wavelet coherence, Fractal dimension, Quadratic entropy, 
Wavelet energy, Quantile graphs, Visibility graphs 

184 subjects 
(AD-160, NC-24) 

AlSharabi et al., 2022 [15] 
band-pass elliptic digital filter, DWT, logarithmic band power, 
standard deviation, variance, kurtosis, average energy, root 
mean square, Norm 

88 subjects 
(AD-31, MCI-22, 
NC-35) 

Chen et al., 2023 [18] Dual-Branch Feature Fusion Network (DBN) using CNN and 
ViTs 

88 subjects 
(AD-36, FTD-23, 
NC-29) 

Sekhar et al., 2023 [21] GAN, MPA, LSTM 13 subjects 
(AD-7, NC-6) 

Cao et al., 2024 [22] EBC, PSD, DSL-GNN 
60 subjects 
(AD-20, HC-20, 
PD-20) 

Al-Nuaimi et al., 2018 [23] LZC, TsEn, HFD 11 subjects 
(AD-3, NC-8) 

Pirrone et al., 2022 [24] CWT-based average magnitude of SBs, LDA 
105 subjects 
(AD-48, MCI-37, 
NC-20) 

Kulkarni et al., 2017 [25] DWT with db3-based features 100 subjects 
(AD-50, NC-50) 

Durongbhan et al., 2019 
[26] CWT-based average magnitude of SBs 

28 subjects 
(AD-8, NC-20) 
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10–20 system has been used for the signal acquisition. EEG 
signals were captured with participants’ eyes closed during 
a resting state to minimize disturbances. These AD patients 
underwent a detailed clinical evaluation, including brain 
scans and cognitive assessments using the Mini-Mental 
State Examination (MMSE) [33]. The average MMSE score 
for the AD group was 13.2 ± 5.92 points, indicating varying 
levels of cognitive decline.

In the preprocessing phase, in order to eliminate power 
line interference and various artifacts, a band-pass filter 
with cutoff frequencies at 0.5 and 60 Hz is applied to each 
signal. Each EEG epoch lasted 5 seconds (1280 data points) 
and was sampled at 256 Hz using a 12-bit analog-to-digital 
converter. Following preprocessing, a total of 9849 clean and 
artifact-free EEG epochs were identified, with 5648 from 
Alzheimer’s disease patients and 4201 from NC subjects [34]. 
The distribution of AD and HC subjects within the groups is 
outlined in Table 2.

2- 2- Proposed Hilbert-Mel feature extraction method
This section introduces a novel feature extraction 

methodology designed to capture the subtle spectral and 
temporal dynamics of EEG signals for the purpose of AD 
detection. The proposed approach builds upon and significantly 
enhances conventional cepstral analysis by integrating Mel-
scaled spectral information with phase-sensitive temporal 
cues extracted via the Hilbert Transform. This dual-domain 
strategy enables a richer, more discriminative representation 
of neural activity patterns, which are often missed when using 
time- or frequency-based features in isolation.

The complete processing pipeline—from pre-emphasis 
to the construction of analytic signals—is illustrated in Fig. 
2. Each stage has been carefully designed to retain clinically 
relevant EEG characteristics while minimizing information 
loss and redundancy. The subsequent subsections provide a 
step-by-step technical breakdown of the method.

The proposed feature extraction method begins with pre-

Table 2. Demographic characteristics of subjects in the AZD EEG dataset.Table 2. Demographic characteristics of subjects in the AZD EEG dataset. 
 

Class AD HC 

Total subjects 12 11 

Males 5 7 

Females 7 4 

Age (mean±SD)  72.8 ± 6.1 years 72.8 ± 6.1 years 
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Fig. 2. Block diagram of the proposed HMFS feature extraction method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Block diagram of the proposed HMFS feature extraction method.
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emphasis following the pre-processing stage. Pre-emphasis 
is designed to counteract the attenuation of high-frequency 
components in the input signal. By applying this technique, 
the suppressed high-frequency elements are restored to their 
original levels. For a given signal [ ]x n , the pre-emphasized 
signal [ ]y n  is mathematically expressed as Eq. (1):
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where α typically ranges from 0.93 to 0.97, with a common 
value of 0.97 utilized in this study. This pre-emphasis step 
effectively restores the high-frequency components, ensuring 
that these are better represented for subsequent analysis. Next, 
the pre-emphasized signal is divided into frames of length 
N through a process known as framing, ensuring that each 
frame is stationary. Each frame typically lasts between 20 and 
40 milliseconds. If [ ]y n  is the pre-emphasized signal, the 
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where R denotes the frame shift size, typically optimized 
based on signal characteristics. Windowing is applied to each 
frame using a Hamming window to reduce edge effects as Eq. (3):
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Thus, the windowed frame [ ]ix m  is expressed as Eq. (4):
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Following the windowing process, the Discrete Fourier 
Transform (DFT) [ ]iX k  of each windowed frame [ ]ix m  is 
calculated as Eq. (5):
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where j  represents the imaginary unit. The power 
spectrum [ ]iP k  of each frame is subsequently computed as 
Eq. (6):
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After obtaining the DFT, the next step is to process these 
coefficients through triangular Mel filter banks. The Mel scale 
is used to transform the frequencies into a more perceptually 
meaningful scale. The conversion from frequencies in Hertz 

to the Mel scale is performed using Eq. (7):
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The filter bank energies [ ]iE m  are computed by 
processing the power spectrum [ ]iP k  through the triangular 
Mel filter banks, which can be seen in Fig. 3, as expressed 
by Eq. (8):
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Where [ ]mH k  represents the thm  Mel filter, and M  is 
the number of filters used in the band. To capture uncorrelated 
features, the Discrete Cosine Transform (DCT) is applied to 
the output of the Mel filter banks as Eq. (9):
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where L  denotes the number of output coefficients, 
and [ ]ic n  are the cepstral coefficients. These coefficients 
represent a reduced-dimensional representation of the original 
features, minimizing redundancy. At this point, the feature 
dimensions are initially ( ),N M L× , which are large and 
need to be reduced for efficient computation. To achieve this, 
PCA is applied to the cepstral coefficients. PCA helps reduce 
the dimensionality by selecting the most discriminative 
components while maintaining the integrity of the signal’s 
features. The feature space is reduced to ( ),N l , where l  is 
significantly smaller than M L× . Finally, the HT is applied 
to the output of the PCA stage to extract instantaneous 
amplitude and characteristics. The Hilbert transform H  is 
mathematically defined as Eq. (10):
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where ∗  denotes convolution. The analytic signal [ ]iz n  
can be found by Eq. (11):
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where j  is the imaginary unit. The instantaneous 
amplitude [ ]ia n  of the analytic signal [ ]iz n  is derived as 
Eq. (12):
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The resulting amplitude envelope [ ]ia n  are the final 
feature vectors used in the subsequent classification stage. 
These features, designed to encapsulate fine-grained spectral 
and temporal patterns linked to Alzheimer’s pathology, are 
passed to various machine learning classifiers for evaluation, 
as thoroughly described in Section ‎0.

3- Experiments
3- 1- Experimental setup

The proposed model was implemented using Google 
Colab, a cloud-based Jupyter notebook. Tensor Processing 
Units (TPUs) are utilized as the runtime type. Using TPUs 
can significantly speed up machine learning tasks due 
to their ability to perform a large number of calculations 
simultaneously. This allowed us to train models more quickly 
and efficiently. The Python language is used to implement 
this model.

3- 2- Evaluation parameters and K-fold validation
In the field of signal processing, performance evaluation 

parameters are crucial for measuring the effectiveness of 
algorithms and models [35]. The performance of different 
classifiers is measured here using a range of parameters, 

including accuracy, specificity, precision, recall, F1-score, 
and geometric mean (GM). These parameters provide 
quantitative measures of how well the classifiers perform. 
The formulas are provided below as Eqs. (13–18):
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where TN = True Negatives, TP = True Positives, FP = 
False Positives, FN = False Negatives.

1

0

1

0

2 ( 0.5)[ ]  log( [ ])cos( )

2 ( 0.5) log( [ ])cos( )

M

i i
m

M

i
m

n mz n E m
M M

n mjH E m
M M














 

  
 
  




                                               (11) 

 

1

0

1

0

2 ( 0.5) log( [ ])cos( )
[ ]

2 ( 0.5) log( [ ])cos( )

M

i
m

i M

i
m

n mE m
M M

a n
n mjH E m

M M

















  
 
  




                                             (12) 

 

TP TNAccuracy
TP TN FP FN




  
                                                                                                                                (13) 

TNSpecificity
TN FP




                                                                                                                                           (14) 

TPPrecision =
TP+ FP

                                                                                                                                            (15) 

TPRecall
TP FN




                                                                                                                                                (16) 

Precision× RecallF1- score= 2×
Precision+ Recall

                                                                                                                            (17) 

 

1 2  ...n
nGeometric Mean x x x                                                                                                                  (18) 

 
 (18)

where 1 2  ... nx x x⋅ ⋅ ⋅  are the n numbers in the dataset.
To ensure rigorous evaluation, we employed a subject-

independent cross-validation strategy. Specifically, an 80/20 
train–test split was applied at the subject level, where 80% 

 
Fig. 3. Configuration of the Mel filter bank applied to the power spectrum of EEG frames, emphasizing 

perceptually relevant frequency bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Configuration of the Mel filter bank applied to the power spectrum of EEG frames, 
emphasizing perceptually relevant frequency bands.
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of epochs were used for training and the remaining 20% 
for testing. In addition, a 5-fold stratified cross-validation 
procedure was implemented to preserve class balance 
across folds. Importantly, all epochs from each subject were 
assigned to the same fold to avoid any leakage of subject-
specific information between training and validation sets. 
All epochs from a given subject were kept within the same 
fold to completely avoid data leakage and ensure subject-
level independence between training and validation sets. To 
further improve robustness and reduce variance caused by 
stochastic training effects, the entire 5-fold procedure was 
repeated three times using different random seeds. The final 
reported performance metrics represent the average across all 
folds and repetitions, thereby providing a more conservative 
and reliable estimate of classification accuracy. This design 
minimizes the risk of overfitting and ensures that the reported 
results are both stable and reproducible. Across three 
repetitions of 5-fold CV, each of the 9,849 epochs appears 
once per repetition, yielding 29,547 held-out test predictions 
in total. These predictions were used for computing confidence 
intervals and hypothesis tests. For interval estimation, we 
used Wilson score confidence intervals, and for hypothesis 
testing, we applied standard two-proportion z-tests.

3- 3- Experimental Results
To assess the proposed method’s effectiveness, we 

conducted extensive experiments using an open-access 
Alzheimer’s disease EEG dataset, as described in Section 
2.1 [36]. This dataset contains the following frequency sub-
bands: δ (0–4 Hz), θ (4–8 Hz), α (8–12 Hz), β1 (12–16 Hz), 
β2 (16–32 Hz), and γ (32–48 Hz). We split the dataset into 
80% for training and 20% for testing. Initially, the dimension 
of features is 663 × 18816, which is reduced to 663 × 600 
using PCA.

The selection of the optimal number of Mel filters (M) has 
significant importance in this study. Specifically, a total of 
14 filters were examined, and their effect on the accuracy of 
the test set was analyzed, as shown in Table 3. This analysis 
aimed to determine the ideal number of filters for maximizing 
accuracy. 

To identify the optimal number of Mel filters, we performed 
a grid search over M ∈  {11, 12, 13, 14, 15, 16}, recording 
the classification accuracy for each configuration (Table 3). 
As shown in Fig. 4, The classification error was minimized 
when using 14 filters, achieving an error rate of 0.76% 
(99.24% accuracy). The boundary values exhibited slightly 
lower performance, with accuracies of 99.10% and 99.12% 

for 12 and 16 filters, respectively. These results confirm that 
M = 14 provides the most effective filter configuration for our 
framework. In addition, PCA was employed to retain the top 
600 components, accounting for 97.8% of the total variance. 
Importantly, PCA was applied before the Hilbert Transform 
to both reduce computational complexity and suppress noise. 
A comparative experiment applying PCA after the Hilbert 
Transform led to a minor performance drop (−0.06%), further 
supporting the adopted configuration.

Fig. 5 to 7 present group-averaged results across all EEG 
channels, reflecting aggregated patterns between AD and HC 
groups rather than single-subject examples. The observed 
qualitative contrasts are further supported by the quantitative 
analyses reported in the following sections. Fig. 5 presents 
the extracted HMFCC features for AD and HC signals, 
providing a detailed representation of the temporal and 
spectral properties. The AD features exhibit abrupt transitions 
and heightened variability in amplitude across consecutive 
frames, particularly noticeable in regions of increased spectral 
energy. These irregularities reflect impaired auditory feature 
representation and disrupted cognitive processing associated 
with AD. Conversely, the HC features maintain smoother 
transitions and consistent patterns over frames, indicative of 
well-regulated neural activity and stable auditory processing. 
The more structured and homogenous nature of HC features 
contrasts sharply with the fragmented and irregular patterns 
observed in AD, underscoring the potential of HMFS features 
as robust biomarkers for distinguishing between the two 
groups.

The spectrogram representations of AD and HC signals 
capture their frequency distributions; however, as depicted 
in Fig. 6. These variations are subtle and lack clear, 
distinguishable patterns. Both spectrograms share overlapping 
regions with comparable color gradients, resulting in 
significant challenges when attempting to differentiate 
between HC and AD signals based solely on their original 
representations. This overlap and the absence of distinct, well-
defined boundaries or unique features indicate that the raw 
spectrograms do not provide sufficient discriminatory power 
for accurate classification. These observations highlight the 
inherent complexity of distinguishing HC from AD signals 
and emphasize the necessity of advanced processing or feature 
extraction techniques to enhance diagnostic performance.

In contrast, the spectrogram of HMFS features shown in 
Fig. 7 provides a much clearer distinction between the HC 
and AD groups. Notably, the spectrogram for HC (Fig. 7. 
a) exhibits a relatively consistent amplitude envelope, with 

Table 3. Classification accuracy across different numbers of Mel filters, with 14 filters yielding the 
highest performance.

Table 3. Classification accuracy across different numbers of Mel filters, with 14 filters yielding the highest 
performance. 

 

M 1111  1122  1133  1144  1155  1166  

Accuracy 99% 99.10% 99.18% 99.24% 99.17% 99.12% 
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intensity values predominantly ranging between 0.5 and 1.5 
across most time frames (e.g., 100–200). In contrast, the AD 
spectrogram (Fig. 7. b) reveals pronounced irregularities, 
with distinct intensity shifts visible in specific regions, such 
as higher amplitude peaks around time frames 50–100 and 
a noticeable decrease in intensity between 200–250. These 
variations, particularly the concentrated high-intensity 
regions in the AD spectrogram, highlight critical differences 
between the two groups. Such well-defined patterns and 
amplitude shift significantly enhance the separability of the 
two classes, demonstrating the robustness of HMFS features 

in distinguishing AD from HC. Therefore, leveraging HMFS 
features provides a substantial improvement over raw signal 
representation for diagnostic applications.

3- 4- Classifier Selection
We evaluated the effectiveness of several classifiers, 

including K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), Decision Trees (DT), AdaBoost, Gradient 
Boosting, Random Forest (RF), Naive Bayes (NB), Linear 
Discriminant Analysis (LDA), and Cubic, using the selected 
features. To ensure the best classification accuracy, we 

 
Fig. 4. Classification error across different numbers of Mel filters, with M = 14 yielding the minimum error 

(0.76%) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Classification error across different numbers of Mel filters, with M = 14 yielding the 
minimum error (0.76%)

 
Fig. 5. Group-averaged HMFS features extracted from (a) HC and (b) AD signals, illustrating structured patterns 

in HC and disrupted transitions in AD. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Group-averaged HMFS features extracted from (a) HC and (b) AD signals, illustrat-
ing structured patterns in HC and disrupted transitions in AD.
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Fig. 6. Group-averaged spectrograms of original EEG signals from (a) HC and (b) AD, demonstrating 

overlapping frequency distributions with limited separability. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Group-averaged spectrograms of original EEG signals from (a) HC and (b) AD, demonstrating 
overlapping frequency distributions with limited separability.

optimized the hyperparameters for each classifier using grid 
search, a systematic approach to finding the best settings.

As shown in Table 4, KNN achieved the highest accuracy 
at 99.24% and a perfect recall of 100%, highlighting its strong 
performance. The KNN model used three neighbors and the 
Euclidean distance to measure similarity. Other classifiers 
like Gradient Boosting and Cubic also performed well, 
with accuracy scores of 98.47% and 96.98%, respectively. 
However, Naive Bayes had the lowest accuracy at 69.92%. 

These results suggest that KNN and a few other models 
are particularly effective for detecting Alzheimer’s disease 
with the features we used. Fig. 8 presents the classification 
performance with error bars, which indicate variability across 
cross-validation folds. This suggests that KNN is particularly 
effective with the extracted HMFS features for distinguishing 
AD from HC.

To quantify statistical significance, we computed Wilson 
95% confidence intervals. The proposed method achieved 
99.24% accuracy (95% CI: [99.05%, 99.39%]), 100% recall 
for AD ([99.93%, 100%]), and 98.39% specificity for HC 
([97.95%, 98.72%]). Using the full 29,547 test predictions 
across repeated CV, the CI narrows to [99.13%, 99.33%]. 
Compared to the strongest prior on the same dataset (Puri et 
al. [5], 98.6%), a one-sample z-test confirmed significantly 
higher accuracy (z = 5.41, p ≈ 6.4×10-8). A two-proportion 
test further indicated that AD recall is significantly higher 
than HC specificity (z ≈ 9.59, p < 10-²¹).

To assess the performance of the proposed HMFS, we 
conducted further analysis by plotting the receiver operating 
characteristic (ROC) curve, as depicted in  Fig. 9. The 
area under the ROC curve served as a reliable index for 
evaluating the effectiveness of the classifier. Notably, the 

 
Fig. 7. Group-averaged spectrograms of HMFS features from (a) HC and (b) AD signals, indicating clearer 

temporal-spectral contrasts and enhanced separability between the two groups. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Group-averaged spectrograms of HMFS features from (a) HC and (b) AD signals, indicat-
ing clearer temporal-spectral contrasts and enhanced separability between the two groups.
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KNN algorithm demonstrated the highest area under the 
ROC curve, indicating superior performance in comparison 
to other classifiers.

4- Discussion
AD, as the leading cause of dementia, poses a growing 

public health concern due to its progressive nature and 
the difficulty of early-stage detection. EEG has emerged 
as a promising modality for detecting functional brain 
changes associated with AD, offering noninvasive access 
to neural dynamics. In this study, a novel feature extraction 
pipeline based on the HMFS was proposed to enhance the 
diagnostic accuracy of EEG-based AD classification. The 
method combines the perceptually motivated Mel filter bank 

analysis with statistical decorrelation via Discrete DCT, 
dimensionality reduction using PCA, and temporal envelope 
tracking through the HT. This combination allows for the 
extraction of rich and discriminative representations that are 
sensitive to subtle AD-induced changes in EEG signals.

To offer a comprehensive comparative analysis, the 
methods detailed in Table 5 elucidate the progression of 
techniques for AD diagnosis using EEG signals. Early 
investigations, such as those by Abasolo et al. [37], relied 
on Approximate Entropy (AEEn), which yielded modest 
diagnostic metrics with recall and specificity rates of 75% 
and 80%, respectively. Subsequent refinements, such as the 
integration of AEEn with Sample Entropy (SHEn) [38], 
achieved incremental improvements, attaining an accuracy 

 
Fig. 8. Comparative performance of classifiers using HMFS features. Error bars indicate variability across cross-

validation folds, with KNN achieving the highest classification accuracy. 
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Fig. 8. Comparative performance of classifiers using HMFS features. Error bars indicate variabil-
ity across cross-validation folds, with KNN achieving the highest classification accuracy.

Table 4. Performance metrics of classifiers using HMFS features, highlighting KNN as the top-performing model.Table 4. Performance metrics of classifiers using HMFS features, highlighting KNN as the top-performing model. 
 

Classifier Accuracy Recall precision specificity F1-score GM 

KNN 99.24% 100% 98.61% 98.39% 99.30% 99.31% 

SVM (rbf) 92.48% 94.37% 91.78% 90.32% 93.05% 93.06% 

AdaBoost 87.22% 87.33% 88.57% 87.09% 87.94% 87.94% 

Gradientboost 89.47% 87.32% 92.53% 91.93% 89.85% 89.89% 

Cubic 96.98% 97.37% 97.37% 96.55% 97.37% 97.37% 

RF 93.98% 90.14% 98.46% 98.39% 94.11% 94.21% 

DT 87.22% 87.32% 88.57% 87.09% 87.94% 87.94% 

NB 69.92% 74.65% 70.67% 64.52% 72.60% 72.63% 

LDA 78.19% 87.32% 75.60% 67.74% 81.04% 81.26% 
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of 77.27% and a recall of 90.91%, albeit at the expense of 
specificity, which dropped to 63.64%. Other approaches, 
exemplified by the combination of AEEn and Average 
Mutual Information (AMI) in [39], achieved flawless 
specificity (100%) but exhibited suboptimal recall (81.82%), 
underscoring the ongoing challenge of achieving balanced 
diagnostic performance.

Similarly, methodologies proposed by Simons et al. [40, 
41], leveraging Quantitative Symbolic Entropy (QSE) and 
Feature Entropy (FEN), achieved accuracies of 77.27% and 
86.36%, respectively, yet demonstrated a need for more 
harmonized sensitivity and specificity. The evolution of EEG-
based diagnostic techniques has witnessed a shift toward 
more sophisticated methodologies and classifiers. Notable 
among these is the work of Durongbhan et al. [26], who 
employed a combination of Fast Fourier Transform (FFT) 
and Continuous Wavelet Transform (CWT) with k-Nearest 
Neighbors (KNN), achieving an exceptional accuracy of 
99%. However, the absence of detailed recall and specificity 
metrics limits a comprehensive evaluation of its diagnostic 
robustness.

The contributions of Puri et al. represent significant 
advancements in this domain. Their approach integrates 
Empirical Mode Decomposition (EMD) and Hjorth 
parameters with Least Squares Support Vector Machines 
(LSSVM) [12] demonstrated a notable accuracy of 92.9%, 
coupled with recall and specificity rates of 94.34% and 
94.32%, respectively. Another of their methods, employing 
Wavelet Packet Analysis (WPA) with Support Vector 
Machines (SVM) [43], reported an impressive accuracy of 
97.5%, reflecting a robust diagnostic framework.

Subsequent innovations by Puri et al. incorporated 
sophisticated feature extraction techniques such as Spectral 
Entropy (SpecEn) with K-Means Clustering (KMC) [44] 

and Tunable Q-Factor Wavelet Transform (TQWT) with 
Extreme Boosting Trees (EBT) [45]. These methodologies 
achieved accuracies of 95.6% and 96.2%, respectively, 
with well-balanced recall and specificity metrics, reflecting 
significant strides in precision. The highest-performing 
approach among prior works, however, is attributed to their 
LCOWFBs-v technique combined with SVM [5], which 
achieved unparalleled accuracy of 98.6%, alongside recall 
and specificity rates of 99.8% and 97.34%, respectively. 
These advancements collectively underscore the trajectory 
of EEG-based diagnostic methodologies toward higher 
precision, improved balance across performance metrics, 
and enhanced reliability in early-stage AD detection. Recent 
work, such as Adazd-Net [46], reported 99.85% accuracy 
on the same dataset using an adaptive wavelet transform 
(AFAWT) with explainable ML. In comparison, the 
proposed HMFS framework achieves 99.24% accuracy with 
a far simpler pipeline, fewer hyperparameters, and intrinsic 
time–frequency interpretability, while also providing more 
stable estimates through repeated 5-fold validation. While 
slightly lower in accuracy (99.24%), HMFS emphasizes 
simplicity, stability, and interpretability, making it a practical 
and reproducible alternative to more complex adaptive or 
deep learning approaches. It should also be noted that deep 
learning approaches such as CNNs, RNNs, and hybrid 
models represent strong competitors, especially when trained 
with larger datasets or via transfer learning. In this study, we 
deliberately focused on a compact, interpretable pipeline to 
mitigate overfitting on small data.

The proposed method surpasses all previous 
approaches in terms of accuracy and recall, achieving an 
outstanding accuracy of 99.24%, perfect recall (100%), 
specificity of 98.39%, precision of 98.61%, and a GM of 
99.31%. Compared to the highest-performing prior work 

 
Fig. 9. ROC curves of selected classifiers, presenting superior accuracy (AUC) for KNN in distinguishing AD 

from healthy subjects. 
 

 

 

 

 

 

Fig. 9. ROC curves of selected classifiers, presenting superior accuracy (AUC) for KNN in distin-
guishing AD from healthy subjects.
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(LCOWFBs-v) by Puri et al. [5], The proposed method 
not only achieves higher recall but also offers superior 
F1-score and GM, indicating a better balance between 
sensitivity and specificity. This comprehensive comparison 
demonstrates the effectiveness and robustness of the 
proposed method, positioning it as a superior diagnostic 
tool for AD detection.

Another important aspect is finding the optimal number 
of Mel filters for classification accuracy. After extensive 
testing, we found that 14 Mel filters produced the best results, 
showing the value of tuning signal processing parameters 
to help the model distinguish between AD patients and 
healthy controls. Using PCA improved both efficiency and 
effectiveness by keeping essential features while reducing 
noise and redundant data. This ultimately enhanced the 
performance of the analysis. The classification phase of the 
study showed that the KNN algorithm achieved the highest 
accuracy at an impressive 99.24%. This strong performance 
was further supported by the highest AUC, confirming 
KNN’s effectiveness in distinguishing between AD and NC 

subjects. Compared to other classifiers and existing methods, 
the HMFS method showed significant improvements in both 
accuracy and reliability.

To further validate the robustness of the proposed method, 
statistical analyses were conducted on the classification 
outcomes. The overall accuracy of 99.24% corresponds to a 
95% confidence interval of [99.05%, 99.39%] at the epoch 
level. When aggregating predictions across repeated cross-
validation (29,547 test instances), the interval narrows to 
[99.13%, 99.33%], reflecting the stability of performance 
across folds and repetitions. Class-wise analysis revealed 
perfect recall for AD (100%, CI [99.93%, 100%]) and high 
specificity for HC (98.39%, CI [97.95%, 98.72%]). A two-
proportion significance test confirmed that recall for AD was 
statistically higher than specificity for HC, suggesting that 
the model identifies AD more readily while still maintaining 
excellent specificity. These findings highlight the consistency 
and discriminative power of the HMFS features and 
demonstrate that the performance gains are not attributable 
to random variation.

Table 5. Comparison of the proposed HMFS method with previous approaches on the same dataset.Table 5. Comparison of the proposed HMFS method with previous approaches on the same dataset. 
 

Studies Methods Classifiers Accuracy Recall Specificity 
Abasolo et al. 
(2005) [37] ApEN - - 75% 80% 

Abasolo et al. 
(2006) [38] SpecEN + SHEN - 77.27% 90.91% 63.64% 

Escudero et al. 
(2006) [42] MSE - 90.91% 90.91% 90.91% 

Abasolo et al. 
(2008) [39] ApEN + AMI - 90.91% 81.82% 100% 

Simons et al. 
(2015) [40] QSE - 77.27% - - 

Simons et al. 
(2018) [41] FEN - 86.36% 81.82% 90.91% 

Durongbhan et al. 
(2019) [26] FFT + CWT KNN 99% - - 

Puri et al. 
(2022) [12] 

EMD + Hjorth 
Parameter LSSVM 92.9% 94.34% 94.32% 

Puri et al. 
(2022) [43] WPA SVM 97.5% 97.45% 97.08% 

Puri et al. 
(2022) [44] SpecEn +KMC SVM 95.6% - 95.2% 

Puri et al. 
(2022) [45] TQWT EBT 96.2% 97.5% 90.49% 

Puri et al. 
(2023) [5] LCOWFBs-v SVM 98.6% 99.8% 97.34% 

Khare et al. 
(2023) [46] AFAWT XBM 99.85% 99.75% 100% 

Proposed method HMFS KNN 9999..2244%%  110000%%  9988..3399%%  
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5- Conclusion
This study introduced a novel and effective feature 

extraction framework for EEG-based diagnosis of 
Alzheimer’s disease, leveraging a combination of Mel 
Cepstral analysis and the HT. The method first captured 
perceptually meaningful frequency-domain representations 
using Mel filter banks, followed by decorrelation via DCT 
and dimensionality reduction through PCA. To further 
enhance temporal resolution, the Hilbert Transform was 
applied to extract the instantaneous amplitude of the signal, 
resulting in highly informative temporal envelopes that 
reflect pathological EEG dynamics associated with AD. 
The proposed approach was comprehensively evaluated 
using multiple classifiers, including KNN, SVM, and RF. 
Among them, KNN achieved the highest performance, 
reaching an accuracy of 99.24% in distinguishing between 
Alzheimer’s patients and healthy controls. The method 
also demonstrated excellent diagnostic reliability across 
other metrics, achieving 100% recall, 98.61% precision, 
98.39% specificity, an F1-score of 99.30%, and a geometric 
mean of 99.31%. By offering a strong balance between 
interpretability, computational efficiency, and diagnostic 
precision, the proposed HMFS-based framework provides 
a promising foundation for real-time, EEG-based screening 
and monitoring of AD. Future work will aim to validate the 
approach on larger and more diverse datasets and explore its 
applicability in early-stage and multi-class neurodegenerative 
classification tasks. Future work will extend the HMFS 
framework to multiclass dementia classification (e.g., AD vs. 
FTD vs. HC), incorporate multimodal biomarkers, evaluate 
the method on larger multi-center datasets, and explore 
hybrid models that integrate HMFS with adaptive transforms 
and deep neural architectures. In addition, we plan to evaluate 
the HMFS framework on larger multi-center EEG datasets 
as they become available, to further validate generalizability 
across diverse populations.
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